
Concurrency: logical properties 1

Chapter 14

Logical Properties
Satisfied?
Not satisfied?

Concurrency: logical properties 2

Logical Properties

Concepts: modeling properties that refer to states

Models: fluent – characterization of abstract state
based on action sets
fluent linear temporal logic

Concurrency: logical properties 3

Introduction

Temporal logic due to Pneuli (1977) is a popular means
to describe behavioural properties in logic.

Use propositions to describe selected variable states
at particular points in program executions.

Realized as the assert construct in Java.
Challenge: How to refer to states in an LTS model

based on actions or events?
Artifact: Introduce fluents to describe abstract state

of LTS models.
Express both safety and liveness properties in fluent

propositions.
Pnueli, A. (1997). The Temporal Logic of Programs. Proc. of the 18th IEEE
Symposium on the Foundations of Computer Science, Oct/Nov 1997, pp. 46-57.

Concurrency: logical properties 4

Fluents

fluent FL = <{s1,…,sn},{e1,…,en}> initially B defines a fluent FL
that is initially true if the expression B is true and initially false if
the expression B is false. FL becomes true when any of the
initiating (or starting) actions {s1,…,sn} occur and false when any of
the terminating (or ending) actions {e1,…,en} occur. If the term
initially B is omitted then FL is initially false. The same action may
not be used as both an initiating and terminating action.

A fluent <{s1,…,sn},{e1,…,en}> describes an abstract
state that is entered by executing any of the actions in
{s1,…,sn}, and exited by executing any of the actions in
{e1,…,en}.

abstract
statesi ei

Concurrency: logical properties 5

Fluents

SWITCH is initially not at state Light.

const False = 0
const True = 1

fluent LIGHT = <{on},{off, power_cut}>
initially false

Light

fluent DARK = <{off, power_cut},on>
initially true

Concurrency: logical properties 6

Fluent Family

is equivalent to defining two fluents:

const False = 0
const True = 1

fluent LIGHT[i:1..2] = <on[i],{off[i], power_cut}>

const False = 0
const True = 1

fluent LIGHT1 = <on[1],{off[1], power_cut}>
fluent LIGHT2 = <on[2],{off[2], power_cut}>

Concurrency: logical properties 7

Fluent Expressions

Fluents can be composed using normal logical operators:
&&, ||, !, ->, <->, forall, exists

If the light is on, power is also on:

All lights are on:

At least one light is on:

fluent LIGHT = <on,off>
fluent POWER = <power_on, power_off>
LIGHT -> POWER

forall[i:1..2] LIGHT[i]

exists[i:1..2] LIGHT[i]

Concurrency: logical properties 8

Action Fluent

An action fluent a defines the state after an action a
has been executed but before the execution of other
actions including the silent action tau.

Suppose α is the alphabet of a system:

bell rings once the room is lit:

Note that action bell_ring must not belong to the
terminating action set of fluent LIGHT

fluent a = <a,α∪{τ}-a>

bellring && LIGHT

Concurrency: logical properties 9

Safety Properties: Mutual Exclusion

const N = 2
range Int = 0..N
SEMAPHORE(I=0) = SEMA[I],
SEMA[v:Int] = (up->SEMA[v+1]
 |when(v>0) down->SEMA[v-1]
).

LOOP = (mutex.down->enter->exit->mutex.up->LOOP).
||SEMADEMO = (p[1..N]:LOOP
 || {p[1..N]}::mutex:SEMAPHORE(2)).

fluent CRITICAL[i:1..N] = <p[i].enter, p[i].exit>

 Two processes are in their critical sections simultaneously:

CRITICAL[1] && CRITICAL[2]

fault

Concurrency: logical properties 10

Safety Properties: Mutual Exclusion

assert MUTEX = []!(CRITICAL[1] && CRITICAL[2])

No two processes can be at critical sections
simultaneously:

LTSA compiles the assert statement into a property
process:

The linear temporal logic formula []F – always F – is true if and only
if the formula F is true at the current instant and at all future
instants.

property MUTEX =(p[i:1..N].enter -> p[i].exit -> MUTEX
).

Concurrency: logical properties 11

Safety Properties: Mutual Exclusion

General expression of the mutual exclusion property
for N processes:

Trace to property violation in MUTEX:
p.1.mutex.down
p.1.enter CRITICAL.1
p.2.mutex.down CRITICAL.1
p.2.enter CRITICAL.1 && CRITICAL.2

assert MUTEX_N(N=2) = []!(exists [i:1..N-1]
(CRITICAL[i] && CRITICAL[i+1..N]))

Concurrency: logical properties 12

Safety Properties: Oneway in Single-Lane Bridge

Abbreviating exists[i:R] FL[i] as FL[R]

const N = 2 // number of each type of car
range ID= 1..N // car identities

fluent RED[i:ID] = <red[i].enter, red[i].exit>
fluent BLUE[i:ID] = <blue[i].enter, blue[i].exit>

assert ONEWAY = []!(exists[i:ID] RED[i]
&& exists[j:ID] BLUE[j])

assert ONEWAY = []!(RED[ID] && BLUE[ID])

Concurrency: logical properties 13

Single Lane Bridge - safety property ONEWAY

property ONEWAY =(red[ID].enter -> RED[1]
 |blue.[ID].enter -> BLUE[1]
),
RED[i:ID] = (red[ID].enter -> RED[i+1]
 |when(i==1)red[ID].exit -> ONEWAY
 |when(i>1) red[ID].exit -> RED[i-1]
), //i is a count of red cars on the bridge
BLUE[i:ID]= (blue[ID].enter-> BLUE[i+1]
 |when(i==1)blue[ID].exit -> ONEWAY
 |when(i>1)blue[ID].exit -> BLUE[i-1]
). //i is a count of blue cars on the bridge

The fluent proposition is more concise as compared with the property
process ONEWAY. This is usually the case where a safety property can
be expressed as a relationship between abstract states of a system.

Concurrency: logical properties 14

Liveness Properties

First red car must eventually enter the bridge:

To check the liveness property, LTSA transforms the
negation of the assert statement in terms of a Büchi
automaton.

A Büchi automaton recognizes an infinite trace if that
trace passes through an acceptance state infinitely
often.

The linear temporal logic formula <>F – eventually F – is true if and
only if the formula F is true at the current instant or at some
future instant.

assert FIRSTRED = <>red[1].enter

1

red.1.enter

0 red.1.enter

Büchi Automaton

Concurrency: logical properties 15

Liveness Properties: Progress Properties

Compose the Büchi automaton and the original system.
Search for acceptance state in strong connected

components.
Failure of the search implies no trace can satisfy the Buchi

automaton.
It validates that the assert property holds.

Red and blue cars enter the bridge infinitely often.
assert REDCROSS = forall [i:ID] []<>red[i].enter
assert BLUECROSS = forall [i:ID] []<>blue[i].enter
assert CROSS = (REDCROSS && BLUECROSS)

Concurrency: logical properties 16

Liveness Properties: Response Properties

If a red car enters the bridge, it should eventually exit.

It does not stop in the middle or fall over the side!

Such kind of properties is sometimes termed “response”
properties, which follows the form:
[](request-> <>reply)

This form of liveness property cannot be specified using
the progress properties discussed earlier.

assert REDEXIT = forall [i:ID]
[](red[i].enter -> <>red[i].exit)

Concurrency: logical properties 17

EXIT_N asserts that a process enterng the critical
section will eventually exit.

Liveness Properties:

assert EXIT_N(N=2) = forall[i:1..N]
[](p[i].enter -> <>p[i].exit //liveness

assert MUTEX_LIVE(N=2) = MUTEX_N(N) && EXIT_N(N)

assert MUTEX_N(N=2) = []!(exists [i:1..N-1]
(CRITICAL[i] && CRITICAL[i+1..N])) //safety

Concurrency: logical properties 18

Fluent Linear Temporal Logic (FLTL)

There are five operators in FLTL
 Always []
 Eventually <>
 Until U
 Weak until W
 Next time X

Amongst the five operators, always [] and eventually <>
are the two most commonly used ones.

Until, Weak until and Next time allows complex relation
between abstract states.

Concurrency: logical properties 19

FLTL: Until U

We should not enter a room before knocking

The proposition also mandates that a knock action
should eventually happen

The proposition is not purely a safety property

The linear temporal logic formula p U q – p until q – is true if and
only if q is true at the current instant or p is true until some
future instant where q is true.

assert POLITE = (!enter U knock)

Concurrency: logical properties 20

FLTL: Until U

Note that if a knock never occurs, the property is
violated because the automaton remains in the
acceptance state 0.

0 1 2

knock

enter

enter knock
enter

knock
enter

Büchi automaton of POLITE

Concurrency: logical properties 21

FLTL: Weak Until W

We should not enter a room before knocking.

It does not mandate that knock will eventually happens.

The proposition is a safety property.

The linear temporal logic formula p W q – p weak until q – is true if
and only if p is true indefinitely or if p U q.

assert POLITE = (!enter W knock)

Concurrency: logical properties 22

Definitions

always [], eventually <> and weak until W can be
simulated by until U:
 <>p ≡ true U p
 []p ≡ !<>!p
 p W q ≡ []p || (p U q)

FLTL allows boolean expressions of constants and
parameters.
 assert true = rigid(1)
 assert false = rigid(0)

 rigid(0) and rigid(1) are fluent propositions that do not change
truth value with the passage of time as measured by the
occurrence of events.

Concurrency: logical properties 23

FLTL: Next time X

By next instant, we mean when the next action
occurs – this includes silent actions.

The proposition requires that the system
executes a in the initial instance, which is
immediately followed by b and then c.

The linear temporal logic formula X p – next p – is true if and only
if p is true at the next instant.

assert SEQ = (a && X b && X X c)

Concurrency: logical properties 24

Summary

A fluent is defined by a set of initiating actions and a
set of terminating actions.

At a particular instant, a fluent is true if and only if it
was initially true or an initiating action has previously
occurred and, in both cases, no terminating action has
yet occurred.

In general, we don’t differentiate safety and liveness
properties in linear temporal logic.

We verify an LTS model against a given set of fluent
propositions.

LTSA evaluates the set of fluents that hold each time
an action has taken place in the model.

Concurrency: logical properties 25

Course Outline

2 . Processes and Threads

3 . Concurrent Execution

4 . Shared Objects & Interference

5 . Monitors & Condition Synchronization

6 . Deadlock

7 . Safety and Liveness Properties

8 . Model-based Design

9 . Dynamic systems

10 . Message Passing

11. Concurrent Software Architectures

Concepts
Models
Practice

12 . Timed Systems

13 . Program Verification

14 . Logical Properties

The main basic

Advanced topics …

