II}/ICM%ster
niversity

SE3BB4
Section 11

Concurrent
(Software)
Architectures

SOFTWARE ARCHITECTURE

= Architecture i1s used as a term to descrobe the gross
structure of a system/application in terms of the structure
of components and connectors comprising the system.

= The client-server architectures used in previous sections
are examples of a standardised structure for a system.

¢ the architecture can be described without knowing the exact
functionality and purpose of the system or its components

¢ only need info about how the components interact
¢ can implement framework for system without knowing “internals”

= \We look at some standard architectures for concurrent
systems.

SE3BB4-09 2 University

e

PIPES AND FILTERS

= Afilter is a process that transforms a stream of inputs into
a stream of outputs.
¢ multiple input streams and multiple output streams possible

= Filters are connected together via pipes to form complex
networks of processes, including feedback.
¢ e.g., Unix

¢ pipes may have buffered memory
= We study the classical algorithm called the sieve of

Aritosthenes
¢ provide a concurrent implementation via pipes and filters

iﬁE‘ ‘;‘

SE3BB4-09 3

SIEVE OF ARITOSTHENES

= Find all the primes between 2 and n:
¢ list all the numbers between 2 and n
¢ cross out all the numbers in the list divisible by 2

¢ move to the next uncrossed out number and remove all multiples from
the list

¢ repeat the previous step until the end of the list is reached
¢ the uncrossed out numbers are the primes

= The primes act as a sieve for the other numbers ...

iﬁE‘ ‘;‘

SE3BB4-09 4

SIEVE OF ARITOSTHENES

= The concurrent version generates a stream of numbers.
= Multiples (non primes) are removed by filter processes.

= The architecture is depicted below (without action and
process labels):

GEN

=
T
m

FILTER PIPE FILTER -

pipeline

SE3BB4-09 5

iﬁE‘ ‘;‘

SIEVE OF ARITOSTHENES

= \We must define
¢ the filtering processes
¢ the interactions defined by pipes

= |n the terminology of SW Architectures, pipes are
connectors.
¢ connectors define interaction between components in the architecture
¢ both connectors and components are defined as processes in FSP

const MAX = 9

range NUM = 2..9

set S = {[NUM], eos}

PIPE = (put [x:S] -> get [xX] -> PIPE)

McMas

SE3BB4-09 6 |

#

SIEVE OF ARITOSTHENES

= The pipe processes numbers from 2 to MAX and the
signal eos (end of stream signal).

= Need a new FSP mechanism: the conditional process.

if B then P else Qbehaves as P if Bis true and Q
otherwise. If the ‘else’ is missing and B is false, it behaves
like STOP.

GEN = GEN [2],

GEN [X:NUM] = (out.put [x] ->
if x<MAX then
GEN [X+1]
else

(out.put.eos -> enf -> GEN)

).

SE3BB4-09 7

iﬁE‘ ‘;‘

SIEVE OF ARITOSTHENES

= The filter process records the first value it gets and filters
out multiples of that value.

FILTER

(in.get [x:NUM] ->
|in.get.eos -> ENDFILTER

) 1

FILTER [P:NUM] = (in,get [X:NUM] ->
if x%p != 0 then

(out.put [x] -> FILTER
[P])

else FILTER [p]
|in.get.eos -> ENDFILTER

) 1

ENDFILTER = (out.put.eos -> end -> FILTER).
SE3BB4-09 8

SIEVE OF ARITOSTHENES

= The composite structure is:
| |PRIMES (N=4) =

(gen:GEN

| |[pipe [0..N-1]:PIPE

| |[filter [0..N-1]:FILTER

)/{ pipe [0]/gen.out,
pipe [0..N-1]/filter [i].in,
pipe [i:1..N-1]/filter [i-1].out,
end/{filter [0..N-1].end, gen.end}

}e{filter [0..N-1].prime, end}.

SE3BB4-09 9

SIEVE OF ARITOSTHENES

= No deadlocks or errors detected!

¢ used ‘end’ to differentiate normal termination in the model so that any
error or deadlock was detectable as being different

" Minimised LTS:

filter.0.prime.2 filter.1.prime.3 filter.2.prime.5 filter.3.prime.7

PRIMES

-

end

= NOTE: model does not compute all primes between 2
and MAX! Computes first N primes where N is number of
filters! (Change MAX too 11 and recompute LTS ...)

e

SE3BB4-09 10

SIEVE OF ARITOSTHENES

= Previous model uses single slot buffers.
= \What happens if we use no buffering?

= Construct a model in which pipes are omitted and filters
interact via shared actions (the LTS will be the same!):

| |[PRIMESUNBUF (N=4) =
(gen:GEN | |filter [0..N-1]:FILTER)
/{ pipe [0]/gen.out.put,
pipe [0..N-1]/filter [i].in.get,
pipe[i:l..N-1]/filter[i-1].0out.put,
end/{filter [0..N-1].end, gen.end}
}@{filter [0..N-1].prime, end}.

McMas
Iniversity

#

SE3BB4-09 11

ABSTRACTING APPLICATION DETAIL

= |[f we want to analyse larger models, state space
explosion becomes a problem.

= SOLUTION: abstract details of application

¢ in this case details of sieve function

= MAGIC: relabel range of values NUM as a single value
(independence from values).

| |AGEN = GEN/{out.put/out.put [NUM]},
| |AFILTER = FILTER/ {out.put/out.put [NUM]
in.get/in.get [NUM],
prime/prime [NUM]
}.

| |APIPE = PIPE/{put/put [NUM], get/get [NUM]}.

SE3BB4-09 12

ABSTRACTING APPLICATION
DETAIL

in.get

in.get.eos out.put.eos prime in.get

AFILTER

in.get.eos

= Determinitic conditional transition replaced here by
nondeterministic choice:

= |n state 4 after an in.get, the LTS goes to state 5 and
does an out.put action or remains in state 4.

SE3BB4-09 13

iﬁE‘ ‘;‘

MORE BUFFERS

= Use a recursive definition of pipes to simulate multi slot
buffer:

| [MPIPE (B=4) =
if B==1 then
APIPE
else

(APIPE/{mid/get} || MPIPE (B-1)/
{mid/put})

@{put,get}.

SE3BB4-09 14

MORE BUFFERS

" The abstract model of the sieve architecture can be
defined as follows, using PRIMEP defined later:

| |APRIMES (N=4,B=3) =
(gen:AGEN || PRIMEP (N)
| |[pipe [0..N-1]:MPIPE [B]
| |[filter [0..N-1]:AFILTER

) /{

SE3BB4-09

pipe [0]/gen.out,
pipe [0..N-1]/filter [i].in,

pipe [i:1..N-1]/filter [i-1].out,
end/{filter [0..N-1].end, gen.end}

15

ARCHITECTURAL PROPERTIES

= Properties of such abstract models of software
architectures are called architectural properties.

¢ absence of deadlock
¢ termination (absence of livelock)

= Termination is assured by the progress property END:

progress END = {end}

= An application specific property is that the prime from
filter [0] should be produced before that from filter [1], etc

property
PRIMEP(N=4) = PRIMEP [0],
PRIMEP[1i:0..N] =(when (i<n)

filter[i].prime->PRIMEP[i+1]

|end -> PRIMEP).
SE3BB4-09 16

SIEVES IMPLEMENTATION

= Aplet displays with an unbuffered implementation.

= Top numbers are latest numbers generated/received by
corresponding filter.

McMaster

University '

SIEVES IMPLEMENTATION

= Number generator and filters are implemented as

threads.

= Two implementations of the pipe connector.

Applet

Alk

init()
go()

: en
Primes —gﬁl Generator

run()

display
A4

PrimesCanvas

print()
prime()
clear()

SE3BB4-C

Thread
74
: out) in,out
£ T Filter :
run()
display display
Pipe |K—
put()
get()
[4& |
PipelmplUnBuf PipelmplBuf

McMaster

University lz%

SIEVES IMPLEMENTATION

= The display is handled by PrimeCanvas.

SE3BB4-09 e ey g

SIEVES IMPLEMENTATION: Generator

cMaster
S E3BB niversity

SE3BB4-09

McMaster

University '

SIEVES IMPLEM

" The implementation
reuses classes
developed earlier:

¢ synchronous
message passing
class Channel
unbuffered pipes

¢ and bounded buffer
class BufferImpl
used to implement
buffered pipes

SE3BB4-09

SIEVES IMPLEMENTATION

private void go(boolean buffered) {
display.clear();

//create channels
ArraylList<Pipe<Integer>> pipes =
new ArrayList<Pipe<Integer>>();
for (int i=0; i<N; ++i)
if (buffered)

pipes.add(new PipeImplBuf<Integer>());
else

pipes.add(new PipeImplUnBuf<Integer>());

//create threads
gen = new Generator(pipes.get(0),display);
for (int i=0; i<N; ++i)
filter[i] = new Filter(pipes.get(i),
i<N-1?pipes.get(i+1):null,i+1,display);
gen.start();
for (int- i=0; i<N; ++i) filter[i].start();

SE3BB4-09 23

USING BUFFERS OR NOT

Unbuffered version of the sieve algorithm works correctly.

Why use buffers?
Answer: efficiency!

Process or thread suspension involves a context switch
and this is expensive.
¢ (thread switch less expensive than process switch)

Concurrent programs run more efficiently if there are
fewer context switches.

No buffering means generator and filter threads are
suspended every time they produce an item until
consumed by next thread.

With buffers, only a full buffer causes suspension.

SE3BB4-09 24

SUPERVISOR-WORKER ARCHITECTURE

= Concurrent architecture to speed up execution of suitable

applications.

¢ applies when a problem can be split into a number of independent
sub-problems

¢ referred to as tasks

WORKER WORKER WORKER

SUPERVISOR | “BAG”

SE3BB4-09 25

SUPERVISOR-WORKER ARCHITECTURE

= Supervisor and worker processes interact via a connector
bag
¢ supervisor puts initial set of tasks in bag

¢ supervisor gets results from bag and determines when computation
has finished

= Each worker repetitively
¢ takes a task from the bag
¢ computes the result and puts it back in bag

= Supervisor determines end of computation
= Workers can put new tasks into the bag
= Any number of workers is possible

SE3BB4-09 26 niversity g

LINDA TUPLE SPACES

= |nteraction mechanism suitable for implementing bag
= | inda is a model of (parallel) computation

= Consists of a set of primitive operations used to access a
data structure called a tuple space

= A tuple space is a shared associative memory with a
collection of tagged data records

(“tag”, valuef, ..., valuen)

¢ the tag is a literal string used to categorize tuples
¢ valuei is a data value like integer, floating point, other data values

¢ Basic operations:
¢ deposit a tuple in the space out(“tag”, expr1, ..., exprn)

¢ execution completes when expri are evaluated and tuple is put in
the tuple space

SE3BB4-09 27

LINDA TUPLE SPACES

2

*

similar to an asynchronous send, but “message” stored in tuple space
instead of queue associated with a port

in(“tag”, field1, ..., fieldn) removes tuple from space

each fieldi is either an expression or a formal parameter of the
form ?var (var local to executing process)

arguments to in are called templates

process executing in blocks until there is a tuple in the space to match
the template

template match is defined as:
+ tags identical
+ same number of fields

+ expressions in template have same values as corresponding
values in tuple

+ variables in template have same type as corresponding values in
tuple

like receive with matching used to identify “port”

SE3BB4-09 28 Y

LINDA TUPLE SPACES

¢ rd(“tag’, field1, ..., fieldn) reads a value from the tuple space without
removing it

+ same conditions as in

¢ Linda provides nonblocking versions of in and rd, called inp and rdp,
that return true tuple if tuple is there, false otherwise

¢ eval creates an active/process tuple

+ like out, but one of the arguments is a procedure that operates on
other arguments

+ becomes a passive tuple when evaluation terminates

SE3BB4-09 29

TUPLE SPACE MODEL

Use finite set of tuple values

Have to fix maximum number of copies of some tuple
allowed

const N = ...
set Tuples = {...}
N and Tuples depend on context

Each tuple value modelled by FSP label of the form
tag.vali.....valn

Have a process to manage each tuple value and tuple
space is parallel composition of all these processes

SE3BB4-09 30

TUPLE SPACE MODEL

const False = 0
const True = 1

range Bool = False..True

TUPLE (T='any) = TUPLE [0].
TUPLE [1:0..N] =
(out[T]

when (1>0) in[T]

when (i>0) inp[True][T]
when (i==0) inp[False][T]
when (1>0) rd[T]
rdp[1>0][T]

).

TUPLE[i+1]
TUPLE[i+1]
TUPLE[i+1]
TUPLE[1]
TUPLE[1]

| | TUPLESPACE = forall [t:Tuples] TUPLE(t).

SE3BB4-09 31

iﬁE‘ ‘;‘

TUPLE SPACE MODEL

= | TS for tuple value for any with N=2 is:

out.any out.any

rd.any
rdp.1.any

inp.0.any
rdp.0.any

in.any
inp.1.any

out.any

Mt
SE3BB4-09 39 University %

TUPLE SPACE MODEL

= Exceeding capacity with more than 2 out ops leads to an
ERROR

= Example of a conditional operation on the tuple space
iInp [b:Bool][t: Tuples]
¢ value of t only valid when b is True

= Each specific TUPLE process has in its alphabet the ops
on one specific tuple value

= The alphabet of TUPLESPACE is
set TupleAlpha = {{in,out,rd,rdp[Bool], inp[Bool]}.Tuples}

SE3BB4-09 33

TUPLE SPACE IMPLEMENTATION

Implement as centralized system for demo
Matching of templates only on tag field
Use a hash table of vectors to implement the space

For simplicity, tuples stored in FIFO order for a particular
tag

New tuples appended at end of a vector for a tag and
removed from its head

Naively, all threads woken up whenever a new tuple is
added

More efficiently, we would wake only those waiting for
tuple with the same tag

SE3BB4-09 34

TUPLE SPACE IMPLEMENTATION

oEsBB4-UY

SE3BB4-09 University

SE3BB4-09 University

