
Concurrent
(Software)

Architectures

SE3BB4
Section 11

1

SE3BB4-09

SOFTWARE ARCHITECTURE
 Architecture is used as a term to descrobe the gross

structure of a system/application in terms of the structure
of components and connectors comprising the system.

 The client-server architectures used in previous sections
are examples of a standardised structure for a system.
 the architecture can be described without knowing the exact

functionality and purpose of the system or its components
 only need info about how the components interact
 can implement framework for system without knowing “internals”

 We look at some standard architectures for concurrent
systems.

2

SE3BB4-09

PIPES AND FILTERS
 A filter is a process that transforms a stream of inputs into

a stream of outputs.
 multiple input streams and multiple output streams possible

 Filters are connected together via pipes to form complex
networks of processes, including feedback.
 e.g., Unix
 pipes may have buffered memory

 We study the classical algorithm called the sieve of
Aritosthenes
 provide a concurrent implementation via pipes and filters

3

SE3BB4-09

SIEVE OF ARITOSTHENES
 Find all the primes between 2 and n:

 list all the numbers between 2 and n
 cross out all the numbers in the list divisible by 2
 move to the next uncrossed out number and remove all multiples from

the list
 repeat the previous step until the end of the list is reached
 the uncrossed out numbers are the primes

 The primes act as a sieve for the other numbers ...

4

SE3BB4-09

SIEVE OF ARITOSTHENES
 The concurrent version generates a stream of numbers.
 Multiples (non primes) are removed by filter processes.
 The architecture is depicted below (without action and

process labels):

5

SE3BB4-09

SIEVE OF ARITOSTHENES
 We must define

 the filtering processes
 the interactions defined by pipes

 In the terminology of SW Architectures, pipes are
connectors.
 connectors define interaction between components in the architecture
 both connectors and components are defined as processes in FSP

const MAX = 9

range NUM = 2..9

set S = {[NUM], eos}

PIPE = (put [x:S] -> get [x] -> PIPE)

6

SE3BB4-09

SIEVE OF ARITOSTHENES
 The pipe processes numbers from 2 to MAX and the

signal eos (end of stream signal).
 Need a new FSP mechanism: the conditional process.
if B then P else Q behaves as P if B is true and Q
otherwise. If the ‘else’ is missing and B is false, it behaves
like STOP.
GEN = GEN [2],

GEN [X:NUM] = (out.put [x] ->
if x<MAX then
GEN [X+1]
else
(out.put.eos -> enf -> GEN)
).

7

SE3BB4-09

SIEVE OF ARITOSTHENES
 The filter process records the first value it gets and filters

out multiples of that value.
FILTER = (in.get [x:NUM] ->

 |in.get.eos -> ENDFILTER

),

FILTER [P:NUM] = (in,get [x:NUM] ->

 if x%p != 0 then

 (out.put [x] -> FILTER
[p])

 else FILTER [p]

 |in.get.eos -> ENDFILTER

),

ENDFILTER = (out.put.eos -> end -> FILTER).
8

SE3BB4-09

SIEVE OF ARITOSTHENES
 The composite structure is:
||PRIMES (N=4) =

 (gen:GEN

 ||pipe [0..N-1]:PIPE

 ||filter [0..N-1]:FILTER

)/{
pipe [0]/gen.out,

 pipe [0..N-1]/filter [i].in,

 pipe [i:1..N-1]/filter [i-1].out,

 end/{filter [0..N-1].end, gen.end}

 }@{filter [0..N-1].prime, end}.

9

SE3BB4-09

SIEVE OF ARITOSTHENES
 No deadlocks or errors detected!

 used ‘end’ to differentiate normal termination in the model so that any
error or deadlock was detectable as being different

 Minimised LTS:

 NOTE: model does not compute all primes between 2
and MAX! Computes first N primes where N is number of
filters! (Change MAX too 11 and recompute LTS ...)

10

SE3BB4-09

SIEVE OF ARITOSTHENES
 Previous model uses single slot buffers.
 What happens if we use no buffering?
 Construct a model in which pipes are omitted and filters

interact via shared actions (the LTS will be the same!):
||PRIMESUNBUF (N=4) =

 (gen:GEN ||filter [0..N-1]:FILTER)

 /{
 pipe [0]/gen.out.put,

 pipe [0..N-1]/filter [i].in.get,

 pipe[i:1..N-1]/filter[i-1].out.put,

 end/{filter [0..N-1].end, gen.end}

 }@{filter [0..N-1].prime, end}.

11

SE3BB4-09

ABSTRACTING APPLICATION DETAIL
 If we want to analyse larger models, state space

explosion becomes a problem.
 SOLUTION: abstract details of application

 in this case details of sieve function
 MAGIC: relabel range of values NUM as a single value

(independence from values).
||AGEN = GEN/{out.put/out.put [NUM]},

||AFILTER = FILTER/ {out.put/out.put [NUM]

 in.get/in.get [NUM],

 prime/prime [NUM]

 }.

||APIPE = PIPE/{put/put [NUM], get/get [NUM]}.

12

SE3BB4-09

ABSTRACTING APPLICATION
DETAIL

 Determinitic conditional transition replaced here by
nondeterministic choice:

 In state 4 after an in.get, the LTS goes to state 5 and
does an out.put action or remains in state 4.

13

SE3BB4-09

MORE BUFFERS
 Use a recursive definition of pipes to simulate multi slot

buffer:

||MPIPE (B=4) =

 if B==1 then

 APIPE

 else

 (APIPE/{mid/get} || MPIPE (B-1)/
{mid/put})

 @{put,get}.

14

SE3BB4-09

MORE BUFFERS
 The abstract model of the sieve architecture can be

defined as follows, using PRIMEP defined later:
||APRIMES (N=4,B=3) =

 (gen:AGEN || PRIMEP (N)

 ||pipe [0..N-1]:MPIPE [B]

 ||filter [0..N-1]:AFILTER

)/{
pipe [0]/gen.out,

 pipe [0..N-1]/filter [i].in,

 pipe [i:1..N-1]/filter [i-1].out,

 end/{filter [0..N-1].end, gen.end}

 }.

15

SE3BB4-09

ARCHITECTURAL PROPERTIES
 Properties of such abstract models of software

architectures are called architectural properties.
 absence of deadlock
 termination (absence of livelock)

 Termination is assured by the progress property END:
progress END = {end}

 An application specific property is that the prime from
filter [0] should be produced before that from filter [1], etc
property

 PRIMEP(N=4) = PRIMEP [0],

 PRIMEP[i:0..N] =(when (i<n)

 filter[i].prime->PRIMEP[i+1]

 |end -> PRIMEP).
16

SE3BB4-09

SIEVES IMPLEMENTATION
 Aplet displays with an unbuffered implementation.
 Top numbers are latest numbers generated/received by

corresponding filter.

17

SE3BB4-09

SIEVES IMPLEMENTATION
 Number generator and filters are implemented as

threads.
 Two implementations of the pipe connector.

18

SE3BB4-09

SIEVES IMPLEMENTATION
 The display is handled by PrimeCanvas.

19

SE3BB4-09

SIEVES IMPLEMENTATION: Generator

20

SE3BB4-09 21

SE3BB4-09

SIEVES IMPLEMENTATION
 The implementation

reuses classes
developed earlier:
 synchronous

message passing
class Channel
unbuffered pipes

 and bounded buffer
class BufferImpl
used to implement
buffered pipes

22

SE3BB4-09

SIEVES IMPLEMENTATION

23

SE3BB4-09

USING BUFFERS OR NOT
 Unbuffered version of the sieve algorithm works correctly.
 Why use buffers?
 Answer: efficiency!
 Process or thread suspension involves a context switch

and this is expensive.
 (thread switch less expensive than process switch)

 Concurrent programs run more efficiently if there are
fewer context switches.

 No buffering means generator and filter threads are
suspended every time they produce an item until
consumed by next thread.

 With buffers, only a full buffer causes suspension.
24

SE3BB4-09

SUPERVISOR-WORKER ARCHITECTURE
 Concurrent architecture to speed up execution of suitable

applications.
 applies when a problem can be split into a number of independent

sub-problems
 referred to as tasks

25

SE3BB4-09

SUPERVISOR-WORKER ARCHITECTURE
 Supervisor and worker processes interact via a connector

bag
 supervisor puts initial set of tasks in bag
 supervisor gets results from bag and determines when computation

has finished
 Each worker repetitively

 takes a task from the bag
 computes the result and puts it back in bag

 Supervisor determines end of computation
 Workers can put new tasks into the bag
 Any number of workers is possible

26

SE3BB4-09

LINDA TUPLE SPACES
 Interaction mechanism suitable for implementing bag
 Linda is a model of (parallel) computation
 Consists of a set of primitive operations used to access a

data structure called a tuple space
 A tuple space is a shared associative memory with a

collection of tagged data records
(“tag”, value1, ..., valuen)

 the tag is a literal string used to categorize tuples
 valuei is a data value like integer, floating point, other data values

 Basic operations:
 deposit a tuple in the space out(“tag”, expr1, ..., exprn)
 execution completes when expri are evaluated and tuple is put in

the tuple space
27

SE3BB4-09

LINDA TUPLE SPACES
 similar to an asynchronous send, but “message” stored in tuple space

instead of queue associated with a port
 in(“tag”, field1, ..., fieldn) removes tuple from space
 each fieldi is either an expression or a formal parameter of the

form ?var (var local to executing process)
 arguments to in are called templates
 process executing in blocks until there is a tuple in the space to match

the template
 template match is defined as:

 tags identical
 same number of fields
 expressions in template have same values as corresponding

values in tuple
 variables in template have same type as corresponding values in

tuple
 like receive with matching used to identify “port”

28

SE3BB4-09

LINDA TUPLE SPACES
 rd(“tag”, field1, ..., fieldn) reads a value from the tuple space without

removing it
 same conditions as in

 Linda provides nonblocking versions of in and rd, called inp and rdp,
that return true tuple if tuple is there, false otherwise

 eval creates an active/process tuple
 like out, but one of the arguments is a procedure that operates on

other arguments
 becomes a passive tuple when evaluation terminates

29

SE3BB4-09

TUPLE SPACE MODEL
 Use finite set of tuple values
 Have to fix maximum number of copies of some tuple

allowed
const N = ...

set Tuples = {...}
 N and Tuples depend on context
 Each tuple value modelled by FSP label of the form

tag.val1.....valn
 Have a process to manage each tuple value and tuple

space is parallel composition of all these processes

30

SE3BB4-09

TUPLE SPACE MODEL
const False = 0

const True = 1

range Bool = False..True

TUPLE (T=’any) = TUPLE [0].

TUPLE [i:0..N] =

(out[T]

 ->
 TUPLE[i+1]

|when (i>0) in[T]

 ->
 TUPLE[i+1]

|when (i>0) inp[True][T]
 ->
 TUPLE[i+1]

|when (i==0) inp[False][T]
 ->
 TUPLE[i]

|when (i>0) rd[T]

 ->
 TUPLE[i]

rdp[i>0][T]

).

||TUPLESPACE = forall [t:Tuples] TUPLE(t).
31

SE3BB4-09

TUPLE SPACE MODEL
 LTS for tuple value for any with N=2 is:

32

SE3BB4-09

TUPLE SPACE MODEL
 Exceeding capacity with more than 2 out ops leads to an

ERROR
 Example of a conditional operation on the tuple space

inp [b:Bool][t:Tuples]
 value of t only valid when b is True

 Each specific TUPLE process has in its alphabet the ops
on one specific tuple value

 The alphabet of TUPLESPACE is
set TupleAlpha = {{in,out,rd,rdp[Bool], inp[Bool]}.Tuples}

33

SE3BB4-09

TUPLE SPACE IMPLEMENTATION
 Implement as centralized system for demo
 Matching of templates only on tag field
 Use a hash table of vectors to implement the space
 For simplicity, tuples stored in FIFO order for a particular

tag
 New tuples appended at end of a vector for a tag and

removed from its head
 Naively, all threads woken up whenever a new tuple is

added
 More efficiently, we would wake only those waiting for

tuple with the same tag

34

SE3BB4-09

TUPLE SPACE IMPLEMENTATION

35

SE3BB4-09 36

SE3BB4-09 37

