
Concurrent
(Software)

Architectures

SE3BB4
Section 11

1

SE3BB4-09

SOFTWARE ARCHITECTURE
 Architecture is used as a term to descrobe the gross

structure of a system/application in terms of the structure
of components and connectors comprising the system.

 The client-server architectures used in previous sections
are examples of a standardised structure for a system.
 the architecture can be described without knowing the exact

functionality and purpose of the system or its components
 only need info about how the components interact
 can implement framework for system without knowing “internals”

 We look at some standard architectures for concurrent
systems.

2

SE3BB4-09

PIPES AND FILTERS
 A filter is a process that transforms a stream of inputs into

a stream of outputs.
 multiple input streams and multiple output streams possible

 Filters are connected together via pipes to form complex
networks of processes, including feedback.
 e.g., Unix
 pipes may have buffered memory

 We study the classical algorithm called the sieve of
Aritosthenes
 provide a concurrent implementation via pipes and filters

3

SE3BB4-09

SIEVE OF ARITOSTHENES
 Find all the primes between 2 and n:

 list all the numbers between 2 and n
 cross out all the numbers in the list divisible by 2
 move to the next uncrossed out number and remove all multiples from

the list
 repeat the previous step until the end of the list is reached
 the uncrossed out numbers are the primes

 The primes act as a sieve for the other numbers ...

4

SE3BB4-09

SIEVE OF ARITOSTHENES
 The concurrent version generates a stream of numbers.
 Multiples (non primes) are removed by filter processes.
 The architecture is depicted below (without action and

process labels):

5

SE3BB4-09

SIEVE OF ARITOSTHENES
 We must define

 the filtering processes
 the interactions defined by pipes

 In the terminology of SW Architectures, pipes are
connectors.
 connectors define interaction between components in the architecture
 both connectors and components are defined as processes in FSP

const MAX = 9

range NUM = 2..9

set S = {[NUM], eos}

PIPE = (put [x:S] -> get [x] -> PIPE)

6

SE3BB4-09

SIEVE OF ARITOSTHENES
 The pipe processes numbers from 2 to MAX and the

signal eos (end of stream signal).
 Need a new FSP mechanism: the conditional process.
if B then P else Q behaves as P if B is true and Q
otherwise. If the ‘else’ is missing and B is false, it behaves
like STOP.
GEN = GEN [2],

GEN [X:NUM] = (out.put [x] ->
if x<MAX then
GEN [X+1]
else
(out.put.eos -> enf -> GEN)
).

7

SE3BB4-09

SIEVE OF ARITOSTHENES
 The filter process records the first value it gets and filters

out multiples of that value.
FILTER = (in.get [x:NUM] ->

 |in.get.eos -> ENDFILTER

),

FILTER [P:NUM] = (in,get [x:NUM] ->

 if x%p != 0 then

 (out.put [x] -> FILTER
[p])

 else FILTER [p]

 |in.get.eos -> ENDFILTER

),

ENDFILTER = (out.put.eos -> end -> FILTER).
8

SE3BB4-09

SIEVE OF ARITOSTHENES
 The composite structure is:
||PRIMES (N=4) =

 (gen:GEN

 ||pipe [0..N-1]:PIPE

 ||filter [0..N-1]:FILTER

)/{ pipe [0]/gen.out,

 pipe [0..N-1]/filter [i].in,

 pipe [i:1..N-1]/filter [i-1].out,

 end/{filter [0..N-1].end, gen.end}

 }@{filter [0..N-1].prime, end}.

9

SE3BB4-09

SIEVE OF ARITOSTHENES
 No deadlocks or errors detected!

 used ‘end’ to differentiate normal termination in the model so that any
error or deadlock was detectable as being different

 Minimised LTS:

 NOTE: model does not compute all primes between 2
and MAX! Computes first N primes where N is number of
filters! (Change MAX too 11 and recompute LTS ...)

10

SE3BB4-09

SIEVE OF ARITOSTHENES
 Previous model uses single slot buffers.
 What happens if we use no buffering?
 Construct a model in which pipes are omitted and filters

interact via shared actions (the LTS will be the same!):
||PRIMESUNBUF (N=4) =

 (gen:GEN ||filter [0..N-1]:FILTER)

 /{ pipe [0]/gen.out.put,

 pipe [0..N-1]/filter [i].in.get,

 pipe[i:1..N-1]/filter[i-1].out.put,

 end/{filter [0..N-1].end, gen.end}

 }@{filter [0..N-1].prime, end}.

11

SE3BB4-09

ABSTRACTING APPLICATION DETAIL
 If we want to analyse larger models, state space

explosion becomes a problem.
 SOLUTION: abstract details of application

 in this case details of sieve function
 MAGIC: relabel range of values NUM as a single value

(independence from values).
||AGEN = GEN/{out.put/out.put [NUM]},

||AFILTER = FILTER/ {out.put/out.put [NUM]

 in.get/in.get [NUM],

 prime/prime [NUM]

 }.

||APIPE = PIPE/{put/put [NUM], get/get [NUM]}.

12

SE3BB4-09

ABSTRACTING APPLICATION
DETAIL

 Determinitic conditional transition replaced here by
nondeterministic choice:

 In state 4 after an in.get, the LTS goes to state 5 and
does an out.put action or remains in state 4.

13

SE3BB4-09

MORE BUFFERS
 Use a recursive definition of pipes to simulate multi slot

buffer:

||MPIPE (B=4) =

 if B==1 then

 APIPE

 else

 (APIPE/{mid/get} || MPIPE (B-1)/
{mid/put})

 @{put,get}.

14

SE3BB4-09

MORE BUFFERS
 The abstract model of the sieve architecture can be

defined as follows, using PRIMEP defined later:
||APRIMES (N=4,B=3) =

 (gen:AGEN || PRIMEP (N)

 ||pipe [0..N-1]:MPIPE [B]

 ||filter [0..N-1]:AFILTER

)/{ pipe [0]/gen.out,

 pipe [0..N-1]/filter [i].in,

 pipe [i:1..N-1]/filter [i-1].out,

 end/{filter [0..N-1].end, gen.end}

 }.

15

SE3BB4-09

ARCHITECTURAL PROPERTIES
 Properties of such abstract models of software

architectures are called architectural properties.
 absence of deadlock
 termination (absence of livelock)

 Termination is assured by the progress property END:
progress END = {end}

 An application specific property is that the prime from
filter [0] should be produced before that from filter [1], etc
property
 PRIMEP(N=4) = PRIMEP [0],

 PRIMEP[i:0..N] =(when (i<n)

 filter[i].prime->PRIMEP[i+1]

 |end -> PRIMEP).
16

SE3BB4-09

SIEVES IMPLEMENTATION
 Aplet displays with an unbuffered implementation.
 Top numbers are latest numbers generated/received by

corresponding filter.

17

SE3BB4-09

SIEVES IMPLEMENTATION
 Number generator and filters are implemented as

threads.
 Two implementations of the pipe connector.

18

SE3BB4-09

SIEVES IMPLEMENTATION
 The display is handled by PrimeCanvas.

19

SE3BB4-09

SIEVES IMPLEMENTATION: Generator

20

SE3BB4-09 21

SE3BB4-09

SIEVES IMPLEMENTATION
 The implementation

reuses classes
developed earlier:
 synchronous

message passing
class Channel
unbuffered pipes

 and bounded buffer
class BufferImpl
used to implement
buffered pipes

22

SE3BB4-09

SIEVES IMPLEMENTATION

23

SE3BB4-09

USING BUFFERS OR NOT
 Unbuffered version of the sieve algorithm works correctly.
 Why use buffers?
 Answer: efficiency!
 Process or thread suspension involves a context switch

and this is expensive.
 (thread switch less expensive than process switch)

 Concurrent programs run more efficiently if there are
fewer context switches.

 No buffering means generator and filter threads are
suspended every time they produce an item until
consumed by next thread.

 With buffers, only a full buffer causes suspension.
24

SE3BB4-09

SUPERVISOR-WORKER ARCHITECTURE
 Concurrent architecture to speed up execution of suitable

applications.
 applies when a problem can be split into a number of independent

sub-problems
 referred to as tasks

25

SE3BB4-09

SUPERVISOR-WORKER ARCHITECTURE
 Supervisor and worker processes interact via a connector

bag
 supervisor puts initial set of tasks in bag
 supervisor gets results from bag and determines when computation

has finished
 Each worker repetitively

 takes a task from the bag
 computes the result and puts it back in bag

 Supervisor determines end of computation
 Workers can put new tasks into the bag
 Any number of workers is possible

26

SE3BB4-09

LINDA TUPLE SPACES
 Interaction mechanism suitable for implementing bag
 Linda is a model of (parallel) computation
 Consists of a set of primitive operations used to access a

data structure called a tuple space
 A tuple space is a shared associative memory with a

collection of tagged data records
(“tag”, value1, ..., valuen)

 the tag is a literal string used to categorize tuples
 valuei is a data value like integer, floating point, other data values

 Basic operations:
 deposit a tuple in the space out(“tag”, expr1, ..., exprn)
 execution completes when expri are evaluated and tuple is put in

the tuple space
27

SE3BB4-09

LINDA TUPLE SPACES
 similar to an asynchronous send, but “message” stored in tuple space

instead of queue associated with a port
 in(“tag”, field1, ..., fieldn) removes tuple from space
 each fieldi is either an expression or a formal parameter of the

form ?var (var local to executing process)
 arguments to in are called templates
 process executing in blocks until there is a tuple in the space to match

the template
 template match is defined as:

 tags identical
 same number of fields
 expressions in template have same values as corresponding

values in tuple
 variables in template have same type as corresponding values in

tuple
 like receive with matching used to identify “port”

28

SE3BB4-09

LINDA TUPLE SPACES
 rd(“tag”, field1, ..., fieldn) reads a value from the tuple space without

removing it
 same conditions as in

 Linda provides nonblocking versions of in and rd, called inp and rdp,
that return true tuple if tuple is there, false otherwise

 eval creates an active/process tuple
 like out, but one of the arguments is a procedure that operates on

other arguments
 becomes a passive tuple when evaluation terminates

29

SE3BB4-09

TUPLE SPACE MODEL
 Use finite set of tuple values
 Have to fix maximum number of copies of some tuple

allowed
const N = ...

set Tuples = {...}
 N and Tuples depend on context
 Each tuple value modelled by FSP label of the form

tag.val1.....valn
 Have a process to manage each tuple value and tuple

space is parallel composition of all these processes

30

SE3BB4-09

TUPLE SPACE MODEL
const False = 0

const True = 1

range Bool = False..True

TUPLE (T=’any) = TUPLE [0].

TUPLE [i:0..N] =

(out[T] -> TUPLE[i+1]

|when (i>0) in[T] -> TUPLE[i+1]

|when (i>0) inp[True][T] -> TUPLE[i+1]

|when (i==0) inp[False][T] -> TUPLE[i]

|when (i>0) rd[T] -> TUPLE[i]

rdp[i>0][T]

).

||TUPLESPACE = forall [t:Tuples] TUPLE(t).
31

SE3BB4-09

TUPLE SPACE MODEL
 LTS for tuple value for any with N=2 is:

32

SE3BB4-09

TUPLE SPACE MODEL
 Exceeding capacity with more than 2 out ops leads to an

ERROR
 Example of a conditional operation on the tuple space

inp [b:Bool][t:Tuples]
 value of t only valid when b is True

 Each specific TUPLE process has in its alphabet the ops
on one specific tuple value

 The alphabet of TUPLESPACE is
set TupleAlpha = {{in,out,rd,rdp[Bool], inp[Bool]}.Tuples}

33

SE3BB4-09

TUPLE SPACE IMPLEMENTATION
 Implement as centralized system for demo
 Matching of templates only on tag field
 Use a hash table of vectors to implement the space
 For simplicity, tuples stored in FIFO order for a particular

tag
 New tuples appended at end of a vector for a tag and

removed from its head
 Naively, all threads woken up whenever a new tuple is

added
 More efficiently, we would wake only those waiting for

tuple with the same tag

34

SE3BB4-09

TUPLE SPACE IMPLEMENTATION

35

SE3BB4-09 36

SE3BB4-09 37

