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Curvature Based Image Registration
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Abstract. A fully automated, non-rigid image registration algorithm is presented. The deformation field is found
by minimizing a suitable measure subject to a curvature based constraint. It is a well-known fact that non-rigid image
registration techniques may converge poorly if the initial position is not sufficiently near to the solution. A common
approach to address this problem is to perform a time consuming rigid pre-registration step. In this paper we show
that the new curvature registration not only produces accurate and smooth solutions but also allows for an automatic
rigid alignment. Thus, in contrast to other popular registration schemes, the new method no longer requires a pre-
registration step. Furthermore, we present an implementation of the new scheme based on the numerical solution of
the underlying Euler-Lagrange equations. The real discrete cosine transform is the backbone of our implementation
and leads to a stable and fast O(N log N ) algorithm, where N denotes the number of voxels. Finally, we report on
some numerical test runs.
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1. Introduction

Image registration is a challenging problem in digital
image processing. The problem arises in many areas of
applications, for example geophysics, medicine, and
robotics. For an overview, we refer to [6, 11, 12, 14]
and references therein.

The problem arises when images of one object are
taken for example at different times, from different per-
spectives, and/or different image devices. The basic
goal is to combine information and to integrate useful
data obtained from the separate images. However, due
to spatial distortion of the object under consideration,
for example introduced by motion, the same object in
different images is not directly comparable. The idea of
image registration is to geometrically transform images
in order to compensate for these distortions.

In particular in medicine, registration has a vast
range of applications. It is essential in order to study
the evolution of a pathology of a patient, or to take
full advantage of the complementary information com-
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ing from multimodal imagery, only to name two
examples.

A wide variety of image registration techniques have
been designed to handle specific applications. Here,
we focus on non-rigid, non-parametric, and fully auto-
matic schemes which make use of a deformable image
model, see, e.g., [1–3, 5, 7]. Most of these schemes
may be viewed as a procedure which minimizes a
suitable distance measure subject to a regularization
term or some interpolation restrictions; see [8] for an
overview.

There are several problems with fully automatic reg-
istration approaches. One of which is the problem that
the technique is sensitive to initial positioning of the
images to be matched, as the deformation process is
always done iteratively. To produce a good initial posi-
tion, typically a rigid or an affine-linear pre-registration
step, also known as global matching, is performed. If
the initial rigid alignment is not sufficiently near the so-
lution, the non-rigid matching procedure may converge
poorly.

Here, we propose a novel non-parametric fully
automatic registration technique which relies on a
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curvature based penalizing term. This approach not
only provides smooth solutions but also allows for an
automatic rigid alignment. Thus, in contrast to other
popular registration schemes, the pre-registration step
becomes redundant.

Our derivation is based on a variational formulation.
The wanted minimizer is characterized by the Euler-
Lagrange equations which turn out to be a system of
non-linear partial differential equations. In this paper
we will carry out the derivation in detail with a spe-
cial emphasis on the boundary conditions involved. Fi-
nally, we devise a fast and stable implementation for a
finite difference approximation of the underlying par-
tial differential equation and present some numerical
examples.

2. Approach

Given are two images which are referred to as refer-
ence R and template T . For a particular spatial point
x ∈ � ⊂ R

d , the value T (x) is the intensity at x. With-
out loss of generality we assume � = [0, 1]d , where
d ∈ N denotes the spatial dimension of the images. The
registration algorithm described in this paper is appli-
cable to images with any number of dimensions d.

The purpose of the registration is to determine a
transformation of T onto R. Ideally, one wants to de-
termine a displacement field u : � → � such that
T (x − u(x)) = R(x). The question is how to find such
a mapping u = (u1, . . . , ud ). A typical approach is
the minimization of a suitable distance measure D. For
example, the so-called sum of squared differences mea-
sure is

DSSD[R,T ;u] := 1

2

∫
�

(T (x − u(x)) − R(x))2 dx, (1)

and other choices are discussed in [8]. Since the min-
imization of D is in general an ill-posed problem, an
additional regularizing term S has to be introduced.
This regularizing term may also serve to rule out dis-
continuous and/or suboptimal solutions or to privilege
more likely solutions. The problem now reads: Find a
mapping u which minimizes the joint criterion

J [u] := αS[u] + D[R, T ; u].

In this note, we investigate the novel smoothing term

Scurv[u] := 1

2

d∑
�=1

∫
�

(�u�)2 dx. (2)

The reason for this particular choice is twofold. The in-
tegral might be viewed as an approximation to the cur-
vature of the �th component of the displacement field
and therefore does penalize oscillations. Most interest-
ingly, Scurv has a non-trivial kernel containing affine
linear transformations, i.e.,

Scurv[Cx + b] = 0, C ∈ R
d×d , b ∈ R

d .

Thus, in contrast to many other non-linear registration
techniques, the new scheme does not penalize affine
linear transformations and consequently does not re-
quire an additional affine linear pre-registration step to
be successful.

We now work out necessary conditions for a mini-
mizer u of the functional J . To this end we compute
the Gâteaux derivatives ofDSSD andScurv, respectively.
The proof is straightforward, see also [10].

Lemma 1.

1. LetDSSD be defined by (1), R ∈ L2(Rd ), T ∈ C2(Rd ),
and u ∈ L2(�)d . For the perturbation v ∈ L2(�)d ,

the Gâteaux derivative of DSSD is given by

dDSSD[T, R; u; v] =
∫

�

〈f(x, u(x)), v(x)〉Rd dx,

where f(x, u(x)) = −(T (x − u(x)) − R(x))∇T (x −
u(x)).

2. Let Scurv be defined by (2) for u ∈ C4(R)d . For the
perturbation v ∈ C4(Rd )d the Gâteaux derivative
of Scurv is given by

dScurv[u; v] =
∫

�

〈�2u, v〉Rd dx

+
d∑

�=1

∫
∂�

�u�〈∇v�, n〉Rd dx

−
d∑

�=1

∫
∂�

v�〈∇�u�, n〉Rd dx.

Remarks.

1. Without loss of generality we assumed T (x) =
R(x) = 0 for x /∈ �.

2. The above lemma may be phrased for less smooth
functions u and v as well. However, as we intend to
solve the resulting PDE by means of a finite differ-
ence scheme, the considered smoothness conditions
are what we want.
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3. The necessary optimality condition for Scurv gives
the following natural boundary conditions

�u� = 〈∇�u�, n〉Rd = 0 on ∂�, � = 1, . . . , d.

(3)

4. For our finite difference based numerical scheme,
we substitute the natural boundary conditions (3)
by the explicit boundary conditions

∇u� = ∇�u� = 0 ∂�, � = 1, . . . , d. (4)

In this case, we find that when Scurv[u] is restricted
to u in the subspace of C4(Rd )d in which (4) holds,
then for perturbations v in the same space,

dScurv[u; v] =
∫

�

〈�2u, v〉Rd dx.

It is this choice which results in a highly structured,
fast solvable matrix problem (see [8]).

5. We like to point out that there is a close relation
between our new curvature based approach and
the computation of so-called thin-plate-splines, cf.,
e.g., [13]. These functions are defined as minimizer
of the following smoothing term

STPS[u] = 1

2

d∑
�=1

∫
Rd

∑
|κ|=q

cκ (Dκu�)2 dx,

subject to some interpolatory constraints. Interest-
ingly, the Gâteaux derivatives of STPS and Scurv

share the same main part but differ slightly in their
boundary integrals.

6. Thin-plate-splines are designed to minimize the
bending energy of u. This together with the above
mentioned connection offers a nice interpretation
of the curvature based approach.

3. Numerical Approach

In accordance with the calculus of variations and
Lemma 1, a function u which minimizes the joint func-
tional J for the particular choice S = Scurv has to
satisfy the Euler-Lagrange equation

f(x, u(x)) + α�2u(x) = 0 for x ∈ �, (5)

subject to the boundary conditions. The so-called force
field f is the Gâteaux derivative of the distance measure

D. The above fourth-order non-linear PDE is known
as the bipotential or biharmonic equation and is well
studied; see, e.g., [9]. It describes the displacement of
a plate subject to the load f.

A popular approach to solve this PDE is to introduce
an artificial time t and to compute the steady state solu-
tion of the time dependent PDE. Here, we employ the
following semi-implicit iterative scheme,

∂t uk+1(x, t) − α�2uk+1(x, t) = f(x, uk),

k = 1, 2, . . . , (6)

where u0 is some initial deformation, typically u0 = 0.
To solve (6) numerically, we apply a finite difference

discretization adapted to the particular simple geome-
try of our domain �. This approach results in a system
of linear equations A �U k+1 = �Bk , where �U k and �Bk

represent grid values of u and b = u + τ f , respec-
tively, and τ denotes a time step. Consequently, the
main work in the overall scheme is the repeated so-
lution of this linear system. Since the coupling with
respect to the components of u� is only via the forces f
the system decouples into

(IN + ταA2) �U k+1
� = �U k

� + τ �Fk
�, � = 1, . . . , d.

(7)

Here, N denotes the number of pixels or voxels and IN

the identity-matrix. Finally, the boundary conditions
(4) ensure that the linear systems in (7) can be solved
in a fast and stable way by discrete cosine transforma-
tions, which lead to an O(N log N ) implementation;
for details, see [8].

4. Experiments

To illustrate the performance of our new approach we
present the registration of X-rays of human hands. The
upper left picture displays the template whereas the
reference is depicted in the bottom right corner. The
six pictures in between show some intermediate reg-
istration results. Note that apart from the fact that the
template hand is much thinner as opposed to the ref-
erence it is also rotated to the right. It is this rotation
which would cause serious trouble for other registration
techniques like the elastic or fluid registration scheme.
As is apparent from the picture sequence, the curva-
ture based approach does produce a visually correct
registration.
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Figure 1. Registration of X-rays of human hands. Top: Template on the left. Bottom: Reference on the right. The six pictures in between show
some intermediate registration results.
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