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Abstract
Image registration is one of today’s challenging image processing problems,
particularly in medical imaging. Since the problem is ill posed, one may like
to add additional information about distortions. This applies, for example, to
the registration of time series of contrast-enhanced images, where variations
of substructures are not related to patient motion but to contrast uptake. Here,
one may only be interested in registrations which do not alter the volume of
any substructure. In this paper, we discuss image registration techniques with
a focus on volume preserving constraints. These constraints can reduce the
non-uniqueness of the registration problem significantly. Our implementation
is based on a constrained optimization formulation. Upon discretization,
we obtain a large, discrete, highly nonlinear optimization problem and the
necessary conditions for the solution form a discretized nonlinear partial
differential equation. To solve the problem we use a variant of the sequential
quadratic programming method. Finally, we present results on synthetic as
well as on real-life data.

1. Introduction

Image registration is one of the fundamental tasks in today’s image processing and in particular
in medical imaging; see, e.g., [15] and references therein. Given are a reference image R and a
template image T, which are taken at different times, from different perspectives, and/or from
different devices. Loosely speaking, the objective of image registration is to find a ‘reasonable’
deformation such that the ‘distance’ between R and a deformed version of T becomes small.

An application of particular clinical interest is the registration of pairs of images acquired
before and after contrast administration; see, e.g., [32, 33] and references therein. A typical
example is depicted in figure 1. In this application, magnetic resonance images of a female
breast are taken at different times (images from Bruce Daniel, Lucas Center for Magnetic
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Figure 1. MRIs of a female breast, left: during the wash-in phase, middle: during the wash-out
phase, and right: difference image.

Figure 2. Synthetic images simulating contrast uptake, left: wash-in, right: wash-out.

Resonance Spectroscopy and Imaging, Stanford University). The left image shows an MRI
section taken during the so-called wash-in phase of a marker and the middle image shows the
analogous section during the so-called wash-out phase. A comparison of these two images
indicates a suspicious region in the upper part of the images. This region can be detected
easily since the images have been registered linearly: tissue located at a certain position in
the wash-in image is almost related to the tissue at the same position in the wash-out phase.
Generally, however, a quantitative analysis is a delicate matter since observable differences are
not only related to contrast uptake but also due to motion of the patient, such as, for example,
breathing or heart beat.

As pointed out by Rohlfing et al [32], there is a substantial difficulty with the registration
of pre- and post-contrast images. Bright regions seem to enlarge during the so-called wash-in
phase. This enhancement is due to contrast uptake but not to movement of the patient. Figure 2
illustrates an ideal situation. Without external information, it is impossible to answer whether
the white area has been enlarged or the grey area turned to white.

The idea is to restrict the set of feasible transformations a priori in a reasonable way.
For this situation, we constrain the transformations to be volume preserving (VP). In contrast
to [32], we use a variational setting. Therefore, we are not restricted to parametric and in
particular B-spline based deformations. Also, we do not introduce an additional penalty term
but use a constrained approach.



Numerical methods for volume preserving image registration 1623

The VP approach is also connected to the so-called mass preserving (MP) registration
which is related to the Monge–Kantorovich transport problem; see [21, 39]. From a
mathematical point of view, the MP approach contains the VP approach (setting the density
to 1). However, in the MP approach the images enter directly into the constraints, whereas
in the VP they do not. In contrast to the MP approach, the VP approach aims to correct
geometrical distortions but does not alter grey values. Another major difference between
the above work and ours is the numerical treatment. For the MP approach, a Helmholtz
decomposition is exploited, and, after eliminating the constraints, the necessary conditions for
the optimization problem are solved using a steepest descent method. Here, we discretize the
transformation and the constraints directly and use sequential quadratic programming (SQP)
to solve the discrete optimality conditions.

In this paper, we present a flexible constrained image registration approach. It has three
main ingredients: a distance measure, a regularizer and the constraints.

Our mathematical framework is general enough to handle a variety of distance measures,
including the most popular ones, like those based on the sum of squared differences (SSD),
mutual information (MI) or correlation, as long as a Gâteaux derivative exists; see, e.g.,
[2, 22, 24, 31]. For presentation purposes, we explicitly discuss the approach only for the
SSD measure.

Image registration is an ill-posed problem (cf, e.g., [23, 28]). Adding additional
constraints does not make the problem well posed. This can be seen by considering the
following example: a registration of an image of a disc to a copy of this image. Any rotation
about the centre of the disc gives just another copy of the image and is therefore a solution
of the registration problem. Since a rotation (or, more generally, a rigid transformation)
preserves volume, we also have multiple solutions to the volume preserving registration.
For this reason, also the constrained image registration problem has to be regularized.
The framework presented here is based on a general regularizer. Any regularizing term
with a Gâteaux derivative can be used. This includes well-known choices, such as, for
example, the elastic [6, 8, 11, 18], the diffusion [12, 25], and the biharmonic [3, 14]
regularizer. For the ease of presentation, we emphasize the most popular of these, the elastic
registration.

Also our approach to the constraints is very general. However, since the implementation
of the volume preserving constraints is not straightforward, we restrict ourselves to these
constraints.

Finally, we suggest the use of a staggered grid discretization. This is a well-known and
often used technique in many fields, such as fluid dynamics or electromagnetics. However,
we are not aware of any image registration algorithm based on this discretization.

The paper is organized as follows. In section 2, we present the continuous mathematical
set-up of the constrained registration problem and derive the continuous Euler–Lagrange
equations. Although we do not use these equations in our numerical implementation, they
give insight into the problem’s structure and serve as a reference for the discrete analogue. In
section 3, we discuss the discretization of the problem. For readers from image processing,
who are not familiar with staggered grids, we give a brief and formal introduction. Staggered
grid discretization is well known to be stable when dealing with tightly coupled systems of
partial differential equations.

Our constraints are discretized using a finite volume discretization of each displaced
pixel/voxel. We show that the resulting formula mimics the continuous one. In section 4, we
discuss a numerical scheme for the optimization of the discretized image registration problem.
In section 5, we present numerical results and finally, we summarize the paper and discuss
future work in section 6.
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2. Mathematical set-up

With d ∈ N we denote the spatial dimension of the given images R, T : R
d → R which are

assumed to be sufficiently smooth. Thus, T (x) gives a grey value at a spatial position x. We
assume that the supports of the images are contained in a bounded domain � := (0, L)d , i.e.
R(x) = T (x) = 0 for x /∈ �.

Our goal is to find a ‘reasonable’ transformation such that the ‘distance’ between the
reference image R and the deformed template image T (x + u(x)) is small. As usual in
image registration, we work the displacement u = (u1, . . . , ud)T : R

d → R
d rather than the

transformation ϕ(x) = x + u(x). It is well known that this problem is ill posed and therefore
needs to be regularized. In general, it is common to use a Tikhonov-style regularization. A
mathematical formulation of the regularized and constrained problem reads

D[R, T ; u] + αS[u] = min (1a)

subject to C[u](x) = 0 for all x ∈ �, (1b)

where D is some distance measure, S is some regularization term, and C are some constraints.
Here, α > 0 is a regularization parameter that compromises between similarity and regularity.

The three building blocks are discussed below. The constraints can be used to supply
additional information about the registration problem. For example, in some applications it
is of importance that particular points, such as, e.g., anatomical landmarks, are in a precise
one-to-one correspondence. With the setting C[u] = �T + u(�T )−�R , this fits into our general
framework. Using these constraints, one can guarantee the correspondence of the landmarks
�R and �T ; see, e.g., [7, 13]. In this paper, we focus on applications which require a volume
preserving transformation. However, one may set C[u] ≡ 0 to recover the unconstrained
problem.

For the following analysis and numerics any choices and combinations of the building
blocks D,S and C are feasible as long as they do have a Gâteaux derivative. For the purpose
of this presentation, we restrict the discussion to the following choices.

Distance measures. The distance measure used in this paper is the so-called sum of squared
differences (or L2 norm)

D[R, T ; u] = 1

2

∫
R

d

(T (x + u(x)) − R(x))2 dx (2)

with Gâteaux derivative (cf, e.g., [28])

du;vD[R, T ; u] =
∫

R
d

〈f(x, u(x)), v(x)〉
R

d dx, (3)

f(x, u(x)) := (T (x + u(x)) − R(x)) · ∇T (x + u(x)), x ∈ R
d . (4)

Other distance measures, for example, those based on mutual information [9, 37], might be
used as well.

Remark 1. Note that due to the chain rule any differentiable distance functional based on R
and T (x + u(x)) has a factor ∇T (x + u(x)). Thus, since we assume R and T to be zero for
x /∈ �, f is also zero for x /∈ �. Therefore, the integration in equations (2) and (3) reduces
to an integration over the domain �, only.

Regularizer. In this work, we consider the well-known elastic regularizer [6, 8, 11]. However,
our formulation is flexible enough that it can be used with other regularizers, such as, e.g., the



Numerical methods for volume preserving image registration 1625

fluid [5, 8], diffusion [12], curvature regularizers [14], or any combinations of these. Each of
the above regularizers is of the form

S[u] =
∫

�

〈B[u],B[u]〉
R

d dx, (5)

for some differential operator B, and therefore its Gâteaux derivative is

du;vS[u] =
∫

�

〈A[u](x), v(x)〉
R

d dx, A = B∗B, (6)

where, for the ease of presentation, we assume natural boundary conditions on u. For the
elastic regularizer with Lamé constants λ and µ, we have

B[u] =
(√

µ 0
0

√
2µ + λ

) (∇ × u

∇ · u

)
, A[u] = −µ�u − (µ + λ)∇∇ · u (7)

with ∇· the divergence, ∇× the curl and � the Laplacian.

Constraints. We require the transformation ϕ(x) := x + u(x) to be volume preserving (see
also [32]). The transformation ϕ is volume preserving if and only if for any domain V ,∫

ϕ(V )

dx =
∫

V

dx, where ϕ(V ) = {ϕ(x) : x ∈ V }. (8)

This constraint implies that not only is the overall volume conserved but also, and most
importantly, that of each arbitrarily small subdomain. For a smooth transformation ϕ, we use
the transformation rule to derive the pointwise constraints

1 = det(∇ϕ) = det(Id + ∇u) (9)

or

C[u] := det(Id + ∇u) − 1 = 0. (10)

Here, Id ∈ R
d,d denotes the d-by-d identity matrix and δj,k its (j, k)th entry.

Remark 2. Volume preserving maps can also have a negative volume. Thus, it is possible to
have C[u] = ±1. For the application here we do not consider such mappings and consider
mapping with a uniform sign alone. Note that if a mapping changes its sign, there is a
discontinuity in the determinant that implies a ‘twist’ in T (u).

The Gâteaux derivative of the volume preserving constraints is given by the following
lemma.

Lemma 1. Let v be a suitable perturbation of u. The Gâteaux derivative of C (cf
equation (10)) is given by

du,vC[u](x) = det(Id + ∇u(x))〈(Id + ∇u(x))−	,∇v(x)
R

d,d . (11)
Proof. A computation gives

du,v det(Id + ∇u) = lim
ε→0

(det(Id + ∇u + ε∇v) − det(Id + ∇u))

= det(Id + ∇u)) lim
ε→0

(det(Id + ε∇v(Id + ∇u)−1) − 1)

= det(Id + ∇u) · trace[∇v(Id + ∇u)−1]
= 〈det(Id + ∇u)(Id + ∇u)−	,∇v〉

R
d,d .

�
Remark 3. Applying Cramer’s rule, it can be verified that the Gâteaux derivative of C is a
polynomial in ∂ju

k, j, k = 1, . . . , d.



1626 E Haber and J Modersitzki

Example 1. For d = 2 we have

C[u] = ∇ · u + ∂1u1∂2u2 − ∂2u1∂1u2,

det(I2 + ∇u)(I2 + ∇u)−	 =
(

1 + ∂2u2 −∂1u2

−∂2u1 1 + ∂1u1

)
.

We now investigate necessary conditions for a solution of the image registration
problem (1). For computational purposes, we have to discretize either the optimization
problem (1) or the resulting necessary conditions. In the following section, we choose to
discretize the optimization problem directly and therefore, the continuous conditions are not
used directly in our numerical scheme. However, the discrete conditions have to mimic the
continuous analogues and therefore we find it useful to study the latter.

Introducing the Lagrange multiplier p : R
d → R, the Lagrangian of (1) is given by

L[u, p] = D[R, T ; u] + αS[u] +
∫

�

C[u](x) · p(x) dx (12)

and the continuous Euler–Lagrange equations for (1) read

0 = du;vL[u, p]

= du;vD[R, T ; u] + αdu;vS[u] +
∫

�

du;vC[u](x) · p(x) dx, (13a)

0 = dp;qL[u, p] =
∫

�

C[u](x) · q(x) dx, (13b)

for any appropriate perturbations v and q. Thus, for any x ∈ �, we have

0 = f(x, u(x)) + αA[u](x) − ∇ · [det(Id + ∇u(x))(Id + ∇u(x))−	 · p(x)] (14a)

0 = det(Id + ∇u(x)) − 1, (14b)

where we imposed zero Dirichlet boundary conditions for the Lagrange multiplier p.
The system (14) is a highly coupled system of nonlinear partial differential equations

(PDE). The quantity f in (14a), which depends nonlinearly on u and the images, can be
viewed as a force field pushing the template towards similarity. The differential operator A
in (14a) is a linear, elliptic operator. The last term in (14a) is related to the derivative of
the constraints which also show up in (14b). For a simpler case, when the f and A in (14a)
are replaced with the identity operator, existence and uniqueness of a solution can be shown
[10, p 324]. However, for the registration problem, it is not easy to show either existence or
uniqueness of a solution of the PDE (14). For the purpose of this paper, we therefore assume
existence of a solution and remark that proving its existence is a subject of further research.

3. Discretization

There are two approaches for the discretization of the PDE constrained optimization
problem (1). In the first so-called optimize–discretize approach one forms the Lagrangian
(12), then differentiates to obtain the continuous Euler–Lagrange equations (13), which are
finally discretized and solved.

The second approach, that we use here, is the so-called discretize–optimize approach.
Here, one directly discretizes the problem (1) and then solves a constrained optimization
problem in a finite (but typically high) dimensional space. Note that we still use the fact that
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the discrete Euler–Lagrange equations are a discretization of some differential operators. The
advantage of this approach is that we are able to use standard optimization methods for the
solution of the problem.

Choosing a stable discretization method for an optimization problem with a differential
constraint is a delicate matter. It is well known that such a discretization should fulfil the LBB
conditions [1, 4]. It is also well known that some seemingly good discretization methods do not
fulfil these conditions (see, e.g., [19] for an elaborate discussion for the Stokes system). Further
complications arise in our case where we have differential operators such as the divergence
and the curl. We would like to choose a conservative compact discretization scheme. This
could be achieved by either mixed finite elements or by staggered grids. Staggered grids
are very common for the stable discretization of fluid flow problems (see, e.g., [16]) where
first-order differential constraints are discretized and in electromagnetics (see, e.g., [20, 38])
where operators such as curl and divergence are discretized. In the context of fluid flows and
electromagnetics, it is well known that compact discretizations are crucial in order to obtain a
stable linear system of equations and avoid spurious modes [19, 26, 27]. It is therefore most
natural to choose such a discretization for our problem as well. Further investigation is needed
to show that the LBB conditions are fulfilled and this will be done in a forthcoming paper.

Though a staggered grid seems to be natural for the discretization of the registration
problem on a regular grid, we are not aware of any registration scheme where this discretization
is used. We therefore give a brief but formal description in section 3.1. For a more elaborate
discussion, see, e.g., [20].

It is important to note that staggered grids only require short differences for the
approximation of the derivatives ∂ju

k and therefore no spurious modes are introduced by
discretization; see, e.g., [38].

3.1. Staggered grid discretization

We assume that our discrete images have m1 ×· · ·×md pixels and, for the ease of presentation,
that each pixel is square with lengths h. We allow for half step indices. As usual in image
processing, we identify pixels/voxels with cell-centred grid points with are therefore labelled
with full-integer indices. The knots of the nodal, cell centred, the d face staggered and (for
dimension d = 3) the d-edge-staggered grids are collected in d-dimensional arrays as follows
(see also figure 3 for an illustration),

Xn = h
(
i1 − 1

2 , . . . , id − 1
2

)
ij = 1

2 ,...,mj + 1
2
,

Xc = h
(
i1 − 1

2 , . . . , id − 1
2

)
ij =1,...,mj

,

Xf,j = h
(
i1 − 1

2 , . . . , id − 1
2

)
ij = 1

2 ,...,mj + 1
2

ik=1,...,mk,k 
=j

Xe,j = h
(
i1 − 1

2 , . . . , id − 1
2

)
ij =1,...,mj ,

ik= 1
2 ,...,mk+ 1

2 ,k 
=j

,

where j = 1, . . . , d. The nodal grid is numbered with half-integers, the cell-centred grid with
integers, the j th face (edge) staggered grid with integers (half-integers) except for the j th
direction for which half-integers (integers) are used.

We denote the discrete analogue of the continuous vector field u = (u1, . . . , ud) by
U = (U 1, . . . , Ud) where Uk is a grid function approximated on the face-staggered grid
Xf,k . Thus, each of the uk is approximated at different locations which are staggered. We
approximate the derivatives ∂ju

k by

∂ju
k ≈ D

j,k

M [Uk].
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Figure 3. Staggered grids, nodal , cell centred •, face-staggered grids (� in the x1-, � in the
x2- and � in the x3-direction), and edge-staggered grids (� in the x1-, � in the x2- and � in
the x3-direction). Top left: d = 2, four pixels, top right: d = 2 pixel (i1, i2) with grids, bottom
left: d = 3, voxel (i1, i2, i3) with face-staggered grids and positions of U1, U2, U3, bottom right:
d = 3, edge-staggered grids.

Here, the D
k,k
M approximate derivatives in the normal direction and the D

j,k

M , j 
= k, derivatives
in tangential directions. Neglecting obvious indices, the operators are defined by

D
k,k
M [Uk]...,ik ,... := 1

h

(
Uk

...,i
k+ 1

2
,... − Uk

...,i
k− 1

2
,...

)
,

D
j,k

M [Uk]...,i
j+ 1

2
,...,i

k+ 1
2
,... := 1

hj

{
0 ij = 0,mj ,

Uk
...,ij+1,...,ik+ 1

2
,... − Uk

...,ij ,...,ik+ 1
2
,... 0 < ij < mj .

(15)

Hence, D
k,k
M [Uk] is located on the cell-centred grid but D

j,k

M [Uk] is located on the nodal grid
for d = 2 and on an edge-staggered grid for d = 3. Note that no boundary conditions are
needed to calculate derivatives in the normal directions and that we have assumed Neumann
boundary conditions in the tangential directions.

Remark 4. To calculate our constraints we will need to approximate sums of products of the
form (∂juk)(∂kuj ), see remark 3. For d = 2 the normal derivatives are naturally approximated
on the nodal grid. However for d = 3 these derivatives are located on edge-staggered grids
and therefore are not centred at the same places. For this reason we introduce the averaging
operators from the edge-staggered grids to the nodal grid. Ignoring obvious indices, for
� = 1, 2, 3, we have

P e→n
M,� [V ]i1+ 1

2 ,i2+ 1
2 ,i3+ 1

2
:=

{
0 i� = 0,m�
1
2

(
V...,i�,... + V...,i�+1,...

)
0 < i� < m�.

Thus, for any choice of three numbers with {j, k, �} = {1, 2, 3}, the projections
P e→n

M,� [Dj,k[Uk]] are positioned on the nodal grid.
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Finally, we introduce an averaging operator P n→c
M from the nodal grid to the cell-centred

grid,

P n→c
M [V ]i1,...,id := 2−d

∑
j1,...,jd=± 1

2

Vi1+j1,...,id +jd
.

For later convenience, we denote by �X the vector assembled from the lexicographically
ordered entries of the array X. Let �U := ( �U 1	, . . . , �Ud	)	,

Dk,� �U� := (
D

k,�
M [U�]

)� and P x→y �V := (
P

x→y
M [V ]

)�.
Remark 5. Although the above introduction gives some insight into the actions of the operators
Dj,k and P x→y, in particular for coding reasons it might be advantageous to have a compact
formal description. Let ⊗ denote the Kronecker product of matrices and Ik an identity matrix
of appropriate size, then

Dj,k = I1 ⊗ · · · ⊗ Ij−1 ⊗ D
j,k

V ⊗ Ij+1 ⊗ · · · ⊗ Id,

P e→n
� = I1 ⊗ · · · ⊗ I�−1 ⊗ P e→n

V,� ⊗ I�+1 ⊗ · · · ⊗ Id,

P f→c
� = I1 ⊗ · · · ⊗ I�−1 ⊗ P f→c

V,� ⊗ I�+1 ⊗ · · · ⊗ Id,

P n→c = P f→c
V,d ⊗ · · · ⊗ P f→c

V,1 ,

where the matrices D
k,k
V ∈ R

mk,mk+1,D
j,k

V ∈ R
mj +1,mj , P e→n

V,� ∈ R
m�+1,m� and P f→c

V,� ∈ R
m�,m�+1

are given by

D
k,k
V := 1

h




−1 1
. . .

. . .

−1 1


 , D

j,k

V := 1

h




0 · · · · · · 0
−1 1

. . .
. . .

−1 1
0 · · · · · · 0


 ,

P e→n
V,� := 1

2




0 · · · · · · 0
1 1

. . .
. . .

1 1
0 · · · · · · 0


 , P f→c

V,� := 1

2




1 1
. . .

. . .

1 1


 .

3.2. Discretization of the building blocks D,S and C

For the particular building blocks we derive discrete analogues. Let �Xc = ( �Xc
1
	, . . . , �Xc

d
	)	

,
�R = R( �Xc) and

�T ( �U) = T
( �Xc

1 + P f→c
1

�U 1, . . . , �Xc
d + P f→c

d
�Ud

)�.
Note that �T ( �U) is the discrete analogue of the image T (x + u(x)) as a function of u. Since T
is assumed to be a smooth function, T (x) can be evaluated for any x. In our implementation
we use a B-spline interpolation scheme. The assumption on T to be differentiable is for the
ease of presentation only. In the continuous formulation (3), derivatives appear only in a weak
formulation. Thus, all we need is the existence of a distributional derivative of T.

We denote the Jacobian of �T by

J ( �U) := ∂ �T
∂ �U ( �U) = (

diag
((

P f→c
1

)	
∂1T

)
, . . . , diag

((
P f→c

d

)	
∂dT

))
, (16)

where the partial derivatives ∂jT have to be evaluated at (�Y1, . . . , �Yd), �Yj = �Xc
j + Qj

�Uj .
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Discretizing D. The discretization of D[R, T ; u] (2) is straightforward,

D( �U) := 1
2‖�T ( �U) − �R‖2

2

and its derivative, which is also known and interpreted as a force field �F (see, e.g., [28]), is

�F( �U) := D �U( �U) = J ( �U)	( �T ( �U) − �R). (17)

Discretizing S. Following (7), all we need are discretizations ∇h× and ∇h· of ∇× and ∇·,
respectively. Since the discretization for ∇× and ∇· is composed from first-order derivatives,
for d = 2, 3, we obtain

(∇h
2 ×

∇h
2 ·

)
:=

(
D2,1 −D1,2

D1,1 D2,2

)
and

(∇h
3 ×

∇h
3 ·

)
:=




0 −D3,1 D2,3

D3,1 0 −D1,3

−D2,1 D1,2 0
D1,1 D2,2 D3,3


 .

With A = B	B, B = diag(
√

µ,
√

2µ + λ)(∇h×,∇h·)	, the discretization of S[u] (5) is
given by

S( �U) := 1
2

�U	A �U, S �U( �U) = A �U.

Here, we imposed zero Neumann boundary conditions in tangential directions.

Discretizing C. In our discretization of the volume preserving constraints, we exploit a
simple finite difference formulation. Discretizing the constraint involves a polynomial in
the derivatives of u. To approximate these derivatives we use (15). The approximation to
the derivatives in the normal direction naturally averages in the cell centre, however, the
derivatives with respect to tangential directions are averaged on nodes in two dimensions and
on cell edges in three dimensions. To calculate products of derivatives in the normal directions,
we use averages of short differences. For example, in two dimensions we use

C( �U) = 1

h

(
D

1,1
M

�U 1 + D
2,2
M

�U 2) +
1

h2
D

1,1
M

�U 1 � D
2,2
M

�U 2

+
1

h2

(
P n→cD

1,2
M

�U 1
) � (

P n→cD
2,1
M

�U 2
)
. (18)

The derivatives can be calculated straightforwardly,

C �U 1( �U) = 1

h

(
1 + diag

(
D

2,2
M

�U 2))D1,1
M +

1

h2
P n→cD

1,2
M diag

(
P n→cD

2,1
M

�U 2),
C �U 2( �U) = 1

h

(
1 + diag

(
D

1,1
M

�U 1
))

D
2,2
M +

1

h2
P n→cD

2,1
M diag

(
P n→cD

1,2
M

�U 1
)
.

Since the complete formula for the three-dimensional case is lengthy but its derivation
is along the same lines as the one for two dimensions, we omit the details. However, it is
important to note that for d = 2, the resulting nonlinear equations are in general quadratic,
but for d = 3 they are cubic.

Remark 6. In the first iteration, �U = 0, and the VP constraints imply that the (discrete)
divergence of �U vanishes. Together with the regularization operator, the resulting system is
similar to the Stokes system. As is well known, a staggered-grid discretization is crucial for
the stability of the system; cf, e.g., [35].
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4. Solving the discrete optimization problem

We are now ready to phrase the discrete analogue of the image registration problem (1),

J( �U) := D( �U) + αS( �U) = min (19a)

subject to C( �U) = 0. (19b)

In order to solve this problem numerically we use the framework of SQP; see [29] for a detailed
discussion. Let �P be a cell-centred vector of Lagrange multipliers. The Lagrangian of the
problem is

L( �U, �P) = D( �U) + α
2

�U	A �U + C( �U)	 �P .

Differentiating with respect to �U and �P , we obtain the following discrete version of the
Euler–Lagrange equations (13)

0 = L �U( �U, �P ) = �F( �U) + αA �U + C �U( �U)	 �P , (20a)

0 = L �P ( �U, �P) = C( �U). (20b)

We can now solve the nonlinear system (20) numerically by using a Newton-type method.
Approximating the (1, 1) block of the Hessian by

H := αA + J	J, (21)

where J is defined in (16), we obtain the following linear system of equations to be solved at
each iteration: (

H C	
�U

C �U 0

)(
s �U
s �P

)
=

(
L �U( �U, �P)

L �P ( �U, �P)

)
. (22)

The system (22) is a so-called Karush–Kuhn–Tucker (KKT) system; it is symmetric but
indefinite. Solving KKT systems is a well-known challenge. Similar systems arise for
example in fluid dynamics (cf, e.g., [19, 36]) and the solution for this case has been addressed
by many authors; see, e.g., [34–36]. Nevertheless, the robust and effective solution of such
systems is still an open research topic. Here we have used MINRES [30] with a block diagonal
preconditioning as proposed in [34]. This preconditioner can be written as

M =
(

H 0

0 Ŝ

)
,

where Ŝ is an approximation to the Schur complement

S := C �UH−1C	
�U .

Here, we use the approximation suggested in [34],

Ŝ−1 = (
C �UC	

�U
)−1

C �UHC	
�U
(
C �UC	

�U
)−1

. (23)

Note that
(
C �UC	

�U
)−1

C �U is the pseudo-inverse of C �U . The application of the preconditioner

only involves a multiplication of H−1 and Ŝ−1 with a vector. However, an efficient numerical
scheme is not straightforward and will be addressed in a forthcoming paper. Here, we use a
multigrid approach.

After the KKT system has been solved, we update �U by setting

�U ← �U + γ s �U .
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As is common in SQP algorithms [29], the parameter γ is chosen such that the L1 merit
function

meritKKT( �U) := D( �U) + αS( �U) + θ‖C( �U)‖1 (24)

decreases, where θ := ‖ �P ‖∞ + θmin with a fixed parameter θmin, ‖x‖1 = ∑
j |xj |, and �P is the

least squares multiplier computed by solving(
C �UC	

�U
) �P = −C �U(D �U + αS �U). (25)

In order to avoid being too far from feasibility we project the intermediate �U to the
constraints. Here we take the advantage of a second merit function

meritC( �U) := ‖C( �U)‖2
2. (26)

If meritC( �U) � tolC, we calculate a step �UP such that ideally

C( �U + �UP ) ≈ C( �U) + C �U( �U) �UP = 0.

If C �U has full rank, a solution is given by �UP = C �U( �U)	 �W , where �W is the solution of the
projection system(

C �UC	
�U
) · �W = −C( �U). (27)

Note that the very same system has already been addressed in the Schur complement
approximation (23) and (25).

The above step is repeated until convergence of the optimization process, which is
measured by the change of �U . In order to find an appropriate regularization parameter,
we solve (19) for a few values of α, where we start with a large α and slowly decrease it until
our stopping criterion is fulfilled. For the results presented in section 5, since choosing α

depends on the statistics of the difference between the images (which is unknown) we base the
stopping criterion on a visual inspection of the images. Our numerical scheme is summarized
in algorithm 1.

5. Numerical examples

The above scheme has been implemented using MATLAB 6.5. The following computations
are performed on a DELL Inspiron 8600 notebook (1.4 GHz, 1GB RAM, 60G disk space)
under Windows XP. The computation time (CPU time) for the blob example 5.1 (64 × 64
images) is about 28 s for the unconstrained registration (38 iterations needed to fulfil our
stopping criterion ‖uold − u‖ 	 tolU := 10−2, for the constrained problem we spend about
69 s (21 iterations needed).

The computation time for the MRI example 5.2 (128 × 128 images) is about 296 s
for the unconstrained registration (68 iterations needed to fulfil our stopping criterion
‖uold − u‖ 	 tolU := 10−1, for the constrained problem we spend about 846 s (23 iterations
needed).

5.1. The blob

To illustrate the potential of the volume preserving registration we present a synthetic example;
see figure 4. The reference image (top right) shows an elliptic global structure which
contains a small almost circular object. The template (top left) shows a rotated version
of the global ellipse, where the inner structure is translated and considerably enlarged. Note
that this example mimics the situation for contrast enhanced images: slightly deformed global
structures, where inner structures may change drastically due to contrast uptake.
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Algorithm 1. Volume preserving image registration: �U ← VPIR(R, T ).

1: Set k ← 0, �U ← 0, �P ← 0, n ← length( �U).
2: for k = 0, . . . do
3: Compute D, J, D �U , S, S �U , C and C �U , set �Uold = �U .

4: Set
(
L �U
L �P

)
←

(D �U + αS �U + C	
�U

�P
C

)
.

{Computation of the SQP step}
5: Solve the KKT system (22) for s �U and s �P
6: Solve for the Lagrange-multiplier �P , cf (25); set θ ← ‖ �P ‖∞
7: �U ← LS( �U, s �U , meritKKT, L �U ); see algorithm 2.
8: Update C and C �U .

{Computation of the projection onto the constraints}
9: while meritC > tolC, do

10: solve
(
C �U C	

�U
)

�W = −C, set �UP ← C	
�U

�W .

11: �U ← LS
(

�U, �UP , meritC, C	
�U C

)
; see algorithm 2.

12: if ‖ �Uold − �U‖ � tolU then
13: return �U , done.
14: end if
15: end while
16: end for

Algorithm 2. Armijo’s line search: �U ← LS( �U, s �U , merit, �G).

Set j ← 0, γ ← 1 and η ← 10−5.
while true do

Set �Ut ← �U + γ s �U .

if merit( �Ut ) < merit( �U) + ηγ �G	s �U then
break
{step reduces merit function}

end if
if j > max� then

error
{step not successful after max� line search steps}

end if
Set γ ← γ /2 and j ← j + 1.

end while
Set �U ← �Ut .

As is apparent from figure 4, the unconstrained registration gives very good results if
we are looking at the difference between the reference and deformed template images alone.
However, as expected, the inner structure has been reduced so as to fit the one in the reference
image. This results in a drastic change of volume, which can be observed from the visualization
of a part of the grid in figure 4 (middle right) corresponding to a region of interest emphasized
in the template image (top left). Thus, for contrast enhanced images, the registration gives
meaningless results, though the difference is small.

Figure 4 also shows the results of the volume preserving registration (bottom left). As
is apparent from this figure, the global deformation has been resolved, the inner ellipse has
been moved to match the inner ellipse in the reference image. However, the volume of the
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Figure 4. Synthetic example. Left column: deformed template, right column: reference and details
of the deformed grid; top row: template and reference, no registration, middle row: deformed
template and details with grid after unconstrained registration, bottom row: deformed template
and details with grid after VP-constrained registration. For both schemes, we choose α = 103 and
stopped after 25 iterations.

inner ellipse has not been altered, which leads to a larger difference as in the unconstrained
case but also to a more realistic registration (assuming the VP assumption holds); see also the
deformed grid (bottom right).

In order to compare these results, we choose α = 103 and stop after convergence, which
occurs after at most 25 iterations for both registrations. Note that in order to make the results
comparable, we decide to stop both schemes after 25 iterations ignoring the tolerance-based
stopping rule. Also note that h = 1 in our implementation. The values for the difference D
and the constraints C for the un- and VP-constrained registration are summarized in table 1.

5.2. MRI scans

In our second example, we discuss results obtained for the images shown in figure 1. Figure 5
shows the results after two (second row) and ten iterations (third row) of the unconstrained
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Figure 5. Registration results for the images of figure 1. Left column: deformed template images
Tu, middle column: difference image |R − Tu| with region of interest (ROI), right column: ROI
with nodal grid, vertices connected by straight lines; row 1: no registration, row 2: no constraints,
two iterations, row 3: no constraints, ten iterations, and row 4: volume preserving constraints, ten
iterations.

registration as well as after ten iterations of the VP-constrained registration (fourth row). The
numerical results are summarized in table 1. After ten iterations both schemes have converged.

Although the numbers (cf table 1) indicate a larger reduction of the difference by the
unconstrained registrations, the ranking is not so clear if one looks at the difference images, cf
figure 5. Here, the difference after ten steps un- and VP-constrained registration looks pretty
much the same. After two steps of the unconstrained registration the bright spot in the top
part of the image has not been resolved satisfactorily. The explanation is that small spots
which are related to noise in the MRI images and hardly visible in the images are registered in
the unconstrained registration. This leads to a large reduction though it is hardly visible. To
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Figure 6. Volume preservation of the unconstrained (left) and constrained (right) registration
results for the MRI example.

Table 1. Numerical results for the un- and VP-constrained registrations; k is the number of
iterations performed.

α k D( �U(k))/D(0) ‖C( �U(k)‖∞

Blob
Unconstrained 103 25 0.21 0.87
VP constrained 103 25 0.73 �10−6

MRI
Unconstrained 105 2 0.81 1.36
Unconstrained 105 10 0.78 1.36
VP constrained 105 10 0.87 �10−6

remove these small spots, the volume has to be changed locally. However, the registration of
these small spots does not contribute to a meaningful solution for this problem.

In figure 6, we display the pointwise map of the change of volume. Using the
unconstrained approach, we observe a considerable change of volume for the breast with
a peak value of 1.36. Thus, part of the breast has been enlarged by a factor of 2.36. For the
constrained approach, we observe that the volume change is below a user supplied threshold
(here, tolC = 10−6) everywhere. In fact, since we used a quasi-Newton scheme for projection,
the numbers are around 10−9.

6. Summary

A general approach to image registration is based on a variational formulation, where the
overall goal is to minimize a certain energy functional. However, it is well known that image
registration is an ill-posed problem. Therefore, for a particular application, one aims to add
as much information as possible.

One step in this direction is to add a designed regularizer, which penalizes unwanted
solutions but which is also inevitable to make the problem well posed. In this paper, we
consider a further step, which is to provide additional information by adding additional
constraints. Constraints are sometimes treated by penalization [7, 32], which in a sense is
similar to the regularized approach. However, in the penalized version it is not guaranteed
that the constraints hold whereas in the constrained approach it is.
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To our best knowledge, the first paper dealing with constrained image registration is [13].
However, there only a small number of so-called landmark constraints are considered. In
this paper, we consider a more general approach to constrained registration, which allows for
pointwise constraints.

We present an implementation of this general approach for volume preserving constraints.
In particular, we present a stable and consistent staggered grid discretization of the continuous
variational approach. We tested our algorithm on real medical data as well as on synthetic
data.

From the numerical point of view, the constrained approach leads to a very challenging
and highly nonlinear optimization problem where both the discretization and the numerical
optimization are not obvious. We used state-of-the-art SQP optimization techniques that allow
for an efficient solution of the registration problem. Our formulation opens up a few avenues
of research such as effective solvers for the KKT systems and inexact SQP methods. These
issues will be addressed in a subsequent paper.

From an imaging point of view, the addition of the VP constraint should be done judicially.
It is clear that such a constraint can lead to greater distance between the images thus one may
want to apply the VP constraint only to a part of the image. Our formulation is flexible and
can be modified to deal with this approach.

Acknowledgments

JM was supported by the US National Institutes of Health under grant NIHR01 HL 068904.
We are indebted to Michele Benzi and the anonymous referees for suggestions and discussions.

References

[1] Fortin M and Glowinski R 1983 Augmented Lagrangian Methods: Applications in the Numerical Solution of
Boundary-Value Problems (Studies in Mathematics and Its Applications) (Amsterdam: North-Holland)

[2] Droske M and Rumpf M 2004 A variational approach to non-rigid morphological registration SIAM J. Appl.
Math. 64 668–87

[3] Bookstein F L 1989 Principal warps: thin-plate splines and the decomposition of deformations IEEE Trans.
Pattern Anal. Mach. Intell. 11 567–85

[4] Brezzi F and Fortin M 1991 Mixed and Hybrid Finite Element Methods (Berlin: Springer)
[5] Bro-Nielsen M 1996 Medical image registration and surgery simulation PhD Thesis IMM, Technical University

of Denmark
[6] Broit C 1981 Optimal registration of deformed images PhD Thesis Computer and Information Science,

University of Pennsylvania, PA
[7] Christensen G E and Johnson H J 2001 Consistent image registration IEEE Trans. Med. Imaging 20 568–82
[8] Christensen G E 1994 Deformable shape models for anatomy PhD Thesis Sever Institute of Technology,

Washington University
[9] Collignon A, Vandermeulen A, Suetens P and Marchal G 1995 3D Multi-Modality Medical Image Registration

Based on Information Theory (Computational Imaging and Vision vol 3) pp 263–74
[10] Courant R and Hilbert D 1962 Methods of Mathematical Physics vol II (New York: Wiley)
[11] Fischer B and Modersitzki J 1999 Fast inversion of matrices arising in image processing Numer. Algorithm 22

1–11
[12] Fischer B and Modersitzki J 2002 Fast diffusion registration AMS Contemp. Math. Inverse Probl. Image Anal.

Med. Imaging 313 117–29
[13] Fischer B and Modersitzki J 2003 Combination of automatic non-rigid and landmark based registration: the

best of both worlds Medical Imaging 2003: Image Processing ed M Sonka and J M Fitzpatrick Proc. SPIE
5032 1037–48

[14] Fischer B and Modersitzki J 2003 Curvature based image registration J. Math. Imaging Vis. 18 81–5
[15] Fitzpatrick J M, Hill D L G and Maurer C R Jr 2000 Image registration Handbook of Medical Imaging, Volume 2:

Medical Image Processing and Analysis ed M Sonka and J M Fitzpatrick SPIE pp 447–513



1638 E Haber and J Modersitzki

[16] Fletcher C A J 1988 Computational Techniques for Fluid Dynamics vol II (Berlin: Springer)
[17] Fortin M and Glowinski R 1983 Augmented Lagrangian Methods: Applications in the Numerical Solution of

Boundary-Value Problems (Amsterdam: North-Holland)
[18] Gee J C, Haynor D R, Le Briquer L and Bajcsy R 1997 Advances in elastic matching theory and its

implementation CVR Med. pp 63–72
[19] Gresho P M and Sani R L 1987 On pressure boundary conditions for the incompressible Navier–Stokes equations

Int. J. Numer. Methods Fluids 7 1111–45
[20] Haber E and Ascher U 2001 Fast finite volume simulation of 3D electromagnetic problems with highly

discontinuous coefficients SIAM J. Sci. Comput. 22 1943–61
[21] Haker S and Tannenbaum A 2001 Optimal transport and image warping MICCAI 2001 pp 120–7
[22] Heldmann S, Mahnke O, Potts D, Modersitzki J and Fischer B 2004 Fast computation of mutual information in

a variational image registration approach Bildverarbeitung für die Medizin 2004 (Berlin: Springer) pp 1–5
[23] S Henn and K Witsch 2001 Iterative multigrid regularization techniques for image matching SIAM J. Sci.

Comput. 23 1077–93
[24] Hermosillo G 2002 Variational methods for multimodal image matching PhD Thesis Université de Nice, France
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Antipolis, France
[32] Rohlfing T, Maurer C R Jr, Bluemke D A and Jacobs M A 2003 Volume-preserving nonrigid registration of MR

breast images using free-form deformation with an incompressibility constraint IEEE Trans. Med. Imaging
22 730–41

[33] Schnabel J A, Tanner C, Castellano-Smith A D, Degenhard A, Leach M O, Hose D R, Hill D L G and
Hawkes D J 2003 Validation of non-rigid image registration using finite element methods: application to
breast MR images IEEE Trans. Med. Imaging 22 865–73

[34] Silvester D, Elman H, Kay D and Wathen A 2001 Efficient preconditioning of the linearized Navier–Stokes
equations J. Comput. Appl. Math. 128 261–79

[35] Trottenberg U, Oosterlee C and Schüller A 2001 Multigrid (New York: Academic)
[36] Turek S 1999 Efficient Solvers for Incompressible Flow Problems (New York: Macmillan)
[37] Viola P A 1995 Alignment by maximization of mutual information PhD Thesis Massachusetts Institute of

Technology pp 1–155
[38] Yee K S 1966 Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic

media IEEE Trans. Antennas Propag. 14 302–7
[39] Zhu L, Haker S and Tannenbaum A 2003 Area preserving mappings for the visulization of medical structures

MICCAI 2003 pp 277–84


