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Abstract. In this paper we discuss image registration techniques with
a focus on volume preserving constraints. These constraints can reduce
the non-uniqueness of the registration problem significantly. Our imple-
mentation is based on a constrained optimization formulation. To solve
the problem we use a variant of the Sequential Quadratic Programming
method. Moreover, we present results on synthetic as well as on real-life
data.

1 Introduction

Image registration is one of the fundamental tasks in today’s image pro-
cessing and in particular in medical imaging; see, e.g., [1, 2] and references
therein. The objective of image registration is to make images which are
taken at different times, from different perspectives, and/or from different
devices to be more alike. Loosely, the goal of image registration is to find
a “reasonable ” deformation such that the “distance ” between a reference
image R and a deformed version of a template image T becomes small.

An application of particular clinical interest is the registration of pairs
of images acquired before and after contrast administration; see, e.g., [3]
and references therein. A typical example is depicted in Fig. 1. In this
application, magnetic resonance images of a female breast are taken at
different times (images from Bruce Daniel, Lucas Center for Magnetic
Resonance Spectroscopy and Imaging, Stanford University). The first im-
age shows an MRI section taken during the so-called wash-in phase of a
radiopaque marker and the second image shows the analogous section
during the so-called wash-out phase. A comparison of these two images
indicates a suspicious region in the upper part of the images. This region
can be detected easily if the images have been registered: tissue located
at a certain position in the wash-in image is related to the tissue at the
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same position in the wash-out phase. Generally, however, a quantitative
analysis is a delicate matter since observable differences are not only re-
lated to contrast uptake but also due to motion of the patient, like, for
example, breathing or heart beat.

As pointed out by Rohlfing et al. [3], there is a substantial difficulty
with the registration of pre and post-contrast images. Bright regions seem
to enlarge during the so-called wash-in phase. This enhancement is due to
contrast uptake but not to movement of the patient. Fig. 3 illustrates an
ideal situation. Without external information, it is impossible to answer
whether the white area has been enlarged or the grey area turned to
white.

In this paper, we present a flexible constrained image registration ap-
proach. It has three main ingredients: a distance measure, a regularizer,
and the constraints. Our framework is general enough to handle a variety
of distance measures, including the most popular ones, like those based
on the sum of squared differences (SSD) (cf., e.g., [4]), mutual informa-
tion (MI) (cf., e.g., [5, 6]), or correlation, as long as a Gâteaux derivative
exists; see, e.g., [7, 8]. For presentation purposes, we explicitly discuss the
approach only for the SSD measure.

——————————————————————————

Fig. 1. MRI’s of a female breast, left: during the wash-in phase, middle: during the
wash-out phase, and right: difference image.

2 Mathematical setup and discretization

With d ∈ N we denote the spatial dimension of the given images R, T :
Rd → R. Thus, T (x) gives a gray value at a spatial position x. We assume
that the supports of the images are contained in a bounded domain Ω :=
]0, L[d, i.e. R(x) = T (x) = 0 for x /∈ Ω.



Our goal is to find a “reasonable ” deformation u such that the “dis-
tance ” between the reference image R and the deformed template image
T (x+u(x)) becomes small. It is well-known that this problem is ill-posed
and therefore needs to be regularized, see, e.g., [9, 10]. A formulation of
the (VP) constrained problem thus reads

minimize D[R, T ;u] + αS[u] (1a)
subject to C[u](x) := det(Id∇u(x))− 1 = 0 for all x ∈ Ω, (1b)

where D is some distance measure (e.g. the sum of squared difference)
and S is some regularization term (e.g. the elastic regularizer). Here,
α > 0 is a regularization parameter and compromises between similarity
and regularity. For ease of presentation, we assume that S is defined via
a bilinear form, at it is the case for popular regularizer, like, e.g., the
elastic [11–13], fluid [12, 14], diffusion [15], or curvature regularizers [16].

Choosing a stable discretization method for an optimization problem
with a differential constraint is a delicate matter. Similar to [17, 18], we
use staggered grids. Though staggered grids seem to be natural for the
discretization of the registration problem on a regular grid, we are not
aware of any registration scheme where this discretization is used.

3 Solving the discrete optimization problem

Let U ,D,S, and C denote the discrete analogs of u,D,S, and C. The
discrete analog of the image registration problem (1) is phrased as follows,

minimize D(U) + αS(U) (2a)
subject to C(U) = 0. (2b)

In order to solve problem (2) numerically we use the framework of
Sequential Quadratic Programming (SQP); see [19] for a detailed discus-
sion. With the Lagrange multiplier P , the Lagrangian of the problem
is

L(U ,P ) = D(U) + αS(U) + C(U)>P .

Differentiating with respect to U and P , we obtain the Euler-Lagrange
equations

0 = LU (U ,P ) = DU (U) + αSU (U) + CU (U)>P , (3a)
0 = LP (U ,P ) = C(U). (3b)

We can now solve the nonlinear system (3) numerically by using a Newton-
type method; see [18] for details.



4 Numerical examples

The Blob: To illustrate the potential of the volume preserving regis-
tration we present a synthetic example; see Fig. 3. The reference image
(top right) shows an elliptic global structure which contains a small al-
most circular object. The template (top left) shows a rotated version of
the global ellipse, where the inner structure is translated and consider-
ably enlarged. Note that this example mimics the situation for contrast
enhanced images: slightly deformed global structures, where inner struc-
tures may change drastically due to contrast uptake.

As it is apparent from Fig. 3, the unconstrained registration gives
very good results if we are looking at the difference between the reference
and deformed template images alone. However, as expected, the inner
structure has been reduced so as to fit the one in the reference image.
This results in a drastic change of volume, which can be observe from the
visualization of a part of the grid in Fig. 3 (middle right) corresponding
to a region of interest emphasized in the template image (top left). Thus,
for contrast enhanced images, the registration gives meaningless results,
though the difference is small.

Fig. 3 also shows the results of the volume preserving registration
(bottom left). As is apparent from this figure, the global deformation has
been resolved, the inner ellipse has been moved to match the inner ellipse
in the reference image. However, the volume of the inner ellipse has not
been altered, which leads to a larger difference as in the unconstrainted
case but also to a more realistic registration; see also the deformed grid
(bottom right). Computation time and numerical values for the difference
D and the constraints C for the un- and VP-constrained registration are
summarized in Table 1 and 2.

MRI scans In our second example, we discuss results obtained for the
images shown in Fig. 1. Fig. 4 shows the results after two ( 2nd row) and
ten iterations (3rd row) of the unconstrained registration as well as after
ten iterations of the VP constrained registration (4th row). After at most
ten iteration both schemes have converged.

Although the numbers (cf. Table 2) indicate a larger reduction of the
difference by the unconstrained registrations, the ranking is not so clear if
one looks at the difference images, cf. Fig. 4. Here, the difference after ten
steps un- and VP constrained registration looks pretty much the same.
After two steps of the unconstrained registration the bright spot in the
top part of the image has not been resolved satisfiably. The explanation is
that small spots which are related to noise in the MRI images and hardly



visible in the images are registered in the unconstrained registration. This
leads to a large reduction though it is hardly visible. To remove this small
spots, the volume has to be changed locally. However, the registration of
these small spots does not contribute to a meaningful solution for this
problem.

In Fig. 2, we display the pointwise map of the change of volume.
Using the unconstrained approach, we observe a considerable change of
volume for the breast with a peak value of 1.36. Thus, part of the breast
has been enlarged by a factor of 2.36. For the constrained approach, we
observe that the volume change is below a user supplied threshold (here,
tolC = 1o−6) everywhere. In fact, since we used a quasi-Newton scheme
for projection, the numbers are around 10−9.

Table 1. Computation time (using MATLAB 6.5 on a DELL Inspiron 8600 Notebook)
and iterations for the unconstraint and VP constraint registrations. The stopping cri-
teria is ‖uold − u‖ ≤ tolU := 10−1.

image size unconstraint VP constrained

64× 64 28s, #38 69, #21
128× 128 296s, #68 846, #23

Table 2. Numerical results for the un- and VP-contrained registrations; k is the number
of iteration performed.

k D(U (k))/D(0) ‖C(U (k)‖∞
blob unconstrained 25 0.21 0.87

VP constrained 25 0.73 ≤ 10−6

MRI unconstrained 2 0.81 1.36
unconstrained 10 0.78 1.36
VP constrained 10 0.87 ≤ 10−6

Fig. 2. Volume preservation of the unconstrained (left) and constrained (right)
registration results for the MRI example.
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Fig. 3. Synthetic example, left column: deformed template, right column: refer-
ence and detail of the deformed grid; top row: template and reference, no registration,
middle row: deformed template and details with grid after unconstrained registration,
bottom row: deformed template and details with grid after VP constrained registra-
tion. For both schemes, we choose α = 103 and stopped after 25 iterations.
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Fig. 4. Registration results for the images of Fig. 1. Left column deformed template
images Tu, middle column difference image |R − Tu| with region of interest (ROI),
right column ROI with nodal grid, vertices connected by straight lines ; row 1: no
registration, row 2: no constraints two iterations, row 3: no constraints ten iterations,
and row 4: volume preserving constraints ten iterations.


