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Abstract. Image registration is an inherently ill-posed problem. There-
fore one typically aims to provide as much information about the under-
lying application as possible. In particular for tumor monitoring, volume
preservation of the wanted deformation is a central point. Based on [1],
we propose a new scale space approach to volume preserving image regis-
tration. The main advantage of the new approach is that the constraints
appear linearly and therefore the system matrices resembles Stokes ma-
trices, which appears in computational fluid dynamics.
We present the scale space framework, a composition based numerical
approach and its implementation. Finally, we demonstrate the outstand-
ing features of this idea by a real life example.

1 Introduction

Image registration is one of the fundamental tasks in today’s image processing
and in particular in medical imaging; see, e.g., [2–4] and references therein. The
objective of image registration is to make images which are taken at different
times, from different perspectives, and/or from different devices to be more alike.
Loosely, the goal of image registration is to find a “reasonable ” deformation such
that the “distance ” between a reference image R and a deformed version of a
template image T becomes small.

Image registration is an ill-posed problem (cf., e.g., [5]) and therefore need to
be regularized. Different types of regularizers can be used to specify the meaning
of reasonable. However, for particular applications, one may want to provide
additional information. Typical examples include the knowledge of the location
of anatomical landmarks or markers in the images and/or additional physical
properties of the deformation field.

A situation of particular clinical interest is the analysis of pairs of images
acquired before and after contrast administration; see, e.g., [6] and references
therein. As a typical example, Figure 1 shows two different magnetic resonance
images (MRIs) of a female breast as they are used routinely for tumor monitoring
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(images from Bruce Daniel, Lucas Center for Magnetic Resonance Spectroscopy
and Imaging, Stanford University). The first image shows an MRI section taken
during the so-called wash-in phase of a radiopaque marker and the second image
shows the analogous section during the so-called wash-out phase. A comparison
of these two images indicates a suspicious region in the upper part of the images.
This region can be detected easily if the images have been registered: tissue
located at a certain position in the wash-in image is related to the tissue at the
same position in the wash-out phase. Generally, however, a quantitative analysis
is a delicate matter since observable differences are not only related to contrast
uptake but also due to motion of the patient, like, for example, breathing or
heart beat. Therefore, image registration becomes an inevitable task. However,
as pointed out by Rohlfing et al. [6], there is a substantial difficulty with the
registration of pre- and post-contrast images. Bright regions seem to enlarge
during the so-called wash-in phase. This enhancement is due to contrast uptake
but not to movement of the patient. Therefore, the geometry of these regions
should not be changed by the registration procedure. Most importantly, for this
particular application, a distance minimizing registration can produce unrealistic
results. A critical feature of the wanted deformation is that it has to preserve
tissue volume, particularly the tumor volume. From a clinical point of view, a
volume change is unacceptable even if it results in a much smaller image distance.

Fig. 1. MRI’s of a female breast, left: during the wash-in phase, middle: during the
wash-out phase, and right: difference image.

A general approach to constrained image registration has been proposed
in [7]. Focussing on volume preserving registration, a variational approach with
a Tikhonov-type regularization has been presented. The approach leads to a
nonlinear constrained optimization problem which is solved by a Sequential
Quadratic Programming (SQP). At each iteration a large system of linear equa-
tions has to be solved and the iteration matrix changes as the iteration proceeds.
As it is typical for constrained optimization, the system is a so-called KKT sys-
tem, where for this application the off-diagonal blocks are nonlinear. In this
paper, we explore a scale space type regularization applied to the constrained
problem. We replace the Tikhonov regularization by a dynamical process. The
regularization of the problem is obtained by performing a finite number of steps



of the discretized process. We demonstrate that this approach has unique prop-
erties when applied to the problem of volume preserving image registration. A
major advantage of this new scale space approach is that the linear systems to
be solved at each iteration simplify. Particularly, the off-diagonals become linear.
Therefore, one can use a wealth of efficient algorithms developed for computa-
tional fluid dynamics.

This paper is organized as follows. In Section 2 we discuss the scale space
regularization and formulate the system of equations it leads to. In Section 3 we
discuss discretization issues of the problem. In Section 4 we present a numerical
scheme for the solution of the discrete scale space problem. In Section 5 we
apply the new approach and demonstrate the effectiveness of our algorithm on
a realistic example.

2 Scale Space Regularization for Image Registration

In the first part we explain our notation and a straightforward Tikhonov reg-
ularization. We introduce the building blocks of our implementation. Here, for
ease of presentation, we focus on the sum of squared differences (or L2 Norm)
as a distance measure (or misfit) and the elastic potential as a regularizer (or
displacement semi-norm). However, other distance measures or regularizer can
be used as well; see [1, 8].

In the second part we discuss our scale space Tikhonov regularization. The
main observation is that a composition type approach for the transformation
does allow for locally linear constraints. Therefore, a numerical treatment of the
scale space approach has severe advantages.

2.1 General notations and Tikhonov regularization

With d ∈ N we denote the spatial dimension of the given images R, T : Rd → R
which are assumed to be sufficiently smooth. Thus, T (x) gives a gray value at
a spatial position x. Without loss of generality, we assume that the supports of
the images are contained in a bounded domain Ω := (0, 1)d and in particular
R(x) = T (x) = 0 for x /∈ Ω.

Our goal is to find a “reasonable ” transformation ϕ such that the “distance ”
between the reference image and the deformed template image is small. As usual
in image registration, we set ϕ(x) = x + u(x) and work the displacement u =
(u1, . . . , ud)T : Rd → Rd rather than the transformation ϕ. However, we will
also use ϕ whenever it makes notation shorter.

It is well-known that the registration problem is ill-posed and therefore needs
to be regularized [5]. Tikhonov-type regularization is commonly used to balance
between image distance and regularity of u. A mathematical formulation of the
regularized and constrained problem thus reads:

minimize D(T,R;u) + α
2 ‖Bu‖

2 (1a)
subject to C(u) = 0, (1b)



where D measures image distance, ‖Bu‖2 is a quadratic regularizer, B a partial
differential operator, α > 0 is a regularization parameter that compromises
between similarity and regularity, and C are the volume preserving constraints.
Problem (1) is usually solved for a sequence of decreasing α’s. For each α of
this sequence, we obtain a smaller misfit and a generally larger displacement
semi-norm.

For ease of presentation, we focus on the Sum of Square Differences (SSD)
as a distance measure,

D(u) := D(T,R;u) := 1
2‖T (x+ u)−R‖2, (2)

and the elastic potential with Laḿe constants λ and µ as regularizer. Hence,

S[u] =
∫

Ω

〈Bu,Bu〉 dx (3)

:=
∫

Ω

λ + µ

2
‖ ∇ · u‖2 +

µ

2

d∑
i=1

‖ ∇ ui‖2 dx.

For the purpose of this paper, a transformation is volume preserving if

det(∇ϕ(x)) = 1 for all x ∈ Ω;

see [1] for an extended discussion. Our definition implies that volume preserving
maps also preserve orientation, which is an additional desirable feature in medical
registration. With Id ∈ Rd,d denoting the d-by-d identity matrix, our pointwise
constraint thus becomes

C(u) := det(Id +∇u)− 1 = 0. (4)

Introducing a Lagrange multiplier p, the Lagrangian of (1) is

L(u, p) = 1
2‖T (u)−R‖2 +

α

2
‖Bu‖2 +

∫
Ω

C(u) · p dx

and the continuous Euler-Lagrange equations for (1) are

0 = (∇ T (u))>(T (u)−R) + αB∗Bu
−∇ · [ det(Id +∇u)(Id +∇u)−> · p ], (5a)

0 = det(Id +∇u)− 1, (5b)
0 = n · ∇ ui; i = 1..d (5c)

see [7]. Here, ∇T is the gradient of T and B∗ the adjoint of B. The system (5) is
a highly coupled system of nonlinear partial differential equations (PDE). The
differential operator B∗B in (5a) is a linear, elliptic operator. The last term in
(5a) is related to the derivative of the constraints which also show up in (5b). It
is not easy to show either existence or uniqueness of a solution of the PDE (5).



For the purpose of this paper, we therefore assume existence of a solution and
remark that proving its existence is a subject of further research.

After freezing the coefficients of the linearized system (5), a Local Fourier
Analysis can be used to show ellipticity of the system for small displacements u;
see, e.g. [9]. However, for large displacements ellipticity is crucial and numeri-
cal difficulties may arise; see [1]. This motivates us to use a modified Iterative
Tikhonov Regularization approach where only small displacements are consid-
ered and a sequence of elliptic problems has to be solved.

2.2 A Modified Iterated Tikhonov regularization

We now explore a modified iterated Tikhonov regularization approach and show
that it has some favorable numerical properties.

We assume that at some stage k we have an approximate solution ϕk(x) =
x+ uk(x) which is volume preserving and therefore obeys Eq. (4). We can also
associate to this solution an image distance D(uk) and a displacement norm
‖Buk‖2. We seek a method to update ϕk such that the new transformation ϕk+1

gives a smaller image distance and an equal or larger displacement norm. Using
the common iterated Tikhonov regularization techniques, one would compute a
linear perturbation v and set

ϕk+1 = ϕk + vk or uk+1 = uk + vk. (6)

However, this straightforward approach does not lead to a simplification of the
equations or to an improvement of the numerics. The main problem is that the
volume preserving constraint is nonlinear and therefore

C(uk + vk) 6= C(uk) + C(vk).

A better approach is to update the whole ϕk in terms of a composition. This
can be done by computing a new function ψk(x) = x+ vk(x) and setting

ϕk+1(x) = ϕk(ψk(x)) or uk+1(x) = uk(x+ vk(x)) + vk(x).

The following Lemma is a key observation for the development of an efficient
algorithm.

Lemma 1. The set of volume preserving mappings with the composition is a
non-commutative group.

Proof. Since the set of continuous functions forms a group with respect to com-
position, the statement follows from

det(∇[ϕ(ψ(x))]) = det(∇ϕ(ψ(x)) · ∇ψ(x)) = det(∇ϕ) · det(∇ψ) = 1,

where ϕ and ψ are assumed to be volume preserving. �



The above Lemma allows us to derive efficient algorithms. At stage k, we
define Tk(x) := T (ϕk(x)). We are than seeking for a (small) update v as a
solution of

minimize 1
2‖Tk(x+ v)−R‖2 + α

2 ‖Bv‖
2 (7a)

subject to C(v) = 0. (7b)

Note that for a minimizer vk of problem (7) we have

Tk(x+ vk) = T (ϕk(x+ vk)) = T (ϕk(ψk(x))).

In contrast to the straightforward linear approach (6), the new approach is based
on composition. This approach is related to the Euler coordinates framework as
used in fluid registration [10], see also [5, §10.4.2]. In other words, we change
from material to spatial coordinates but drop the material derivative within the
regularizer. Thus, the new scale space approach give different solutions than the
Iterative Tikhonov regularization. In the next section we demonstrate that the
solution of the sequence of problems (7) can be computed very effectively using
a Newton-Multigrid method.

3 Discretization

There are two main approaches for the discretization of the registration prob-
lems (1) and (7)). In the first so-called optimize-discretize approach one forms the
objective function, then differentiates to obtain the continuous Euler-Lagrange
equations, which are finally discretized and solved numerically; see, e.g., [11, 12,
5]. In the second so-called discretize-optimize approach one directly discretizes
the problem and then solves a finite but typically high-dimensional optimization
problem; see, e.g., [1]. The advantage of the latter approach is that standard
optimization methods can be used. We therefore prefer the discretize-optimize
approach. However, in order to take advantage of efficient optimization tech-
niques, all parts of the discrete problem need to be continuously differentiable.

Choosing a stable discretization method for a system of partial differential
equations (PDE’s) with mixed derivatives is a non-trivial matter. As proposed
in [1], we use staggered grids (cf. Figure 2) which are very common for stable
discretizations of the related problem of incompressible fluid flow (see, e.g., [13])
and electromagnetics (see, e.g., [14, 15]) where operators such as the gradient,
curl, and divergence are discretized.

In this section we briefly summarize the discretization we use. Further dis-
cussion and details are given in [7].

3.1 Discretizing u and S

We assume that our discrete images have m1× . . .×md pixels, where d = 2, 3 is
the image dimensionality. For ease of presentation, we also assume that each pixel
is square or cubic where each side has length h. In our description we allow for
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Fig. 2. Staggered grids for dimensions d = 2, 3, nodal �, cell centered •,
face staggered grids (H in x1-, I in x2-, and F in x3-direction), and edge
staggered grids (N in x1-, J in x2-, and ~ in x3-direction). Top left:
d = 2, four pixels, top right: d = 2 pixel (i1, i2) with grids, bottom
left: d = 3, voxel (i1, i2, i3) with face staggered grids and positions of
u1, u2, u3, bottom right: d = 3, edge staggered grids.

half step indices. As usual in image processing, we identify pixels/voxels with cell
centered grid points xj,k,`, which are therefore labeled with full integers indices.
Given a pixel/voxel xj,k,`, their faces are numbered with a half index, xj± 1

2 ,k,`,
xj,k± 1

2 ,`, and xj,k,`± 1
2
, and we discretize the ith component ui of u on the ith

face for every pixel/voxel. With some abuse of notation, we denote the discrete
analog of the continuous vector field by u = (u1, . . . , ud)>, where ui denotes the
grid function which is approximated on the face-staggered grid.

If needed, the derivatives ∂ju
k are approximated by the short (central) dif-

ferences,

∂ju
k ≈ ∂h

j uk := 1
h (uk

...,ij+
1
2 ,... − uk

...,ij− 1
2 ,...). (8)

Note that no boundary conditions are needed to approximate derivatives in the
normal directions (∂ju

j). For the tangential directions (∂ju
k, j 6= k) we imposed

Neumann boundary conditions.
Since many regularizers are phrased in terms of the more complex differential

operators ∇ and divergence ∇· , we introduce the notation ∇h and ∇h· for the
discrete analogs. Using these discrete analogs the elastic potential S is discretized



as

‖Bu‖2 :=
λ + µ

2
‖ ∇h · u‖2 +

µ

2

d∑
i=1

‖ ∇h ui‖2

In the course of the registration process we require derivatives. Upon differ-
entiation of the regularizer we obtain the Navier-Lamé operator

1
2

∂‖Bu‖2

∂u
= (λ + µ)(∇h· )> ∇h · u+ µ∆hu =: Au.

where ∆h is the vector Laplacian on a staggered grid

3.2 Discretizing T and D

We are heading for fast and efficient optimization scheme and therefore differen-
tiability does play a key role. Thus, although computationally superior, d-linear
image approximations can not be used, since they are not continuously differen-
tiable.

If we require a continuously differentiable objective function we require to
have a continuous image model. Since the images are typically noisy but deriva-
tives are needed we use a smoothing B-spline to approximate the image where the
smoothing parameter is chosen using the Generalized Cross Validation method [16].
For data interpolation using B-splines see [17]. Since the grid is regular, we can
quickly evaluate the spline coefficients using a cosine transform. The continuous
smooth approximation is denoted by T spline; see [1] for details.

Given the staggered grid representation of u we use averaging operators Pj

for the transfer to the cell centered positions, we set

T (u) := T spline(x1 + P1u
1, . . . , xd + Pdu

d),

see [7] for details. We denote the Jacobian of T by

Tu :=
∂T

∂u
(u) =

(
diag(P>1 ∂1T ), . . . diag(P>d ∂dT )

)
,

where the partial derivatives ∂jT are evaluated at the spatial positions (x1 +
P1u

1, . . . , xd + Pdu
d). Using a spline approximation for T , Tu becomes a sparse

matrix with only four non-zero diagonals.
Our discretization of the SSD (2) is straightforward,

D(u) := 1
2‖T (u)−R‖22 and thus Du(u) = Tu(u)>(T (u)−R).

3.3 Discretizing C

In our discretization of the volume preserving constraints we note that derivatives
of every field to every direction are needed and that they need to be centered at
the same location. We shortly review the work in [7]. To simplify the discussion
we discuss the 2D case only, the extension to 3D is lengthy but straightforward.



In 2D the constraint reads

C(u) = ∇ · u+ u1
xu2

y − u1
yu2

x = u1
x + u2

y + u1
xu2

y − u1
yu2

x.

Using the short difference (8) the derivatives u1
x and u2

y naturally centered at
the cell center. To discretize derivatives in the tangential direction we simply use
long differences.

4 The discrete scale space process

After discretization we obtain a discrete scale space process. At each iteration
we require to approximately solve the discrete system

minimize 1
2‖Tk(v)−R‖2 + α

2 ‖Bv‖
2 (9a)

subject to C(v) = 0. (9b)

Common to other iterative regularization methods (cf., e.g., [18]), we use a
single Gauss-Newton step to approximate the solution of the discrete system
(9) and immediately update Tk. After linearization we obtained the following
quadratic constrained optimization problem

minimize 1
2‖Tk + (∇h Tk)v −R‖2 + α

2 ‖Bv‖
2

subject to ∇h · v = 0.

The main advantage of the scale space approach is that the constraints in (9)
are linearized with respect to v. Therefore, the nonlinear parts vanish and we
end up with linear constraints. The Gauss-Newton step is given by the solution
of (

M + αA (∇h· )>
∇h· 0

) (
v
p

)
=

(
(∇h Tk)>(Tk −R)

0

)
, (10)

where p is a discrete Lagrange multiplier and M is a diagonal positive semi-
definite matrix which approximates (∇h Tk)>∇h Tk. The system (10) is similar
to the Stokes system in Fluid Dynamics. It is well known that staggered dis-
cretization is crucial in order to obtain a stable system; see, e.g., [13]. For Fluid
Dynamic problems, effective numerical methods where developed; see, e.g., [19,
20]). In particular, multigrid solvers are among the most efficient schemes to
solve problem (10).

The system (10) is solved numerically and v is updated. However, since v is
a solution for the linearized problem, this update may not be volume preserv-
ing. In order to guarantee the volume preservation of our numerical solution,
we explicitly project this solution onto the constraint. As explained in [1], the
projection is computed by solving

C(v +w) = 0

for the correction w. To be precise, we compute a least squares solution of the
linearized problem

C(v +w) ≈ C(v) +Cvw = 0, (11)



where Cv is the derivative of C. This system is underdetermined because we
have less equations than unknowns. The above process can be thought of as an
orthogonal projection to the volume preserving constraint.

The above algorithm is summarized in Algorithm 1.

Algorithm 1
A scale space approach to volume preserving image registration.
u← SPIR(α,u);

set k = 0, Tk(x) = T (x), ϕk(x) = x;
while not stop do

compute image distance, displacement semi-norm, and M ;
set up system (10) and solve for v;
project to the constraint by solving (11) for w;
set ψk(x) = x+ v +w and ϕk+1(x) = ϕk(ψk(x));
compute Tk+1(x) = T (ϕk+1(x));
update k ← k + 1;

end while

5 A numerical example and discussion

To demonstrate the effectiveness of our new scale space approach we apply the
algorithm to the breast images in Figure 1. The images where analyzed in [7]
using the straighforward Tikhonov regularization discussed in Section 2.1 and
we use them for comparison here. The magnetic resonance images are noisy and
only slightly shifted and therefore it is expected that a small number of scale
space iterations is needed to achieve a sufficient level of image similarity. Indeed,
setting the regularization parameter of each iteration to α = 10−4 it takes nine
iterations to obtain a relative image distance of 0.87. The history of the iteration
is presented in Table 1.

The Tikhonov regularization approach presented in [7] takes ten iterations
with a fixed regularization parameter α = 10−5 to achieve about the same im-
age distance and about the same displacement semi-norm. For this particular
example, the images and the displacements obtained using the new scale space
approach and those obtained from the Tikhonov regularization method are vi-
sually identical; see Figure 3.

Table 1. The relative image distance D(uk)/D(0) and the displacement semi-
norm versus iteration k for the scale space iteration.

iteration 1 2 3 4 5 6 7 8 9

distance 0.98 0.96 0.91 0.90 0.90 0.89 0.88 0.88 0.87

103 · ‖Bu‖2 1.2 1.4 1.8 1.7 1.8 1.8 1.9 2.0 2.0
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Fig. 3. Registration results for the images of Fig. 1. Left column deformed tem-
plate images Tk, middle column difference image |R−Tk| with a region of interest
(ROI), right column ROI with nodal grid, vertices connected by straight lines ;
row 1: no registration, row 2: no constraints ten iterations, and row 3: volume
preserving constraints ten iterations.

There are two main advantages to the scale approach over the Traditional
Tikhonov regularization. First, every iteration of the scale space method is sig-
nificatively simpler compared with the Tikhonov regularization approach. The
main advantage is that the iteration matrix is fixed and therefore efficient meth-
ods can be designed for the solution of the linear system. In particular, the
system is similar to the Stokes system and we intend to explore the use of multi-
grid methods for its solution in a consecutive paper. The second advantage is
that we need not search for the regularization parameter. A rough choice is
sufficient and the SSD is reduced by the scale space iteration.
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