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A MULTILEVEL METHOD FOR IMAGE REGISTRATION∗

ELDAD HABER† AND JAN MODERSITZKI†

Abstract. In this paper we introduce a new framework for image registration. Our formulation
is based on consistent discretization of the optimization problem coupled with a multigrid solution
of the linear system which evolves in a Gauss–Newton iteration. We show that our discretization
is h-elliptic independent of parameter choice, and therefore a simple multigrid implementation can
be used. To overcome potential large nonlinearities and to further speed up computation, we use a
multilevel continuation technique. We demonstrate the efficiency of our method on a realistic highly
nonlinear registration problem.
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1. Introduction and problem setup. Image registration is one of today’s
challenging image processing problems. Given a so-called reference R and a so-called
template image T , the basic idea is to find a reasonable transformation such that a
transformed version of the template image becomes similar to the reference image.
Image registration has to be applied whenever images resulting from different times,
devices, and/or perspectives need to be compared or integrated; see, e.g., [6, 19] and
references therein.

The computation of nonrigid image registration has two main building blocks.
The first one is a distance measure D quantifying distance or similarity of images, and
the second one is a regularizer S which rules out nonreasonable solutions. Note that
image registration is an ill-posed problem; see, e.g., [19]. Therefore, regularization is
inevitable. A common treatment of the registration problem is based on the following
variational approach: Find a transformation u minimizing the joint energy

J α[u] := D(R, T (u)) + αS(u).(1)

Here, α > 0 is a regularization parameter that compromises similarity and regularity.
The formulation (1) is common to many ill-posed inverse problems where the

data fitting term D is balanced with a regularization term using the regularization
parameter α. Many authors have dealt with the optimal choice of α, using a variety
of approaches; see, for example, [14, 24]. If the difference between the images is
associated with random noise, then standard methods that are based on the statistics
of the noise, such as generalized cross validation (GCV) [9] or χ2 [21], can be used.
However, in image registration the difference between two images (at least in most
medical applications) is not associated with random noise. In fact, the difference
may be highly structured, and only a trained professional (e.g., a radiologist) could
determine the exact amount of regularization needed. Therefore, we prefer to provide
a sequence of registered image pairs for various α’s and leave the final choice of an
optimal α to a trained professional.
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In general, the optimization problem (1) cannot be solved analytically. Thus, nu-
merical schemes and appropriate discretizations are required. Typically, a discretiza-
tion leads to a finite dimensional nonlinear problem, where the number of unknowns
can be large. For example, the discrete registration problem for two 128 × 128 × 64
MRI scans results in a nonlinear system of equations in about 3 ·106 unknowns. Thus,
highly efficient algorithms are required in order to perform the registration in a rea-
sonable amount of time. This applies, in particular, if one is interested not only in
a solution for a fixed α but in a sequence of solutions for a variety of different α’s.
Furthermore, since we want our codes to run in a clinical setting, we require only
modest computational hardware.

There are two main approaches for the discretization of the registration prob-
lem (1). In the first, the optimize-discretize approach, one forms the objective function
and then differentiates to obtain the continuous Euler–Lagrange equations, which are
finally discretized and solved numerically; see, e.g., [7, 15, 19]. The second approach
is the discretize-optimize approach. Here, one directly discretizes the problem and
then solves a finite (but typically high) dimensional optimization problem; see, e.g.,
[13]. The advantage of the latter approach is that standard optimization methods
can be used. We prefer the discretize-optimize approach; however, in order to take
advantage of efficient optimization techniques, all parts of the discrete problem need
to be continuously differentiable. We discuss the implications and advantages of this
necessity in the paper.

To gain additional computational efficiency and obtain a scalable algorithm, one
can either use a full approximation multigrid scheme (FAS) or a multilevel Newton-
type scheme with an efficient solver for the linearized systems of equations. In this pa-
per we propose a multilevel inexact Gauss–Newton scheme combined with a multigrid
solver for a computation of a numerical solution of (1). Although no proof exists, the
latter approach has an efficiency similar to that of FAS [23, p. 154], but it is much
more modular. Particularly, the linear solver is decoupled from the optimization
strategy. Therefore, the code can be modified easily to deal with any differentiable
distance measure and/or regularizer. However, for the sake of simplicity, we focus on
the so-called sum of squared differences (SSD) as a distance measure D and the elastic
potential as a regularizer S:

D[u] =
1

2

∫
Ω

(T (x + u(x)) −R(x))2 dx,(2a)

S[u] =

∫
Ω

〈Bu,Bu〉 dx(2b)

:=
1

2

∥∥∥∥∥∥∥∥∥

⎛⎜⎜⎜⎝
√
λ + μ∇·√

μ∇
. . . √

μ∇

⎞⎟⎟⎟⎠
⎛⎜⎝u1

...
ud

⎞⎟⎠
∥∥∥∥∥∥∥∥∥

2

L2(Ω)

=

∫
Ω

λ + μ

2
‖ ∇ · u‖2 +

μ

2

d∑
i=1

‖ ∇ ui‖2 dx,

where Ω = (0, 1)d is the registration domain and λ and μ are the Lamé constants.
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Our discretization is based on the weak form of the problem (1) which naturally
leads to staggered grid discretization. To the best of our knowledge, staggered grid
discretization was introduced into imaging in [13]. In this paper, we prove the h-
ellipticity of the discretization for the elastic potential, independent of the problem
parameters. As has already been shown in [13], this discretization is also stable for
pointwise volume preserving constraints.

Our work relates to the work of Henn and Witsch [15], Clarenz, Droske, and
Rumpf [7], and Kalmoun and Rüde [18]. In [15], an FAS based on the discretized op-
timality conditions for the continuous problem is presented. In [7], a diffusive rather
than an elastic regularizer is used. A d-linear interpolation scheme is used to compute
the deformed template in [7, 15, 18]. Therefore, the objective function is not continu-
ously differentiable, and this may lead to failure of standard optimization techniques.
In [18] a multigrid method is developed for the related optical flow problem but with
the diffusive regularizer.

This paper is organized as follows. In section 2, we discuss the discretization
of the registration problem (1). Our optimization approach, which is based on a
Gauss–Newton-type scheme (cf., e.g., [20]), is discussed in section 3. In section 4, we
propose a multigrid method for a solution of the linearized problems. Using a local
mode analysis we show that our discretization is particularly amenable to multigrid
methods and suggest appropriate multigrid treatment. In section 5, we combine our
nonlinear iteration with a multilevel continuation method. Finally, in section 6, we
present numerical examples that demonstrate the effectiveness of our algorithm.

2. Discretization. Choosing a stable discretization method for a system of par-
tial differential equations with mixed derivatives is a delicate matter. Here, we use
staggered grids (cf. Figure 1), which are very common for stable discretizations of fluid
flow (see, e.g., [8]) and electromagnetics (see, e.g., [11, 27]), where operators such as
the gradient, curl, and divergence are discretized. It is also well known that staggered
grids are tightly connected to mixed finite element methods which are commonly used
for elasticity [3].

In this section we briefly summarize the discretization we use. Further discussion
and details are given in [13].

2.1. Discretizing u. We assume that our discrete images have m1 × · · · ×md

pixels, where d = 2, 3 is the image dimensionality. For ease of presentation, we also
assume that each pixel is square or cubic, where each side has length h. In our
description we allow for half-step indices. As usual in image processing, we identify
pixels/voxels with cell centered grid points xj,k,�, which are therefore labeled with full
integer indices. Given a pixel/voxel xj,k,�, their faces are numbered with a half index,
xj± 1

2 ,k,�
, xj,k± 1

2 ,�
, and xj,k,�± 1

2
, and we discretize the ith component ui of u on the

ith face for every pixel/voxel. With some abuse of notation, we denote the discrete
analogue of the continuous vector field by u = (u1, . . . , ud)�, where ui denotes the
grid function which is approximated on the face staggered grid.

If needed, the derivatives ∂ju
k are approximated by the short (central) differences,

∂ju
k ≈ ∂h

j u
k :=

1

h

(
uk
... ,ij+

1
2 ,...

− uk
... ,ij− 1

2 ,...

)
.(3)

Note that no boundary conditions are needed to approximate derivatives in the normal
directions (∂ju

j). For the tangential directions (∂ju
k, j �= k) we imposed Neumann

boundary conditions.
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Fig. 1. Staggered grids for dimensions d = 2, 3, nodal �, cell centered •, face staggered
grids (� in x1-, � in x2-, and � in x3-direction), and edge staggered grids (� in x1-, � in
x2-, and � in x3-direction). Top left: d = 2, four pixels. Top right: d = 2 pixel (i1, i2) with
grids. Bottom left: d = 3, voxel (i1, i2, i3) with face staggered grids and positions of u1, u2, u3.
Bottom right: d = 3, edge staggered grids.

2.2. Discretizing S. Since many regularizers are phrased in terms of the more
complex differential operators gradient ∇ and divergence ∇·, we introduce the nota-
tion ∇h

j and ∇h· for the discrete analogues,

∇h
j uj = (∂h

1 u
j , . . . , ∂h

du
j)� and ∇h · u =

∑
∂h
j u

j .(4)

Using these discrete analogues the elastic potential S (2b) is discretized as

Sh(u) = ‖Bu‖2
2 :=

λ + μ

2
‖ ∇h · u‖2 +

μ

2

d∑
i=1

‖ ∇h
j ui‖2.(5)

In the course of the registration process we require derivatives. Upon differentia-
tion of the regularizer we obtain the Navier–Lamé operator

Sh
u(u) = (λ + μ)( ∇h· )� ∇h · u − μΔhu =: Au,(6)

where Δh is the usual seven points discrete vector Laplacian. Note that the approach
in [7] is diffusion based (i.e., setting λ = −μ in (2b) and (5)), such that coupling terms
vanishes. In contrast to [15], where the strong form given by the product B∗B is dis-
cretized, we discretize B and build the discrete product A := B�B. A discretization
of the product Sh

u ≈ B∗B may not be directly linked to a discrete objective function
of the form

∫
(Bu)2dx. Thus our discretization is a mimetic discretization (see [16]).
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The advantage of this approach is that the derivative Sh
u is automatically the deriva-

tive of the discrete function Sh. Moreover, boundary conditions are naturally related
to those of the operator B.

2.3. Discretizing T and R. If we require a continuously differentiable objective
function, we need a continuous image model. For noisy images we use a smoothing
B-spline to approximate the images where the smoothing parameter is chosen using
the GCV [9, 22]. For data interpolation using B-splines see [25]. Since the grid is
regular, we can quickly evaluate the spline coefficients using a cosine transform. The
continuous smooth approximation is denoted by T spline.

We are looking for a fast and efficient optimization scheme, and therefore dif-
ferentiability does play a key role. Thus, as previously discussed in [22], although
computationally superior, d-linear image approximations cannot be used, since they
are not continuously differentiable. In our implementation we use a cubic B-spline
approximation. For further discussion on the effects of higher or lower order B-spline
interpolation on the quality of the registration we refer to [22].

Given the staggered grid representation of u we use averaging operators Pj for
the transfer to the cell centered positions, and we set

(Pju
j)... ,ij ,... =

1

2

(
uj

... ,ij+
1
2 ,...

+ uj

... ,ij− 1
2 ,...

)
T (u) := T spline(x1 + P1u

1, . . . , xd + Pdu
d);

see [13] for details. We denote the Jacobian of T by

Tu :=
∂T

∂u
(u) = (diag(P�

1 ∂1T ), . . . ,diag(P�
d ∂dT )),(7)

where the partial derivatives ∂jT are evaluated at the spatial positions (x1+P1u
1, . . . ,

xd +Pdu
d). Note that, using a spline approximation for T , Tu is a sparse matrix with

only four nonzero diagonals.

2.4. Discretizing D. Our discretization of SSD (2a) is straightforward:

D(u) :=
1

2
‖T (u) −R‖2

2 and thus Du(u) = Tu(u)�(T (u) −R).

3. Optimization. The discretized analogue of the image registration problem (1)
for fixed α reads as follows:

find u such that Jα(u) := D(u) + αS(u) = min .(8)

To solve this problem numerically we use an inexact Gauss–Newton method; cf., e.g.,
[20].

Starting with the initial guess u, at each step we compute the gradient Jα
u of (8)

Jα
u = Tu(u)�(T (x + u) −R(x)) + αAu(9)

and approximately solve the system of linear equations

Hδu = −Jα
u,(10)

using a multigrid technique which is described in section 4. Here H is an approxima-
tion to the Hessian,

H = M + αA,(11)
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and M is an approximation to Tu(u)�Tu(u). For example, for d = 3, we have

Tu(u)�Tu(u) =

⎛⎝ (∂1T )2 (∂1T )(∂2T ) (∂1T )(∂3T )
(∂1T )(∂2T ) (∂2T )2 (∂2T )(∂3T )
(∂1T )(∂3T ) (∂2T )(∂3T ) (∂3T )2

⎞⎠ .

Although from an optimization standpoint it is better to use the matrix M =
Tu(u)�Tu(u), the usage of this matrix results in a more complicated multigrid solver.
As discussed in [18] a simple restriction cannot be used effectively, and an operator-
induced interpolation is needed. Such interpolation requires more memory and is
slower overall than the simple geometric multigrid scheme. In order to have a simple
multigrid scheme, which uses less storage, we approximated this matrix by

M =

⎛⎝ (∂1T )2 0 0
0 (∂2T )2 0
0 0 (∂3T )2

⎞⎠.

Such a choice leads to linear convergence of the optimization scheme even if the
problem has a low residual. Nevertheless, it is similar to other Newton multigrid
methods [23], since each iteration can be done quickly; then our approach tends to be
faster than the full Gauss–Newton approach.

The deformation is updated by u ← u + γδu, where γ is chosen according to an
Armijo line search, and the process is repeated until convergence, i.e., ‖u−uold‖ ≤ tol.
The algorithm is summarized in Algorithm 1.

Algorithm 1. Gauss–Newton method for image registration:
u ← GNIR(α,u);

while true do
compute Jα

u and H;
approximately solve Hδu = −Jα

u;
if ‖δu‖ < tol then

break;
end if
using a line search set u ← u + γδu

end while

3.1. Continuation in α. As discussed in the introduction, the optimal value
of the regularization parameter α is in general unknown a priori. In order to estimate
a reasonable α, we follow the strategy suggested in [12]. Starting with a large α0, we
compute a sequence of solutions uαj , where αj+1 < αj . This sequence can be viewed
as a continuation with respect to the regularization parameter α.

For a large regularization parameter the registration problem is almost quadratic,
and therefore its solution requires only a few iterations using a Newton-type optimiza-
tion technique. Let j = 0; starting with αj , we compute dj := D(uαj ) and expect
at least the solution uα0 to under-fit the data. We use uαj as an excellent starting
guess for the computation of the solution of the registration problem for αj+1. We
stop if a solution uαj becomes too irregular. Regularity has to be monitored by a
trained professional. Technically, the regularity parameter of our code is given by c.
The algorithm is summarized in Algorithm 2.
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Algorithm 2. Continuation in α: [u, α] ← continuation(u, α, c)

set u0 ← u, choose η < 1;
while true do

solve (1) using Alg. 1: u ← GNIR(α,u);
if D(u) < c then

break;
end if
relax the regularization parameter: α ← ηα;

end while

4. A multigrid solution of the linear systems. The challenging part within
the nonlinear optimization is the solution of the linear systems. Each system can
be very large and is strongly coupled, but it has a few characteristics which are
particularly amenable to multigrid methods. We now discuss a multigrid method for
the solution of the linear system. General comments on smoothing, prolongation,
restriction, and coarse grid solution are given in [23].

4.1. h-ellipticity. To show that the discrete equations (10) are amenable to
multigrid methods, we first analyze them by local Fourier analysis (LFA) and show
that the system is h-elliptic. It is well known (see, e.g., [23, p. 121–129]) that h-
ellipticity is crucial for any multigrid method to be effective. For simplicity, we per-
form the analysis in two dimensions, but it can be directly generalized into three
dimensions.

Recall that the Hessian for the unconstrained optimization problem reads as

H = αA + M ,

where M is a nonnegative diagonal matrix. An LFA with freezing coefficients takes
the worst-case scenario into account, i.e., M = 0. Therefore, we need to study the
matrix A alone, which is a discretization of the Navier–Lamé operator

A = B∗B := −μΔ − (λ + μ)∇∇·

=

(
(2μ + λ)∂x1,x1 + μ∂x2,x2 (λ + μ)∂x1,x2

(λ + μ)∂x1,x2
μ∂x1,x1

+ (2μ + λ)∂x2,x2

)
,

where the so-called Lamé constants λ and μ reflect material properties. Staggered
grid discretization leads to the following four stencils for the four parts of the operator
(see [23, p. 302] for notation):

S1,1 =

⎛⎝ 0 −a 0
−b 2(a + b) −b
0 −a 0

⎞⎠, S1,2 = c

(
1 −1
−1 1

)
,

S2,1 = (S1,2)�, S2,2 = (S1,1)�,

⎫⎪⎪⎪⎬⎪⎪⎪⎭(12)

abbreviating a = (2μ + λ), b = μ, and c = λ + μ.

Applying the discretized operators Ah to a grid function χ(x,θ) = e
i
h θ�x, we

obtain the symbols of our discretized operators:

Ãh(θ) =

(
2aw1 + 2bw2 −4c sin θ1

2 sin θ2
2

−4c sin θ1
2 sin θ2

2 2bw1 + 2aw2

)
,
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where wj := 1 − cos θj = 2 sin2 θj
2 . Its determinant is given by

d(θ) = d̃(w) = 4abw2
1 + 4abw2

2 + 4(a2 + b2)w1w2 − 4c2w1w2

= 4ab(w1 + w2)
2.(13)

Theorem 4.1. The h-ellipticity measure of the staggered grid discretizations
(12) is

Eh(Ah) =
1

4
,

and in particular it is independent of the Lamé constants.
Proof. Following [23, section 8.3.2],

Eh(Ah) :=
min{|det Ãh| : θ ∈ T high}

max{|det Ãh| : −π < θj ≤ π}
.

From (13), we see that the min and max are independent of λ and μ:

max{d(θ) : −π < θj ≤ π} = max{d̃(w) : 0 ≤ wj ≤ 1}
= d̃(1, 1) = 16ab = 16μ(2μ + λ),

min{d(θ) : θ ∈ T high} = min

{
d̃(w) :

1

2
≤ |wj | ≤ 1

}
= d̃

(
1

2
,
1

2

)
= 4ab = 4μ(2μ + λ).

Remark 4.2. The above theorem is remarkable because as the ratio λ/μ becomes
larger, the system becomes more ill-conditioned. Nevertheless, the theorem suggests
that an appropriate multigrid implementation works well regardless of that ratio. Note
also that other iterative techniques (such as conjugate gradient) are very sensitive to
this ratio while our multigrid method is not.

4.2. Smoothing. The h-ellipticity of our discretization (independent of choices
of the Lamé constants λ and μ) guaranties that, for example, a Kaczmarz relaxation
has smoothing properties. Here we have implemented a damped Jacobi smoother with
damping parameter of 2/3. Since we want our code to run on modest computational
architecture and use only a small amount of memory, our implementation does not
generate the matrix and only matrix vector products are calculated.

4.3. Prolongation and restriction. To fulfill the relation between the order
of the differential operator and the sum of the orders of prolongation and restriction,
we use linear interpolation for prolongation and its transpose for the restriction. This
is similar to prolongation and restriction used in computational fluid dynamics. For
an elaborate discussion on these operations on a staggered grid see [26, p. 253].

4.4. Coarse grid operator. Although it is possible to use a Galerkin coarse
grid operator for building the coarse grid system AH , a straightforward implemen-
tation requires either additional memory or additional computations. For problems
with uniform and structured grids, one can use rediscretization to get a faster imple-
mentation. However, since rediscretization cannot be applied to the diagonal matrix
Mh, we choose the following approach leading to a diagonal MH . In the first stage we
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extract the diagonal entries of Mh; this corresponds to a vector with the same dimen-
sions of uh. Second, we generate the diagonal matrix MH by restricting this vector
using the same restriction operator designed for uh, and set the diagonal elements of
MH to the restricted values.

4.5. Multigrid cycles. The above components are linked together to a V - or
a W -cycle. In our implementation we use only a single V -cycle for each nonlinear
iteration. As we show in the numerical experiments, a V (3, 1)-cycle is very effective
and decreases the residual in one or two orders of magnitude.

5. Multilevel continuation. Image registration can be highly nonlinear, and
therefore, one may require many iterations to achieve a solution. An important
method to save computational work and to deal with nonlinearities is to use a multi-
level continuation. Multilevel continuation is well established for optimization prob-
lems and systems of nonlinear equations; see, e.g., [1, 2]. However, in image registra-
tion it has an additional advantage. Similar to [10, 4], we use the multilevel approach
to efficiently identify the relevant range of α’s. Thus, our multilevel approach uses
continuation in both the grid and the regularization parameter. Note that even for
approaches where the images may not be smooth, the desired solution uα is smooth.
Therefore, multilevel methods provide an effective tool for the continuation problem.

Given an initial upper bound C for the image distance, using a secant method,
we compute a parameter αC , such that

D(uαC ) ≈ C.(14)

After αC is computed, we use Algorithm 2 on the fine grid to obtain a sequence
of solution uα, where c ≤ D(uα) ≤ C. We summarize the multilevel algorithm in
Algorithm 3.

Algorithm 3. Multilevel image registration: u ← MLIR

choose u on the coarsest grid;
while true do

solve the registration problem u = GNIR(u, α); cf. Alg. 1;
if |D(u) − C| ≥ tol then

adjust α using a secant method;
end if
if on finest grid then

return;
end if
prolongate u to the finer grid: u ← prolongate(u);

end while

6. Numerical examples. In this section we perform numerical experiments
that demonstrate the effectiveness of our algorithm. We present a registration of
three-dimensional MRI scans of a human knee (images provided by Thomas Netsch,
Philips Medical Systems, Hamburg, Germany). The problem is known to be hard
because large nonlinear deformations are needed in order to perform the registration;
see also [17].

As is apparent from Figure 2, the reference shows the knee in an almost straight
position, and the template shows the knee in a bent position. The deformation is thus



A MULTILEVEL METHOD FOR IMAGE REGISTRATION 1603
3
D

v
ie

w
s

a. reference R b. template T c. T (uα)

2D
v
ie

w
s

d. reference R e. template T f. T (ufinal)

M
IP

g. MIP |R− T | h. MIP: |R− T (uα)|

Fig. 2. Registration results for two 128×128×64 MRI scans of a human knee; three-dimensional
views of R (a), T (b), and T (uα) (c); the generic slice 40 with grid for R (d), T (e), and T (uα)
(f); maximum intensity projections for |R− T | (g) and |R− T (uα)| (h).

expected to be highly nonlinear. To clarify the example, we divide this section into
two parts. In the first part we go over the computational details, while in the second
we discuss the results from an imaging point of view.

As common to many other registration algorithms we use a two-phase registration
(see [19]). In the first phase a multilevel linear preregistration is done, followed by
a second-phase multilevel nonlinear registration. The linear registration managed
to reduce the image distance to 50.1%, and the rest was done using our nonlinear
registration.
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Table 1

Reductions in the SSD (compared with the initial SSD in %), and iterations (in #) for a
decreasing α (image size 128 × 128 × 64).

α Iter SSD

8.5 · 10−4 1 15.6%
4.2 · 10−4 1 12.2%
2.1 · 10−4 2 10.9%
1.0 · 10−4 2 10.1%

All computations are performed using MATLAB 6.1 on a 2.2GHz laptop with
1GB of RAM. The overall time for a registration (α = 10−3) was about 118 minutes,
including the computation for the B-spline coefficients (≈ 11 minutes). Since the
signal-to-noise ratio in the images is high, for the computation of the B-spline we as-
sume that the images do not contain any noise (thus the B-splines interpolate the
images). In our computations, about one third of the time is needed for the linear
part, and about two thirds is needed for the nonlinear part. Within the nonlinear
part, 66% are needed for the computation of T (u) and Tu(u), and 24% are needed
to solve the linear system. An overview with respect to levels is presented in Table 2.

6.1. Computational details. We present three types of experiments. In our
first example, we run the algorithm precisely as described in this paper (Algorithm
3); i.e., starting on the coarse grid we compute an initial α and adjust it by using
the continuation techniques described in section 5. In order to present comparable
multigrid convergence rates, we also present results for fixed values of α in our second
example. Finally, in the third set of experiments we test the sensitivity of our multi-
grid algorithm to the elasticity parameters λ and μ. Although all image registration
algorithms known to us fix this ratio at roughly 1, we experiment with a high ratio
which challenges our multigrid method.

6.1.1. Continuation in grid and α. In our first numerical experiment we
set μ = λ = 1 and the constant C in Algorithm 3 to 0.2. Using Algorithm 3 we
solve the problem, and this yields α which is 1.71 · 10−3 (performance and results for
α = 1.71 · 10−3 and α = 10−3 are indistinguishable).

We then follow Algorithm 2, gradually reducing the regularization parameter to
10−4 by solving the problem for 4 different α’s. For each regularization parameter
we use the solution for the previous α as described in Algorithm 2. The number of
iterations for each α and the SSD is recorded in Table 1. We observe both the images
and the distorted grid for each solution. We stop the iteration at 1.0 · 10−4 because
we observe that the grid is highly distorted. The solution converges quickly (1 or 2
steps) for each new regularization parameter when starting from the solution of the
previous regularization parameter. This demonstrates the importance of continuation
in α for the robustness of the algorithm.

6.1.2. Sensitivity of the algorithm to the regularization parameter. In
our second experiment we test the effect of different regularization parameters on the
efficiency of our algorithm. We run our code with the (fixed) regularization parameters
α = 10−2, 10−3, 10−4. The results of these experiment are documented in Table 2.

As common to many inverse problems, convergence of the optimization algorithm
slows down as the regularization parameter decreases (see [12]). This implies that
starting with an arbitrary guess on the fine grid may result in many more expensive
iterations. Nevertheless, using a multilevel continuation approach, we are able to
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Table 2

Reductions in the SSD (compared with the initial SSD in %), and iterations (in #) for the
multilevel elastic registration; image size is n3/2.

Level n Iterations SSD
α = 10−4 α = 10−3 α = 10−2 α = 10−4 α = 10−3 α = 10−2

5 8 21 13 10 26.1% 17.2% 11.3%
4 16 18 16 12 25.9% 17.8% 10.9%
3 32 12 9 7 25.5% 17.9% 10.7%
2 64 9 8 6 25.3% 17.2% 10.2%
1 128 7 6 5 25.3% 17.2% 10.1%

1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

α=10–4

α=10–3

α=10–2

Fig. 3. Convergence rate for each linear iteration versus iteration for α = 10−2, 10−3, 10−4;
see also Table 2.

quickly converge on the finest grid because we have a good starting guess which is ob-
tained on coarser grids. This demonstrates the importance of multilevel continuation.

To observe the effectiveness of our multigrid algorithm solver we record the reduc-
tion of the residual for each of the linearized Gauss–Newton iterations on the finest
grid. Note that for each iteration we have a different approximation to the Hessian
characterized by the different M ’s. In our experiment, the multigrid solver was very
effective, and after only a single V (3, 1)-cycle our residual is decreased by approxi-
mately two orders of magnitudes. The convergence history is plotted in Figure 3.

The convergence properties of the linear iteration was only mildly influenced by
the decreasing regularization parameter. This observation is similar to other multigrid
methods for inverse problems [5].

6.1.3. Sensitivity of the algorithm to the ratio μ/λ. In the previous ex-
periments, common to many other image registration algorithms [15], we used the
ratio μ/λ = 1. However, as Theorem 1 shows, the h-ellipticity of our discretized sys-
tem is 0.25 independent of this choice, which implies in particular that the multigrid
iteration should not be affected by this ratio. To put this theory to a test, we vary the
ratio μ/λ, starting at 10 to 10−3. Note that for the latter, the regularization operator
is close to ‖ ∇ · u‖2, which is the incompressible limit. However, we emphasize that
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Table 3

Number of iterations and average residual reduction for different ratios μ/λ.

Ratio 101 100 10−1 10−2 10−3

Iterations 18 17 16 16 17

Reduction 2.3 · 10−2 2.1 · 10−2 2.4 · 10−2 2.8 · 10−2 2.9 · 10−2

such a large ratio is meaningless for the purpose of image registration since it results
in very irregular grids. From an imaging point of view, only the ratio μ/λ = 1 leads
to a reasonable displacement (judging by eye inspection). Our experiments are done
solely to test our multigrid method.

For these experiments we set α = 10−3, and in order to have a long enough iter-
ation history, we run the inversion process on the fine grid alone. For each nonlinear
(Gauss–Newton) iteration we perform a single V(3,1)-cycle. For each cycle we record
the reduction of the residual. At the end of each registration process we average the
reduction of the residuals and record it as the average residual reduction. The results
of these experiments are summarized in Table 3.

In accordance with the theory, our experiments demonstrate that the multigrid
method is in fact not very sensitive the ratio μ/λ. In fact, although the condition
number for the system which results from μ/λ = 10−3 is roughly 103 times the
condition number of the system which results from μ/λ = 1, the reduction in the
residuals (and therefore the convergence) is very minimally influenced. Note that
this property is unique to multigrid methods, and a naively preconditioned conjugate
gradient method would not have had such properties.

6.2. Qualitative analysis of the images. In Figure 2 we show the results for
α = 10−3. As is apparent from Figure 2(c), the overall registration is reasonable.
We also analyze the results in terms of a pairwise comparison of image slices. A
two-dimensional view of the generic slice 40 of a total of 64 is shown in Figure 2(d),
(e), (f). We add a regular grid to R and T and the deformed grid to T (uα). Though
highly nonlinear, the deformation appears to be sufficiently smooth, as can be seen
from the deformed grid. Finally, Figure 2 also shows maximum intensity projections
of the distances |R− T | and |R− T (uα)|, respectively.

Running our scheme with a regularization parameter α = 10−2 leads to visually
indistinguishable results but to a much higher distance (reduction to 25.3% instead
of 17.2% for α = 10−3). On the other hand, choosing α ≤ 10−4 results in nonphysical
deformations which are visible on the deformed grid. Therefore, it is easy to derive
a lower bound for α. However, choosing an “optimal” regularization parameter α is
a delicate matter since it requires a quantification of “physically meaningful.” We
do not believe in an automatic detection and therefore leave the final choice to an
expert.

7. Summary. In this paper we have developed a multilevel registration scheme
for image registration based on a variational formulation. The scheme is based on a
multilevel inexact Gauss–Newton scheme with a multigrid solver for the linearized sys-
tems. We make extensive use of numerical optimization techniques and therefore pay
special attention to differentiability issues. We use smoothing B-splines to compute
the solution to the forward problem and staggered grids to discretize the transfor-
mation. We prove that the discretization is h-elliptic and therefore is amenable to
multigrid methods. The numerical experiments support our theoretical prediction and
show that we can solve large scale problems using computational tools like MATLAB.
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