
An OcTree Method for Parametric Image
Registration

Eldad Haber∗, Stefan Heldmann∗ and Jan Modersitzki†

June 9, 2006

Abstract

Already for reasonable sized 3D images, image registration be-
comes a computationally intensive task. Here, we introduce and ex-
plore the concept of OcTree’s for registration which drastically reduces
the number of processed data and thus the computational costs. We
show how to map the registration problem onto an OcTree and present
a suitable optimization technique. Furthermore, we demonstrate the
performance of the new approach by academic as well as real life ex-
amples. These examples indicate that the computational time can be
reduced by a factor of 10 compared with standard approaches.

1 Introduction

Image registration is one of today’s challenging image processing problems.
Given a so-called reference image R and a so-called template image T , the
basic idea is to find a “reasonable” transformation such that a transformed
version of the template image becomes “similar” to the reference image.
Image registration has to be applied whenever images resulting from different
times, devices, and/or perspectives need to be compared or integrated; see,
e.g. [3, 15] and references therein.

∗Department of Mathematics and Computer Science, Emory University, Atlanta, GA,
USA.

†Institute of Mathematics, University of Lübeck, Germany.

1

The computation of parametric image registration has two main build-
ing blocks. The first one is a distance measure D quantifying distance or
similarity of images. The second building block is a typically low dimen-
sional parameterizable search space V for the desired transformation. For
example, if V is a linear space, with a vector γ the collection of parameters
and ψj some basis functions, any transformation can be expanded as

Φ(γ)(x) :=
∑

j γj ψj(x).

The choice of the particular subspace can be thought of as a type of reg-
ularization, added to the problem to overcome ill-posedness; see, e.g., [15].
Typical examples include rigid, affine linear, or spline transformations [3].

In the following we model the images R and T as a smooth functions
mapping from Rd to R (practically, these functions are obtained by interpo-
lation of the given discrete 2D or 3D data). With some abuse of notation,
the transformed image is denoted by T (γ), where

T (γ)(x) := T (Φ(γ)(x))

A common treatment of parametric registration is based on the following
minimization problem [21, 19]. Find a parameter γ∗ minimizing

J (γ) := D(R, T (γ)). (1.1)

Generally, the optimization problem (1.1) cannot be solved analytically and
thus numerical schemes are required. Although the number of unknowns γ
might be small, computing the transformed image T (γ) can be computation-
ally expensive for 3D images. For example, the computation of T (γ) for a
5123 voxel image result in more than 108 interpolation points to be evaluated.
Thus, efficient algorithms are required in order to perform the registration
in a reasonable amount of time.

In order to keep the computational time reasonable, it is desirable to
reduce the amount of data which has to be processed. A simple reduction
can be obtained through down-sampling. However, naive down-sampling
results in a loss of possibly important image features. Nevertheless, down-
sampling can be safely done in parts of the image with low variations. A
proper use of this observation can reduce the storage needed to represent the
image and amount of computation needed for a registration substantially.

OcTrees provide a straightforward approach to such a context driven data
sparsification. The OcTree data presentation uses few voxels for regions with
small variability and many voxels for regions with high variability.

2

Although generating an OcTree from a known image is a simple task,
solving the registration problem on OcTree’s is far less trivial. The main
difficulty is that a proper registration requires the OcTree representation
of T (γ∗), where γ∗ is a minimizer of (1.1). Because this minimizer is unknown
a priori, we can not generate a reliable OcTree for T (γ∗). We overcome this
problem by an updating of the current OcTree using only local refinement.
Although these refinement steps require additional computations, still the
procedure reduces the computational costs by one order of magnitude.

Using OcTrees in image processing is not new. Recent efforts have been
made in the field of computer graphics [14, 13]. In particular, the work of
Losasso et al on OcTree discretization demonstrates that images of fine-detail
flows and smoke can be represented efficiently and reliably with this type of
data structure. Other related work on motion estimation using QuadTree
splines has been proposed in [20, 12]. Our approach is different extends the
previous work to 3D and work with global transformation. Furthermore, we
use techniques borrowed from numerical PDE’s in order to efficiently solve
the minimization problem obtained on the OcTree.

The paper is organized as follows. In Section 2, we discuss the mathe-
matical framework and the OcTree discretization of the problem (1.1). In
Section 3 we present an effective numerical optimizing procedure based on
a Gauss-Newton type scheme. In Section 4, we propose a locally refined
multilevel method for a solution of the nonlinear problem with self adjusting
OcTree refinement. Finally, in Section 5, we present numerical examples for
2D and 3D that demonstrate the effectiveness of our algorithm.

The presented theory does not depend on a particular dimension and
our implementation supports 2D and 3D images. However, for ease of pre-
sentation, we restrict our explanations to the 2D case and comment on 3D
whenever an extension is not straightforward.

2 Mathematical Framework

In the literature we could not find a unique definition of an OcTree [11]. Here,
we consider an OcTree as a non-uniform but still highly regular and sparse
discretization of a domain Ω ⊂ Rd, where d denotes the spatial dimension.
To this end, we define an OcTree as a collection of discretization points xj

and mesh-sizes hj. Next, we present a formal description of OcTrees.

3

Ω1

x1

h1

Ω2
x2

h2

Ω3
x3

h3

Ω4
x4

h4

Ω5
x5

h5

Figure 1: An OcTree discretization Sh in 2D

2.1 OcTree Definition

Let Ω = (a1, b1) × (a2, b2) × . . . × (ad, bd) ⊂ Rd be a rectangular domain
and h ∈ R such that (bj − aj)/h ∈ N for all j. We define an OcTree
discretization Sh of Ω with finest mesh-size h as

Sh = {(xj, hj) : j = 1, 2, . . . , N} ⊂ Ω× {h · 2` : ` ∈ N}

such that the sub-domains Bj := B(xj, hj) := {y : ‖xj − y‖∞ < hj/2}
essentially build a partition of Ω, i.e., Bj∩Bk = ∅ for j 6= k, and

⋃N
j=1 Bj = Ω.

Furthermore, we make a few auxiliary definitions for neighborhood rela-
tions on OcTrees, regularity of OcTrees, and nested OcTrees, that will be
useful in the following.

For (xj, hj) ∈ Sh the set of direct neighbors is defined by

Adj(xj, hj) := {(xk, hk) ∈ Sh : (xj, hj) 6= (xk, hk) and Hd−1(Bj∩Bk) 6= 0}.

where Hd−1 denotes the (d− 1)-dimensional surface measure.
An OcTree discretization Sh is called regular of m-th order if for

all (xj, hj) ∈ Sh it holds

2−m ≤ hj/hk ≤ 2m for all direct neighbors (xk, hk) ∈ Adj(xj, hj).

In the following we refer to an OcTree Sh with the implicit understanding of
a first order regular OcTree discretization of finest mesh-size h.

Note that a zeroth order regular OcTree S0
h is a cell-centered equispaced

discretization of Ω. In other words, S0
h is the richest possible OcTree of finest

mesh-sizes hj = h given by

S0
h :=

{
(x, h) : x` = (a` + h(k` − 1

2
)d
`=1, k` = 1, . . . , b`−a`

h

}
. (2.2)

4

An OcTree discretization Sh is nested in an OcTree discretization S ′h if for
all (x, η) ∈ Sh there exists a (x′, η′) ∈ S ′h, such that

B(x, h) ∩B(x′, h′) = B(x, h).

The finest OcTree S0
h is nested in any other OcTree discretization of Ω.

There are many possible data structures for a given OcTree. Here, the
tree is stored as a sparse d dimensional array S. The relative size hj/h of
each cell is stored in the upper left corner of the cell, e.g., the OcTree shown
in Figure 1 is represented by

S =

(
2 0 1 1
0 0 1 1

)
.

This allows us to use sparse matrix techniques in order to quickly find neigh-
bors which is the major operation in the discretization process. The data
structure is closely related to the one suggested in [11]. As a consequence,
all that is needed to address a point of the OcTree is the sparse array S.

2.2 OcTree Approximation of Discrete Images

Consider a discrete 2D image with m1 ×m2 pixels. Assume that this image
has large regions with low variability. Then such an image can be efficiently
represented by an OcTree. An optimal OcTree is the one that would have
the least amount of cells for the given image. However, such an OcTree is
difficult to find (i.e. exponentially difficult) [11]. For practical purposes,
we compute a sub-optimal OcTree by Algorithm 1. A similar algorithm is
suggested in [11].

A central point is that the overall complexity of Algorithm 1 is O(N)
where N is the number of pixels in the image. Furthermore, we added a
tolerance parameter tol. It is used as a threshold to decide weather the
image is almost constant in a certain region. In our application we have set
tol to the estimated noise level in the image.

Although the number of pixels in the OcTree is image-dependent, we have
found that for typical MRI and CT images the number of pixels is reduced
to less than 20% of its original size in 2D and to less than one 10% its size in
3D, respectively. A representative 2D example, an OcTree discretization of
a CT image is given in Figure 2. Table 1 shows compression rates and errors
obtained for several tolerances.

5

Algorithm 1 Generate sparse array representation S of an OcTree for a 2D
image T where regions with gray-value differences less than tol are treated
as constant
[S]← generateOcTreeFromImage(T, tol)

set [m1, m2]← size(T)

Initialize S(1 :m1, 1:m2)← 1 and Tmin ← T , Tmax ← T

for s = 2[0:log2(min([m1,m2]))]

• find (i1, i2) ∈ [1 :s :m1]× [1 :s :m2] with S(i1, i2) = s

• get 4 sub-block indices of the super-block stored at (i1, i2) with size 2s:
I ← [i1, i1 + s]× [i2, i2 + s]

• compute minimum and maximum in the super-block:
Tmin(i1, i2)← min(Tmin(I)) and Tmax(i1, i2)← max(Tmax(I))

• if Tmax(i1, i2)− Tmin(i1, i2) ≤ tol then
set S(i1, i2) = 2s and S(I \ (i1, i2)) = 0,

end if

end for

tol #Sh #Sh/#S0
h average error maximum error

0% 28,846 44.02% 0.00% 0.00%
1% 21,703 33.11% 0.02% 0.82%
2% 18,202 27.77% 0.06% 1.43%
5% 10,069 15.36% 0.27% 3.75%

10% 4,138 6.31% 0.59% 7.45%
15% 2,806 4.28% 0.77% 11.49%
20% 1,780 2.72% 1.02% 15.49%

Table 1: OcTree-approximations T̂ of an image T with N = 2562 pixels, cf.
Figure 2(a), with scaled gray-values between 0 and 100 for various tolerances,
#Sh number of OcTree points, #Sh/#S0

h ratio between OcTree and full grid

discretization points, average error 1
N
‖T−T̂‖1, and maximum error ‖T−T̂‖∞

6

(a) original image T (b) OcTree approximation T̂

(c) OcTree

(d) absolute error |T − T̂ | (scaled)

Figure 2: Approximation of an image with an OcTree (cf. Table 1, tol=15%)

7

ne

x
sw se

nw

(a) equispaced grid S0
h

ne=NE

x
sw se

nw

SW

NW

SE

(b) OcTree S1
h

Figure 3: Linear interpolation on S0
h (a) and S1

h (b)

2.3 OcTree Image Interpolation

For the minimization of (1.1) we must be able to evaluate R and T (γ) where
we model images as smooth functions. Typically, an image comes in digital
form as discrete data and we construct a continuous function by interpolation.
Here, we consider the case of linear interpolation where the data is given on
an OcTree. We start our considerations on the full grid S0

h.
Consider a pixel located at a point x which is not a grid point and we

are interested in the value T (x). To compute this value we use a linear
interpolation scheme. In the 2D case, let nw, sw, ne, and se denote the centers
of the four adjacent pixels of x = (x1, x2), cf. Figure 3. Then, defining
ξj = xj/h− bxj/hc ∈ [0, 1] we have

T (x) ≈ ξ2

(
T (nw)ξ1+T (sw)(1−ξ1)

)
+(1−ξ2)

(
T (ne)ξ1+T (se)(1−ξ1)

)
. (2.3)

Now, assume that we have an OcTree discretization as plotted in Figure 3(b).
In this case we have the OcTree values of the pixel in SW, SE, NW, and NE=ne,
but we do not have values in nw, sw, and se. Nevertheless, since we assume
that the image is almost constant over each of the larger cells we can use the
prescribed value of the larger cells instead of the values of the original small

8

cell:

T (sw) ≈ T (SW), T (se) ≈ T (SE), T (nw) ≈ T (NW), T (ne) ≈ T (NE).

(2.4)

Finally, formula (2.3) is used for interpolation.

Lemma 1 Let T ∈ C2(Rd,R) be two times continuously differentiable. The
interpolation (2.3) with function value substitution (2.4) is of order O(h).

Proof: We present the proof for d = 1, the extension to higher dimensions
is straightforward.

Let x be an arbitrary point which lies between two gridpoints x− and
x+ = x− + h such that x− ≤ x ≤ x+ and ξ := x/h − bx/hc ∈ [0, 1]. From
classical interpolation we have

T (x) = T (x− + hξ) = T (x−)(1− ξ) + T (x+)ξ +O(h2).

Perturbing for example the first control point by h, the statement follows
from T (x− − h) = T (x−) + O(h) and 0 ≤ 1 − ξ < 1. The proof for the
perturbed second control point is along the same lines. �

A direct consequence of this interpolation scheme is summarized in the
next corollary. This corollary suggests to pick a non-vanishing tolerance in
Algorithm 1 even if the image data is not perturbed by noise.

Corollary 1 Let S0
h be an equispaced and Sm

h be a m-th order regular OcTree
discretizations of a domain Ω ⊂ Rd. For an image T ∈ C2(Ω) let T 0 and Tm

denote the linear interpolations based on the discretization points from the
OcTrees S0

h and Sm
h , respectively, and corresponding function values. Then

|Tm(x)− T 0(x)| = O(h).

9

2.4 OcTree Based Distance Measures

The OcTree based distance measure approximation is exemplarily discussed
for the L2-norm based sum of squared differences distance measure [3]. Here,

D(R, T (γ)) =
1

2
‖T (γ)−R‖2L2(Ω) (2.5)

=
1

2

∫
Ω

(
T (γ)(x)−R(x)

)2
dx

≈ 1

2

∑
(xj ,hj)∈S0

h

hd
j

(
T (γ)(xj)−R(xj)

)2
(2.6)

≈ 1

2

∑
(xj ,hj)∈S1

h

hd
j

(
T (γ)(xj)−R(xj)

)2
(2.7)

=
1

2
‖T (γ)−R‖2H =: D(Sh, R, T (γ)) (2.8)

with a weighted l2 norm, where the diagonal weighting matrix is given by
H = diag (hd

j) with the cell sizes hd
j . where (2.6) is the standard midpoint

quadrature rule and (2.7) is its approximation on a first order OcTree. Note
that hj = h in (2.6) whereas hj can vary in (2.7). In (2.8), we make the
discretized distance measure explicitly depended on the OcTree. In our im-
plementation, we use the OcTree generated for the transformed image T (γ).
Therefore, it is important to note that generally an OcTree discretization
depends on γ, i.e., Sh = Sh(γ).

3 Optimization

Ideally, our aim is to minimize

J(γ) := D(S0
h, R, T (γ)), (3.9)

where S0
h is the full equispaced grid (2.2). To do so efficiently, we replace this

problem by a problem on a sparse and computationally less involved OcTree
discretization. A straightforward approach is to substitute (3.9) by

J(γ) := D(Sh(γ), R, T (γ)). (3.10)

such that a minimizer γ∗ leads to a transformed image T (γ∗) for which (2.6)
can be replaced by (2.7) up to a small error.

10

One approach to minimize (3.10) is to consider γ = γ(t) as a time depen-
dent function and to embed the problem into a time stepping process such
as the dynamical system

γt = −∇γJ(γ) = −∇γD(Sh(γ), R, T (γ)).

Then, one can use methods that has been developed for adaptive mesh re-
finement for time-dependent problems when integrating to steady state. At
each step one estimates both γ and the OcTree Sh(γ). However, such an
approach is inefficient in the context of parametric registration since we are
not interested in the dynamics of the process and evaluating the OcTree at
each time step is not necessary.

Since the OcTree in (3.10) depends on γ, the minimization is far away
from being trivial. Therefore, we propose a two phase procedure similar to
coordinate search. Starting with k = 0 and an initial parameter vector γ(k),
the first step is to compute the corresponding OcTree S(k)

h := Sh(γ
(k)). The

next step is to compute a minimizer γ(k+1) of

J (k)(γ) := D(S(k)
h , R, T (γ))

for the (fixed) OcTree S(k)
h . These two steps are repeated to convergence.

The strategy is very similar to refinement strategies used for adaptive grid
problems in Ordinary Differential Equations and Partial Differential Equa-
tions; see, e.g. [1, 18, 2] and reference therein. The algorithm is summarized
in Algorithm 2.

A crucial point in our method is to ensure decrease towards a solution on
the full grid. This is done by a backtracking line search.

Assume that S(k)
h is an OcTree valid for γ(k) and γ̂ is a minimizer of

J (k). A naive approach is to continue the iteration by setting γ(k+1) := γ̂.
However, this procedure may not guarantee convergence to a minimizer of 3.9.
In fact, while γ̂ minimizes J (k) it may increase the value of J . We therefore
use a (weak) line search for computing the new transformation and the new
OcTree. Algorithm 2 implies that we use the OcTree in order to compute
a search direction δγ and then use this direction to decrease the objective
function J , i.e., D(S0

h, ·) on the full grid. The obvious question whether δγ
computed on a coarse OcTree leads to a descent direction for the full OcTree
is positively answered in the literature [16, 9].

Finally, we have two natural stopping criteria. First, if S(k+1)
h = S(k)

h , we
set γ∗ ← γ(k) and stop. Second, if we are unable to decrease the value of the
objective function in the direction δγ then we set γ∗ ← γ(k) and stop.

11

Algorithm 2 Outer iteration to minimize J(γ) := D(S0
h, R, T (γ))

γ∗ ← minimizeJ(T, R,γ(0), h)

while not converged

• for given γ(k) generate S(k)
h such that D(S(k)

h ,γ(k)) ≈ J(γ(k))

• compute a minimizer γ̂ of J (k) := D(S(k)
h , ·)

• set δγ ← γ̂ − γ(k)

• perform line search on S0
h: find λ such that J(γ(k) + λδγ) < J(γ(k))

• update γ(k+1) ← γ(k) + λδγ,

end while
return γ∗ ← γ(k+1).

3.1 Solving for γ on an OcTree

To compute a minimizer γ̂ of D(Sh, ·) on a given fixed OcTree Sh we use
a Gauss-Newton like method. Since the OcTree is constant in this step, we
may rewrite the distance function (2.8) by

D(R, T (γ)) = D(Sh, R, T (γ))

To use the Gauss-Newton method, we first linearize T (γ):

T (γ + δγ) ≈ T (γ) + Tγ(γ) δγ

where Tγ is the Jacobian matrix of T with respect to γ. We then lineariz-
ing D,

D(R, T (γ + δγ)) ≈ D(R, T (γ) + Tγ(γ)δγ)

Differentiating with respect to δγ we obtain the following equation which
can be solved for δγ

Tγ(γ)> DT (R, T (γ) + Tγ(γ)δγ) = 0 (3.11)

where DT is the gradient of the distance measure w.r.t. T .

12

For the example, for the SSD distance measure discussed in Section 2.4,
D(R, T (γ)) = 1

2
‖T (γ) − R‖2H , we end up with the usual Gauss-Newton

scheme [5], where δγ is obtained by solving the system

T>
γ H(Tγ δγ + R− T) = 0

However, for more complicated distance measures (e.g. mutual information
[4, 22] or normalized gradient fields [8]) an inexact solution of this system
can be obtained using an inexact Newton’s method.

After solving for δγ we update γ using a weak line search which insures
sufficient reduction in the value of the objective function [17]. The algorithm
is summarized in 3.

Algorithm 3 Inner iteration to minimize D(Sh, R, T (γ)) w.r.t. γ

γ̂ ← minimizeJonFixedOcTree(Sh, R, T,γ)

while not converge

• compute T (γ) and Tγ(γ)

• approximately solve equation (3.11) for δγ

• perform line search:
find λ such that D(Sh, R, T (γ + λδγ)) < D(Sh, R, T (γ))

• update γ ← γ + λδγ

end while
return γ̂ ← γ

3.2 Generating an OcTree for γ

In the previous subsection we discussed how to compute a minimizer γ for
a particular given OcTree. In this subsection we assume that γ is given and
we discuss how to generate an appropriate OcTree.

The key for the computation of a new OcTree is that the transformed
image must be well-represented on the grid, i.e., we need to sufficiently es-
timate the distance function D(R, T (γ)). In order to be more specific, in

13

this subsection we assume that D is the sum of squared difference distance
measure, cf. Section 2.4.

Since we try to approximate the integral of the difference between T (γ)
and R the OcTree has to be constructed based on both, T (γ) and R. There-
fore, we first evaluate T (γ) and R on the full grid. We then use Algorithm 1
to generate OcTrees ST

h and SR
h for T (γ) and R. Finally, we join the OcTrees.

As a result, we obtain a OcTree nested in both, ST
h and SR

h , cf. Section 2.1.
The procedure is summarized in Algorithm 4.

Algorithm 4 Generate sparse OcTree representation S (2D)

S ← generateJointOcTree(T,R,γ)

• compute T (γ) and R on the full grid Ωh

• compute an OcTree representations ST and SR for T (γ) and R using
Algorithm 1

• join ST and SR, i.e.,

– find (i1, i2) where SR(i1, i2) 6= 0 and ST (i1, i2) 6= 0 and set
S(i1, i2)← min{SR(i1, i2), ST (i1, i2)}

– find (i1, i2) where SR(i1, i2) 6= 0 and ST (i1, i2) = 0 and set
S(i1, i2)← SR(i1, i2)

– find (i1, i2) where SR(i1, i2) = 0 and ST (i1, i2) 6= 0 and set
S(i1, i2)← ST (i1, i2)

4 Multilevel Continuation

To overcome nonlinearities and accelerate computations we use a multilevel
strategy. A multilevel method for image registration is not new [6, 7, 10].
However, modification of the standard algorithm is required to effectively
use the OcTree grid. Our multilevel algorithm uses the OcTree structure
directly in order to gradually refine the grid only in areas that a refinement
is required.

We start on a coarsest OcTree with finest mesh-size H = 2Lh, which is
a few multiples of the smallest mesh-size h. We then solve the optimization

14

Algorithm 5 Multilevel solve for γ

[γ]← MLSolve(T,R,γ, h, L)

set H ← 2Lh

initialize γ and SH

while H > h

• use Alg. 2 with initial guess γ2H to find γH such that D(T 0
H ,γH) = min:

γH ← minimizeJ(T, R,γ2H , H)

• set H ← H/2

end while

problem using Algorithm 2 to obtain a coarse grid solution γH . We then
move to the next finer level. We set the finest mesh-size H to H/2 and use
the coarse grid solution γH as an initial guess to the optimization problem
for the finest mesh-size H/2. We repeat this procedure until we arrive the
smallest grid size h. The algorithm is summarized in Algorithm 5.

It is important to note that combining our multilevel strategy to the
optimization strategy naturally results in only local grid refinement. This is
because the optimization on every level starts with an OcTree of the refined
previous previous solution and this automatically refines the grid only in high
variability areas.

5 Examples

In this Section we demonstrate the effectiveness of our approach on a few
examples. We use a 2D example which can be easily visualize and a 3D
example to further demonstrate the computational saving when solving reg-
istration problems in 3D. In both examples we use the SSD distance measure
and optimize w.r.t. affine transformation.

5.1 2D Registration of Hand CT

Our first numerical experiment is matching 2D images of hands plotted in
Figure 4. The multilevel optimization process is summarized in Table 2 and

15

(a) R (b) T

Figure 4: X-ray images used for 2D registration example

Level T 0
h Outer Iterations Inner Iterations

1 8× 8 2 15
2 16× 16 2 8
3 32× 32 2 5
4 64× 64 2 4
5 128× 128 2 3
6 256× 256 2 3

Table 2: Optimization path for the 256× 256 2D problem

a few OcTree grids obtained in the process of optimization are plotted in
Figure 5.

For this problem, the gray values of the image were in the range [0, 750]
and we used a tolerance parameter of 50, which is ≈6.5% of the gray value
dynamics, to obtain the OcTrees. As a result, the average and maximum
error of the images was ≈0.4% and ≈5%, respectively. On the finest level, the
number of cells of the OcTrees were ≈13% of a full equispaced discretization.
In comparing our code the a non-OcTree multilevel optimization we observed
a speed up in wall clock time in about a factor of roughly 5.

16

(a) 8× 8 (b) 16× 16

(c) 32× 32 (d) 64× 64

(e) 128× 128 (f) 256× 256

Figure 5: OcTrees used on different levels

17

(a) R (b) T

Figure 6: MRI images used in the 3D example

Level T 0
h Outer Iterations Inner Iterations

1 8× 8× 8 3 27
2 16× 16× 16 3 17
3 32× 32× 32 2 5
4 64× 64× 64 3 6
5 128× 128× 128 2 4
6 256× 256× 256 2 3

Table 3: Optimization path for the 256× 256× 256 3D problem

5.2 3D Registration of Head MRI

In our second experiment we register 3D MRI images of the head. The
images were taken from the Brain-web database and interpolated to a size of
256× 256× 256 voxels. As template we rotated the reference by 20◦ around
the center of the image in x-, y-, and z-direction and finally made a diagonal
shift by 20 pixels. The reference and template are shown in Figure 6(a)
and Figure 6(b), respectively. For the computation we generated OcTree
representations of the images with a tolerance of 20 which is ≈8% of the
gray value dynamic of the images. Then number of cells of the generated
OcTree discretizations were about ≈8% of a full equispaced discretization.

18

The average errors of the images were ≈0.5 which is ≈0.2% of the gray value
dynamic and the maximum errors assumed nearly the tolerance of value 20 .

6 Summary and Final Comments

In this paper we have developed a variational OcTree image registration
technique. We have demonstrated that using such a technique we are able
to substantially accelerate parametric image registration problems.

While we observe major computational savings for parametric registration
we expect to have much better results for non-parametric registration where
large sparse linear systems are solved for the displacement.

References

[1] U. Ascher, R. Mattheij, and R. Russell. Numerical Solution of Boundary
Value Problems for Ordinary Differential Equations. SIAM, Philadel-
phia, 1995.

[2] Marsha Berger. Adaptive Mesh Refinement for Time-Dependent Partial
Differential Equations. Ph.d. dissertation, Stanford University, 1982.
Computer Science Report No. STAN-CS-82-924.

[3] L.G. Brown. A survey of image registration techniques. Surveys,
24(4):325–376, December 1992.

[4] A. Collignon, A. Vandermeulen, P. Suetens, and G. Marchal. multi-
modality medical image registration based on information theory.
Kluwer Academic Publishers: Computational Imaging and Vision,
3:263–274, 1995.

[5] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. SIAM, Philadelphia, 1996.

[6] M. Droske and M. Rumpf. A variational approach to non-rigid morpho-
logical registration. SIAM J. Appl. Math., 64(2):668–687, 2004.

[7] E. Haber and J. Modersitzki. Multilevel methods for image registration.
SIAM J. on Scientific Computing, To Appear:xxx, 2004.

19

[8] E. Haber and J. Moderzitski. Intensity gradient based registration and
fusion of multi-modal images. Submitted, 2004.

[9] W. Hackbusch and A. Reusken. Analysis of a damped nonlinear multi-
level method. Numer. Math., 55:225–246, 1989.

[10] S. Henn and K. Witsch. Multimodal image registration using a varia-
tional approach. SIAM J. Sci. Comp., 25:1429–1447, 2003.

[11] G. R. Hjaltason and H. Samet. Speeding up construction of quadtrees
for spatial indexing. The VLDB Journal, 11:109–137, 2002.

[12] S. Kruger and A. Calway. Image registration using multiresolution
frequency domain correlation. British Machine Vision Conference,
September:316–325, 1998.

[13] F. Losasso, R. Fedkiw, and S. Osher. Spatially adaptive techniques
for level set methods and incompressible flow. Computers and Fluids,
35:457–462, 2006.

[14] F. Losasso, F. Gibou, and R. Fedkiw. Simulating water and smoke with
an octree data structure. SIGGRAPH, 23:457–462, 2004.

[15] J. Modersitzki. Numerical methods for image registration. Oxford, 2004.

[16] S.G. Nash. A multigrid approach to discretized optimization problems.
Optimization Methods and Software, 14:99–116, 2000.

[17] J. Nocedal and S. Wright. Numerical Optimization. New York: Springer,
1999.

[18] L.R. Petzold. Observations on an adaptive moving grid method for one-
dimensional systems of partial differential equations. Applied Numerical
Mathematics, 3:347–360, 1987.

[19] J.P.W. Pluim, J.B.A. Maintz, and M.A. Viergever. Mutual-information-
based registration of medical images: a survey. IEEE Transactions on
Medical Imaging, 22:986–1004, 1999.

[20] R. Szeliski and H.Y. Shum. Motion estimation with quadtree splines.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18,
Issue 12:1199 – 1210, 1996.

20

[21] P. Thevenaz and M. Unser. Optimization of mutual information for
multiresolution image registration. IEEE Trans. Image Processing, v
9:2083–2089, 2000.

[22] Paul A. Viola. Alignment by maximization of mutual information. PhD
thesis, Massachusetts Institute of Technology, 1995.

21

