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Abstract
Image registration is the process of aligning two or more
images of the same scene taken at different times, from
different viewpoints and/or by different sensors. Image
registration is a crucial step in imaging problems where
the valuable information is contained in more than one
image. Here, spatial alignment is required to properly in-
tegrate useful information from the separate images. It
is the goal of this note to give an overview on modern
techniques in this area. It turns out that the registration
problem is an inverse problem which requires regulariza-
tion and the use of modern optimization methods. We
address these issues and supplement it by real-life exam-
ples.

1. Introduction

One of the many problems in current image process-
ing is image registration, sometimes also called fu-
sion, matching, or warping. Very often, information
obtained from multiple images appears at different
poses and is of complementary nature. Therefore
spatial alignment is required to properly integrate
useful information from separate images. This pro-
cedure is called registration. In other words, given a
reference and a template image, the goal is to find a
transformation, such that the transformed template
is similar to the reference image.

There is a vast amount of applications demand-
ing for registration including art, astronomy, astro-
physics, biology, chemistry, criminology, forensics,
genetics, physics, or basically any area involving
imaging techniques. More specific applications de-
pending on registration are, for example, remote
sensing (constructing a global picture from differ-
ent partial views), security (comparing current im-
ages with a data base), robotics (tracking of ob-
jects), and in particular medicine, where compu-



2 SIAG/OPT Views-and-News

tational anatomy, computer aided diagnosis, fusion
of different modalities, intervention and treatment
planing, monitoring of diseases, motion correction,
radiation therapy, or treatment verification demand
for registration. Since imaging techniques, like com-
puter tomography (CT), diffusion tensor imaging
(DTI), magnetic resonance imaging (MRI), positron
emission tomography (PET), single photon emission
computer tomography (SPECT), or ultrasound (US)
underwent a remarkable, fascinating, and ongoing
improvement in the last decade, a tremendous in-
crease in the utilization of the various modalities in
medicine takes place.

Medical image registration algorithms usually es-
timate the transformation by either following a data
driven flow or by minimizing a certain cost func-
tion. Flow approaches are very similar to ap-
proaches in so-called optical flow in computer vi-
sion, a technique used to estimate motion in an
image sequence like video. In image registration,
flow approaches have been studied for example in
[8, 4, 40]. For a general introduction to image regis-
tration see [36, 30, 15, 64, 48, 24, 50] or the overview
papers [1, 7, 62, 46, 23, 42, 20, 30, 37, 59, 65, 19].
For important theory related contributions see, e.g.
[14, 9, 38, 12].

This paper focuses on an optimization approach.
In the sequel, it is assumed that the images T and R
are given, smooth, and compactly supported func-
tion on a rectangular domain Ω ⊂ Rd, where d de-
notes the data dimensionality. Using an appropriate
data fitting term D and a regularizer S the registra-
tion task might be phrased as an optimization prob-
lem for the required transformation y : Rd → Rd:

D[T [y],R] + αS[y] + βP[y] = min st. y ∈M, (1)

where α is a regularization parameter, P is a penalty
or ”soft constrained”, β a penalty parameter, and M
a set of admissible transformations.

Optimization based registration can be classified
according to the space that the required deformation
belongs: rigid or affine linear registration algorithms
depend on only a few parameters, while for exam-
ple spline based approaches may use a very high di-
mensional transformations space. Rigid registration
methods are in general very limited and not descrip-
tive enough and therefore nonrigid approaches are
to be used in most applications.

As it is outlined in the next section, image regis-
tration is ill-posed which results in ill-conditioning,
instability of solutions, and a highly nonconvex cost
function. Regularization is introduced to alleviate
these issues and also to incorporate user knowledge
into the problem formulation. Therefore, image reg-
istration is usually phrased as an optimization prob-
lem, where the cost function consists of a similar-
ity measure, a regularization, and additional penalty
terms that discourage undesirable transformations
or constraints that rules out unfeasible solutions.

Two major direction can be distinguished. One di-
rection is based on a fixed Tichonov-regularization,
penalizing against a fixed starting point, for example
a pre-registration, while the other direction is based
on iterative Tichonov-regularization where the up-
date is regularized. The second approach generally
allows for more flexible transformations and thus is
an interesting tool for inter-patient registration. The
approach is also related to flow like approaches as it
can be viewed as a discretization of a time depen-
dent PDE. The first approach is more restrictive and,
with a proper choice of the regularization parameter,
can be used to ensure a one-to-one transformation,
which is very valuable for some applications.

2. The Forward Problem

A major ingredient is the computation of the trans-
formed image T [y]. Since the data is typically given
discrete, a first step is interpolation. A common
approach is d-linear interpolation. The advantages
of d-linear interpolation are a continuous represen-
tation, a min/max principle, and short computation
time. A drawback is that the resulting objective
function is non-differentiable. Higher order spline in-
terpolation is an appropriate alternative, resulting in
a smoother, differentiable image model. The draw-
backs of spline interpolation are under-/overshooting
(Gibb’s phenomena), oscillations (introducing local
minima in the objective function), and its slightly
longer computation time [60, 61, 41, 57, 25].

In addition, approximation or scale-space ideas
can be used for convexification of the objective func-
tion. Rather than interpolating the measurements
that are usually be corrupted by noise, a smoother
approximation is used [26, 25]. Image details are
omitted and the danger of being trapped into local
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minima may be reduced.
Based on the continuous representation, the

above so-called Eulerian framework is obtrud-
ing, T [y](x) := T (y(x)). An alternative, though less
commonly used approach is the so-called Lagrangian
map, where basically T Lagrange[y](x) := T (y−1(x))
(in a proper formulation, the inverse transformation
is not required). The later approach presents an at-
tractive alternative for some constrained problems
since subsets of the domain stay constant during the
optimization process and need not to be tracked.

3. Data Fitting

The next step is to quantify image similarity, prox-
imity or distance. Several approaches have been
proposed. These measures are based either on im-
age features (like for example markers – tags that
are attached to objects before imaging, landmarks
– tags deduced after imaging, moments – statistical
quantities), substructures (surfaces, level sets, crest
lines) or volumetric data. Here, we discuss landmark
and L2-norm based distance measures.

Landmarks Based Distances For landmark
based approaches, it is assumed that a number of
points r1, . . . , rm ∈ Rd are specified in the refer-
ence image and corresponding points t1, . . . , tm are
located in the template image. A commonly used
distance measure then reads

DLM[y] =
∑
‖y(rj)− tj‖Rd , (2)

where extensions using different norms are used as
well [54].

Several approaches are employed to compute the
required transformation. The first one is to restrict
the search space to a typically low dimensional para-
metric space M. Common choices for M are based
on rigid, affine linear, or spline transformations.
Here, the transformation is a linear combination of
some basis functions qk, i.e. y(x) =

∑
qk(x)wk, and

it is computed by solving a least squares problem for
the coefficients:

minimize DLM[y] subject to y ∈M. (3)

A second approach is to optimize a certain
smoothness S of the transformation, i.e. mini-
mize S[y] subject to DLM[y] = 0. This more general

concept is discussed further in Section 4.. Particu-
larly for landmark based registration, a thin-plate-
spline bending energy is used as smoothness mea-
sure and the resulting registration is called thin-plate
spline registration; see also [13, 3, 43, 54]. Follow-
ing representer theory [43], it can be shown that the
solution to this problem belongs to a certain parame-
terizable space MTPS, spanned essentially by trans-
lates of a radial basis function related to S (so-called
Thin-Plate-Splines). Hence, this approach is a spe-
cial case of (3). Numerical solutions can be obtained
by solving a linear system of equations for the coef-
ficients.

In practice, in particular in the presence of noise,
the exact location of landmarks is a tricky problem.
Therefore, the interpolation condition is sometimes
replaced by a weighted approximation condition

minimize D[y] + θS[y] subject to y ∈MTPS.

Setting θ = 0 returns (3) whereas θ → ∞ results in
a very smooth transformation which may not fulfill
the interpolation constraints; see [54, 48] for a more
detailed discussion.

Advances of landmark based registrations are that
their interpretation is easy and intuitive, solutions
can be computed fast and efficiently. However, nei-
ther the determination of landmarks nor the iden-
tification of proper locations of corresponding land-
marks is an easy task and a scheme for a fully au-
tomatic detection of landmarks in medical images is
still missing.

Volumetric Distances To overcome these draw-
backs one is bound to consider the whole images.
Probably the most intuitive volumetric distance
measure is the so-called sum of square difference
(SSD) (also L2-norm of the image difference or en-
ergy of image distance),

DSSD[y] = ‖T [y]−R‖L2(Ω) =
∫
Ω(T [y]−R)2 dx. (4)

It has been proved to be robust and very effective
for images of one modality. It is based on the as-
sumption that there exists a transformation y with
T [y](x) = R(x), which most often does not hold.
For example, fusion of different modalities is a typi-
cal registration task which contradicts this assump-
tion. Here, cross-correlation (and variants), normal-
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ized gradient fields [29], and in particular mutual in-
formation [63, 10] are commonly used alternatives;
see, e.g. [52, 35, 48] for a detailed overview.

4. Regularization

Image registration is inherently ill-posed. For every
spatial location x, one asks for a vector valued trans-
formation y(x), but in general only scalar informa-
tion is provided. Regularization is thus important
and inevitable. It should be mentioned that the fo-
cus of regularization in image registration is on the
existence rather than on the uniqueness of the un-
derlying optimization problem (1). Regularization
is achieved by selecting an admissible set M and/or
by choosing an application dependent Sobolev semi-
norm (bi-linear form),

S[y] = ‖B[y]‖2
L2(Ω)q =

∫
Ω 〈B[y],B[y]〉 dx, (5)

where in particular the following choices are common
(omitting some parameters)

Bdiff [y] = (∇y1, . . . ,∇yd) (diffusion),
Belas[y] = (∇y1, . . . ,∇yd, ∇ · y) (elastic), (6)
Bcurv[y] = (∆y1, . . . ,∆yd) (curvature);

see [6, 16, 18, 48, 31]. Unlike other ill-posed prob-
lems, the particular regularizer and in particular the
choice of boundary conditions can effect the solution
considerably. As pointed out for the above example,
the influence becomes less prominent, if the images
have more structure.

Another important issue is the choice of the reg-
ularization parameter. Typically, this parameter is
hand-tuned. For an automatic choice of the regular-
ization parameter, a continuation method has been
suggested in [27].

5. Soft Constraints and Penalties

Another step towards a more reliable outcome of
the registration is to add a penalty P penalizing un-
wanted solutions. In contrast to a regularizer, which
is needed to guarantee solutions of the registration
problem, the penalty is an add-on which may serve
as an instrument for incorporating user knowledge.
Examples for penalty terms include the deviation
from user supplied landmarks [39], volume preser-
vation [53] or local rigidity [44, 45, 56, 49].

6. Constraints

In contrast to the penalty approach, where unwanted
solutions are penalized, hard constraints are used to
rule out these transformations. The feasible set is ei-
ther described explicitly or in terms of constraints C.
Explicit descriptions are, for example, parameter-
ized transformations like rigid, affine linear, or diffeo-
morphic spline transformations [47, 2, 55]. Implicit
constraints range from equality constraints C[y] = 0
like landmarks constraints [17] and space segrega-
tion [28] (low dimensional, linear), or local rigidity
(high dimensional, almost linear), volume preserva-
tion [25] (high dimensional, non-linear) to inequal-
ity constraints. The displayed equality constraints
match the penalty terms of the previous section.
However, instead of penalizing unwanted solutions,
the constraints completely rule them out. Moreover,
by using hard constraints one gets rid of the addi-
tional penalty parameter.

7. Optimization

The backbone of the solution schemes are numerical
optimization techniques, see, e.g., [21, 22, 11, 51].

In the literature one may find essentially three
different optimization approaches within a registra-
tion procedure. The first one is based on practi-
tioners heuristics. The second class of approaches
aims for the necessary condition for a minimizer of
the objective function in (1), which turns out to
be a nonlinear system of partial differential equa-
tions. Subsequently, the partial differential equation,
equipped with appropriate boundary conditions, is
solved by some sort of discretization technique; see
also [8, 4, 5, 58, 16, 17, 34, 48, 31]. The third class
interchanges the role of optimization and discretiza-
tion. It is based on a sequence of nested discretiza-
tions of (1) [27]. Each discretization leads to a finite
dimensional optimization problem. Starting with a
coarse discretization, a minimizer is computed which
then serves as a starting point for the optimization
problem associated with the finer discretization. If
the coarse grid solution is a good starting guess,
the optimization on the finer discretization is more
like a correction step and is expected to be per-
formed with low computational costs. To arrive at
a fast converging scheme, care has to be taken dur-
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ing modeling. If the objective function is sufficiently
smooth, Newton-type optimization techniques can
be applied. A major advantage, as compared to the
PDE-based approaches, is that sound globalization
techniques and stopping criteria are available. Fo-
cussing on optimization aspects rather than smooth-
ing and grid transfer operations constitutes a differ-
ence to similar multigrid type techniques; see, e.g.,
[32, 33].

No matter which strategy is employed, there is al-
ways the danger of being trapped by an unwanted
minima. To reduce this problem, four main ideas
are used. These ideas may be seen as convexifica-
tion of the overall optimization problem. The first
is to start with a pre-registration that generates an
acceptable starting guess in a neighborhood of a min-
imizer. The second step is to add a regularization S
and/or penalties P, penalizing unwanted solutions.
The third idea is to solve the problem in a multi-
layered fashion, i.e. on a sequence of discretizations
ranging from coarse to fine, where on a coarse level
only main characteristics of the underlying images
are visible and are resolved and where subsequently
on finer levels more and more characteristics are
added and resolved. Here, the point is to use a multi-
resolution of the images. The fourth concept is along
the same lines, details are suppressed for the start-
up phase and then are gradually added. This way
one arrives at a multi-scale technique which of course
can be mixed with the multi-resolution approach.
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1. Introduction

From a practical perspective, mixed integer op-
timization represents a very powerful modeling
paradigm. Its modeling power, however, comes with
a price. The presence of both integer and continuous
variables results in a significant increase in complex-
ity with respect to geometric, algebraic, combina-
torial and algorithmic properties. Specifically, the
theory of cutting planes for mixed integer linear op-
timization is not yet at a similar level of development
as in the pure integer case. The goal of this survey
is to examine a new geometric approach based on
lattice point free polyhedra and use it to develop
a cutting plane theory for mixed integer sets. We
expect that these novel developments will naturally
extend the theory that has been developed for the
pure integer case and shed some light on the addi-
tional complexity that goes along with mixing dis-
crete and continuous variables. The point of depar-
ture for studying mixed integer linear sets is the fact
that for a polyhedron P ⊆ Rn+d with feasible mixed
integer set Q = P ∩

(
Zn × Rd

)
, the set conv(Q) is a

polyhedron. Hence,

c∗ = max {cT x + gT y | (x, y) ∈ Q }
= max {cT x + gT y | (x, y) ∈ conv(Q) }.

The following questions emerge:

(1) Which geometric tools are needed in order to
understand conv(Q)?

(2) Which algebraic tools are needed to generate
cutting planes?

(3) Can (1) and (2) be turned into a finite algorithm
for computing c∗?

Figure 1: An illustration of the feasible region of
Example 1.

Whereas in the pure integer case geometric principles
such as the rounding off hyperplanes [10] and the lift-
and-project approach [5] lead to finite cutting plane
procedures [12], these questions remain challenging
in the presence of both discrete and continuous vari-
ables. Indeed, already for a mixed integer program
in two integer and one continuous variable, it re-
quires major efforts to design a finite cutting plane
algorithm.

Example 1 [11] For the mixed integer program in
variables x1, x2 ∈ Z+ and y ∈ R+,

max + y

− x1 + y ≤ 0
−x2 + y ≤ 0

+ x1 +x2 + y ≤ 2

the optimal LP relaxation is attained at the point
(2
3 , 2

3 , 2
3). The inequality y ≤ 0 is valid, because the

triangle x1 ≥ y, x2 ≥ y, x1 + x2 ≤ 2− y contains an
integer point if and only if y = 0. This inequality,
however, cannot be derived using a finite number of
rounds of rounding hyperplanes.

2. Mixed Integer Rounding and
Beyond

Major developments with regard to a cutting plane
theory for mixed integer linear optimization prob-
lems are based on the following principles that we
briefly outline below. For an introduction to the the-
ory of linear integer and mixed integer optimization
we refer to and [7], [23], [24].
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x

y

Figure 2: An illustration of fractional rounding.

Mixed integer rounding

This line of research began with the developments
of Ralph Gomory [14]. The material is well summa-
rized in [23]. Gomory’s integer and mixed integer
cut can be derived from the simplex tableau asso-
ciated with a given vertex of the continuous relax-
ation of a given mixed integer program. Whereas
the derivation in the pure integer case is elementary
as it is only based on rounding up and down frac-
tional coefficients, its mixed integer counterpart is
much more involved. This follows from the fact that
the fractionalities of the coefficients associated with
the continuous variables must be taken into consid-
eration. Interestingly, Gomory’s fractional cut is a
special case of a so-called mixed integer rounding
cut introduced by Nemhauser and Wolsey [23]. The
mixed integer rounding cut in its basic form is the
only non-trivial inequality that is required to de-
scribe the convex hull of the two dimensional mixed
integer set

{(x, y) ∈ Z× R+ | x + y ≥ b} ,

where b ∈ Q as illustrated below. In formula, the
cut reads

x +
1

1− f(b)
y ≥ /b0,

where f(b) denotes the fractional part of b ∈ Q. The
principle of mixed integer rounding can be naturally
applied to general models by aggregating variables.
Following this scheme one may derive the so-called
Gomory-fractional cut, see [23] for further details.

In certain cases mixed integer rounding cuts can be
manipulated further and combined to generate ad-
ditional cutting planes. This scheme is known as
mixing and was introduced by Pochet and Günlük
[18].

Modular Arithmetic and Superadditive
Functions

Rounding and mixed integer rounding can be viewed
as evaluating a special superadditive function that
is applied to the constraint matrix associated with
a mixed integer program. In a similar vein, cyclic
group relaxations of a mixed integer program such
as the corner polyhedron can be described by super-
additive functions. This line of research has been
initiated by Gomory [13] and further extended and
refined by Ellis Johnson [17] [16]. Our survey is not
further linked to this kind of approach. We refer the
interested reader to volume 96 of Mathematical Pro-
gramming B, 2003 for recent survey papers on the
subject.

Cuts From Several Tableau Rows

In [3] the geometry of the integer points in a trans-
late of a cone rooted at a rational point has been
investigated. This investigation led to some unex-
pected links between lattice point free bodies and
the derivation of inequalities for a mixed integer set
described by two rows of a simplex tableau. From
the theory of linear programming it follows that a
vertex x∗ of the LP corresponds to a basic feasible
solution of a simplex tableau associated with subsets
B and N of basic and nonbasic variables

xi +
∑

j∈N

āi,jxj = b̄i for i ∈ B.

Any row associated with an index i ∈ B such that
the corresponding variable xi is required to be inte-
ger and b̄i 1∈ Z gives rise to a relaxation

X(i) :=
{
x ∈ R|N |

+ | b̄i −
∑

j∈N

āi,jxj ∈ Z
}

that can be used to generate inequalities that are vi-
olated by x∗. Indeed, Gomory’s mixed integer cuts
[14] and mixed integer rounding cuts are derived
from such a basic set X(i) using additional informa-
tion about integrality of some of the variables. Let
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us next consider an index set Ĩ ⊆ B∩I of cardinality
greater than or equal to two. With this index set of
basic variables one associates the mixed integer set
X(Ĩ) defined as all the nonnegative points in R|N |

that satisfy

b̄i −
∑

j∈N

āi,jxj ∈ Z for i ∈ Ĩ .

This set defines geometrically a translate of a poly-
hedral cone rooted at a given vertex. When Ĩ has
cardinality two, then a description of conv(X(Ĩ)) is
known [3]. This description is given in terms of the
maximal lattice point free polyhedra that describe
the projection of the facets to the space of integer
variables. For further results in this direction we
refer to [8], [9].

For subsets Ĩ of cardinality greater than two, the
projection of any facet to the space of integer vari-
ables is still a maximal lattice point free polyhedron
(except in some minor special cases). However, a
classification of the lattice point free polyhedra is un-
known in higher dimensions. In fact, this classifica-
tion is an important element in the proof given in [3].
This motivates us to study the effect of adding spe-
cialized cuts from three-row relaxations. One step
into this direction is to numerically evaluate the ef-
fect of adding families of cutting planes from three
rows of a simplex tableau compared to two-row re-
laxations. At this point one may expect that novel
results about the approximation of disjunctions de-
rived from approximations of high dimensional max-
imal lattice point free polyhedra will help to cope
with the latter question, see also [6].

3. Split Cuts and Disjunctions

Disjunctive programming originates from the work
of Egon Balas [4]. A disjunction of a mixed inte-
ger set requires to partition the feasible set into two
or more parts in a way so that at least one element
of the partition contains no feasible mixed integer
point. Then one can convexify the non-empty ele-
ments of the partitioning and arrive at an improved
formulation. The cuts obtained from the convexifi-
cation step are called disjunctive cuts.

In the mixed 0 − 1-case, disjunctive cuts can be
derived elegantly from the projection of a higher di-
mensional linear reformulation of the original prob-

Split cut

Figure 3: A cut derived from a split disjunction.

lem (based on the identity z2 = z for a binary vari-
able z). This scheme is known under the name “Lift-
and-project”, see [22, 25, 5]. When applied itera-
tively, the convex hull of the mixed 0− 1-problem is
obtained.

Split cuts were introduced by Cook, Kannan and
Schrijver in 1990 [11]. They are a special case of
disjunctive cuts in the sense that they are based on
specialized partitions of a mixed integer feasible re-
gion F into three parts, F0 = F ∩ {x | πT x ≤ π0},
F1 = F ∩ {x | πT x ≥ π0 + 1} and F2 = F ∩ {x |
π0 < πT x < π0 + 1}. If π, π0 are integral and
πi = 0 for all indices i corresponding to the con-
tinuous variables, then F2 cannot contain any mixed
integer point. That is, a split cut comes from the
convexification conv{F0, F1}, see the figure below for
illustration.

Interestingly, both Gomory’s fractional cuts and
the mixed integer rounding cuts are split cuts.

It is an important fact that a cutting plane al-
gorithm based on split cuts cannot always guaran-
tee finite convergence in the mixed integer case [11].
This is a quite negative result as it limits at least
theoretically the applicability of split cuts to gen-
eral mixed integer linear programs. On the other
hand, this result inspires a number of interesting re-
search questions that are at least partially discussed
here. The major research challenge in this context is
to provide insight into the geometry of the disjunc-
tion that is to be used in order to guarantee that
a corresponding disjunctive cutting plane algorithm
can solve a given mixed integer program in finitely
many rounds. Indeed, it was recently shown in [19]
that if one allows for arbitrary disjunctions, then fi-
nite termination of a cutting plane algorithm can be
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guaranteed.

4. Splits and Lattice Point Free
Polyhedra

In [11] it is shown that applying split cuts iteratively
does not suffice to generate the cut y ≤ 0 that we
developed in Example 1. This demonstrates that
more complicated disjunctions must be taken into
consideration so as to result in a finite cutting plane
algorithm.

The basic idea of generalizing the operation of
adding split cuts is to view split disjunctions as a
special family of lattice point free polyhedra. For a
survey on lattice-point-free convex sets we refer to
[21].

Let L ⊆ Rn be a convex set. By int(L) we de-
note the interior of L. We call L lattice-point-free if
int(L)∩Zn = ∅. We call lattice point free closed con-
vex sets that are maximal with respect to inclusion
for split bodies. It turns out that split bodies are full
dimensional rational polyhedra. In fact, a split body
can always be written as the sum of a polytope P
and a linear space L . This fact suggests to associate
a split dimension with every split body. The split
dimension of a split body L is denoted by dims(L)
and defined to be the dimension of the corresponding
polytope P. For instance, split cuts arise from split
bodies of dimension one: a split set can be writ-
ten as the sum of a one-dimensional line segment
P := conv({v1, v2}) and a (n−1) dimensional linear
space L := {x ∈ Rn : πT x = 0}, where πT v1 = π0

and πT v2 = π0 + 1. Besides the split dimension of a
split body, there is a second important criterion to
distinguish such sets. This leads us to the notion of
the maximum facet width. Recall that for L ⊆ Rn

and π ∈ Zn the width of L along π is the number
wπ(L) = max{πT x | x ∈ L} − min{πT x | x ∈ L}.
For a split body L = {x ∈ Rn | Ax ≤ b} with
A ∈ Zm×n, the maximum facet width f(L) is the
number f(L) = max{wAi,·(L) | i = 1, . . . ,m}. No-
tice that a split body L has maximum facet width
equal to one if and only if L is a split body of
split dimension one. For instance, the split body
conv{(0,0),(2,0),(0,2)} of split dimension two has
maximum facet width equal to two. As a next
step we define formally how to generate mixed in-

Figure 4: Split body of split dimension two.

Figure 5: Cuts derived from the disjunction in Fig-
ure 4.

teger cuts from lattice point free polyhedra. Let
P ⊆ Rn+m be a polyhedron, where n denotes the
number of integer variables and m the number of
continuous variables. Let L ⊆ Rn+m be a split body
such that xj = 0 for every x ∈ L and j ≥ n + 1.

We define as

cutsP (L) = conv{(x, y) ∈ P with x 1∈ int(L)},

the operation of adding cuts to P from the lattice-
point-free polyhedron L. This is illustrated in the
two figures below. The first important remark is that
these new inequalities are valid for any mixed-integer
problem that has P as its continuous relaxation. Ob-
serve that the outer description of cutsP (L) may in-
volve several new inequalities.
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5. The Split Body Closure

We are now prepared to introduce the closure oper-
ation based on split bodies. In doing so, we assume
that one is given a polyhedron P ⊆ Rn+m. The cor-
responding mixed integer feasible region is defined
to be P ∩ (Zn×Rm). Let the parameter ω be an up-
per bound on the maximum facet width of the split
bodies. Let Fω denote the set of all split bodies in
Rn+m of maximum facet width less or equal than ω.
The ω-closure of P is defined as

scω(P ) :=
⋂

L∈Fω

cutsP (L).

The set scω(P ) is convex, by definition. Note how-
ever, that here the intersection is taken over an in-
finite number of bodies. This is why there is no
obvious reason to believe that scω(P ) is always a
polyhedron.

In fact, it has been shown in [11] and [1] that the
conjecture is true when ω = 1. In this special case,
the result states that the usual split closure of a poly-
hedron is again a polyhedron.

It has been shown recently in [2] that for all ω, the
set scω(P ) is a polyhedron. The proof of this result
is quite involved and it would be beyond the scope
of this survey to present details of it. Let us instead
shed some light on a number of questions for which
a positive answer is conceivable, given that scω(P )
is a polyhedron.

In particular, in [2] it is shown that with every
mixed integer linear program there is associated an
ω with the following property: Any cutting plane al-
gorithm using split bodies of maximum facet width
strictly less than ω cannot solve any optimization
problem

{
max cT x, x ∈ PI

}
in finitely many rounds.

This result generalizes the phenomenon of non termi-
nation if one uses regular split cuts only and applies
these to Example 1.

Another issue concerns cutting plane proofs based
on split bodies. Since scω(P ) is a polyhedron, ev-
ery valid inequality for a mixed integer linear pro-
gram can be derived from recursively applying the
operation cutsP (L) working with a family F of split
bodies L. The maximal maximum facet width of
such a body L in the family serves as a measure of
the “complexity” for deriving the inequality under
investigation. In Example 1 the split body proof of

the inequality y ≤ 0 must have maximal maximum
facet width equal to two.

6. A Perspective

The concept of split bodies that we introduced in
this paper motivates numerous research questions.
Below we exhibit three such directions.

Cutting Plane Methods Based on Split
Bodies

As we already pointed out it was shown by Jörg [19]
that if one allows for arbitrary disjunctions, then
a finite cutting plane algorithm for mixed integer
optimization can be developed. It remains, however,
open to understand precisely the connection between
the geometry of the split bodies and the event of
finite termination.

The authors conjecture that the following cutting
plane algorithm will work: One repeatedly computes
the optimal face of a linear relaxation (not just a ver-
tex). If this face of the relaxation does not contain
any mixed integer point, then using a mixed integer
Farkas type lemma one ought to be able to generate
a split body of split dimension equal to the dimen-
sion of the face of the relaxation that can be used to
set up a disjunction. This disjunction is then used
for generating cutting planes. Is it conceivable that
a repeated application of this strategy will terminate
and return a mixed integer optimal solution after a
finite number of rounds? If this statement turns out
to be correct, then the complexity of the multi-term
disjunction is precisely equal to the dimension of the
optimal face of the relaxation. This would provide
us with a first link between the geometry of the split
bodies and the face-complex of the mixed integer
program.

The Tailing Off Effect

A second important topic is to understand the ef-
fect of suppressing “tailing off” by increasing the
split dimension for cutting plane generation. More
precisely, suppose that one starts with cuts arising
from one dimensional split bodies. Usually, after a
number of rounds the improvement of the objective
function becomes small (tailing off). Once the im-
provement in terms of the objective function is below
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a certain threshold, disjunctions based on two- and
even higher dimensional split bodies are to be ap-
plied. Which conditions must the split body satisfy
in order to avoid this tailing off effect? An answer
to this question will allow us to design a hierarchical
scheme for using more and more complex split bod-
ies. Indeed, the development of such a hierarchical
cutting plane algorithm will lead to a geometrically
insightful extension of all the traditional finite cut-
ting plane algorithms for the pure integer case.

Approximation of split bodies

Split bodies are lattice point free in their interior and
maximal with respect to this property. In dimension
two such bodies are either triangles or quadrangles.
This nice structure does not carry over to higher di-
mensions. In higher dimensions a characterization
of all the lattice point free polyhedra is not avail-
able. This in turn implies that from an algorithmic
point of view there is little hope to be able to com-
pute the closure scω(P ). This fact suggests to study
approximations of scω(P ) that result from adding
only those cuts that one obtains from the disjunc-
tions associated with a finite and well selected fam-
ily of split bodies. The analysis of such an approx-
imation is quite nicely linked to the concept of the
strength of the cutting planes that one obtains from
a disjunction. The notion of strength has been in-
troduced by Goemans in [15]. We believe that the
strength of the cuts from one additional disjunction
ought to be linked to the size of the subregion of
the new disjunction which is not covered by the al-
ready available disjunctions. If results along these
lines are true, then the road is paved to analytically
describe the effect of adding, incrementally, cutting
planes from d-dimensional splits and compare this
new relaxation with the previous one. This way one
can evaluate the gain from adding all cuts that one
can derive from a specialized family of split bodies.
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Bulletin

Special Issues Dedicated to Henry
Wolkowicz

Call for Papers
Special Issue of Mathematical Programming

(Series B) on Cone Programming and its
Applications

Dedicated to Henry Wolkowicz on the
occasion of his 60th birthday

We invite submissions of novel research articles for
a forthcoming issue of Mathematical Programming
(Series B) on cone programming and its applications,
in the broadest sense.

This special issue is associated with the Mod-
eling and Optimization: Theory and Applications
(MOPTA) 2008 conference. The issue will be ded-
icated to Henry Wolkowicz on the occasion of his
60th birthday. Professor Wolkowicz is known world-
wide as a major contributor to the theory, algo-
rithms, and applications of cone programming, in-
cluding semidefinite programming.

We invite papers that address the following topics,
individually or in combination:

• Theory of moments and positive polynomials;

• Practical interior-point methods for large-scale
cone programming;

• High-impact applications to areas such as com-
binatorial optimization and global optimization.

The deadline for submission of full papers is De-
cember 31, 2008. We aim at completing a first review
of all papers by April 30, 2009.

Electronic submissions to the guest editors
in the form of pdf files are encouraged. All
submissions will be refereed according to the
usual standards of Mathematical Programming.
Information about Mathematical Programming
(Series B) including author guidelines and
other special issues in progress, is available at
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http://www.mathprog.org/sub/journal.htm.
Additional information about the special issue can
be obtained from the guest editors.

Guest editors:

Miguel F. Anjos (manjos@uwaterloo.ca)
Etienne de Klerk (e.deklerk@uvt.nl)
Franz Rendl (franz.rendl@uni-klu.ac.at)

Mathematical Programming Com-
putation: Call for Papers

The Mathematical Programming Society will pub-
lish the new journal Mathematical Programming
Computation (MPC) beginning in 2009. The journal
is devoted to computational issues in mathematical
programming, including innovative software, com-
parative tests, modeling environments, libraries of
data, and/or applications. A main feature of the
journal is the inclusion of accompanying software
and data with submitted manuscripts. The journal’s
review process includes the evaluation and testing
of the accompanying software. Where possible, the
review will aim for verification of reported computa-
tional results.

The full contents of the journal will be made freely
available on the society-run web site mpc.zib.de.
MPC will also be published together with Springer
Verlag, in both print and online versions; MPS mem-
bers will receive the print version of the journal as
part of their membership benefits.

MPC supports the creation and distribution of
software and data that foster further computational
research. The opinion of the reviewers concerning
this aspect of the provided material is a considerable
factor in the editorial decision process. Another fac-
tor is the extent to which the reviewers are able to
verify the reported computational results. To these
aims, authors are highly encouraged to provide the
source code of their software. Articles describing
software where no source code is made available are
acceptable, provided reviewers are given access to ex-
ecutable codes that can be used to evaluate reported
computational results.

Beginning November 1, 2008, articles can be sub-
mitted in Adobe PDF format through MPC’s web-

based system at mpc.zib.de. Software and supple-
mentary material can also be submitted through this
system. Prior to November 1, submissions can be
sent to William Cook at mpc@isye.gatech.edu.

Further information can be found on the web page
www.isye.gatech.edu/~wcook/mpc/

William Cook, Georgia Institute of Technology
Thorsten Koch, Konrad-Zuse-Zentrum Berlin

Chairman’s Column

The Optimization meeting in Boston in 2008 was
an overwhelming success and many thanks are due
to Kurt and Sven for their efforts in this regard. The
expected attendance had been in the range of 400-
450. Actual attendance turned out to be 543 paying
attendees. The meeting featured 530 presentations.
There were 80 minisymposia, which typically have
four speakers per session, and 179 individual con-
tributed presentations. I hope that you enjoyed this
meeting as much as I did. I am looking forward to
the next meeting in 2011 and continuing to explore
options for its location. Please send any suggestions
to help our planning to our program director (Steve
Vavasis) or to me.

At the end of 2007 (the last complete member-
ship year), the activity group showed a membership
of 920, its highest ever. Of these, 397 were stu-
dents. As of October 31, 2008 the number of mem-
bers had grown to 1,103 for 2008; of these, 520 were
students (reflecting the fact that student members
can now choose 2 free activity groups). If you have
not yet renewed your membership, please do so at
your earliest convenience: https://my.siam.org/
forms/join_siag.htm.

While avoiding the inevitable stack of ”linear pro-
gramming” exams to mark, and looking out of my
office window as the snow piles accumulate, I am
heartened by the opportunities that await us all in
the coming year. I hope to see all of you either at
the SIAM Annual Meeting in Denver on July 6-10,
or at the International Symposium on Mathemat-
ical Programming that is returning to Chicago on
August 23-28 for the 60th Anniversary of the zeroth
ISMP (who said we were all Fortran programmers!).

https://my.siam.org/forms/join_siag.htm
file://localhost/Users/Jan/Library/Mail%20Downloads/mpc.zib.de
file://localhost/Users/Jan/Library/Mail%20Downloads/mpc.zib.de
file://localhost/Users/Jan/Library/Mail%20Downloads/www.isye.gatech.edu/~wcook/mpc/
https://my.siam.org/forms/join_siag.htm
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2009 has all the makings of another great year for
Optimization.

Michael C. Ferris, SIAG/OPT Chair
Computer Sciences Department
University of Wisconsin-Madison
1210 West Dayton Street,
Madison, WI 53706
USA
ferris@cs.wisc.edu
http://pages.cs.wisc.edu/~ferris/

Comments from the Editor

This is my first issue of View-and-News, and I am
excited and honored to be its new editor. My aim is
to broaden the appeal of Views-and-News, and, with
your help, increase the number of issues per year.
Please contact me with suggestions for articles, or
special issues!

The present issue presents two articles that high-
light the increasing diversity of our activity group.
Both articles describe work presented at the SIAM

Optimization Conference in Boston. The first paper
by Bernd Fischer, Eldad Haber, and Jan Modersitzki
provides an overview of a novel approach to image
registration. The aim of image registration is to align
images to integrate additional information. The sec-
ond paper by Kent Andersen and Robert Weissman-
tel presents a geometric approach to generalize the
theory of cutting planes from pure integer optimiza-
tion to mixed-integer optimization. It contains both
a review of some recent developments, and, interest-
ingly, a number of conjectures and open problems.

I am taking over from a very talented and accom-
plished editor, Lúıs Vicente. Lúıs edited Views-and-
News for four years (2003–2008), producing eight in-
teresting and entertaining high-quality issues. He set
a standard that will be hard to match. Our activity
group owes him a debt of gratitude: Lúıs, estamos
muito gratos por seu fantástico trabalho editorial!

Sven Leyffer, Editor
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439, USA
leyffer@mcs.anl.gov
http://www.mcs.anl.gov/~leyffer/
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