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Abstract. Adding external knowledge improves the results for ill-posed
problems. In this paper we present a new multi-level optimization frame-
work for image registration when adding landmark constraints on the
transformation. Previous approaches are based on a fixed discretization
and lack of allowing for continuous landmark positions that are not on
grid points. Our novel approach overcomes these problems such that we
can apply multi-level methods which have been proven being crucial to
avoid local minima in the course of optimization. Furthermore, for our
numerical method we are able to use constraint elimination such that we
trace back the landmark constrained problem to a unconstrained opti-
mization leading to an efficient algorithm.

1 Introduction

Image registration is a challenging problem in digital imaging. Roughly speak-
ing, the problem can be described as follows. Given a reference image R and
a template image T , find a reasonable spatial transformation y such that the
transformed image T [y] is similar to the reference. Image registration is required
whenever images resulting from different times, devices, and/or perspectives
need to be compared or integrated. Alone in the area of medical applications,
registration is used in radiation therapy, surgery planing, treatment evaluation,
motion correction and estimation and many more, see, e.g. [1–6] and references
therein. See also [7–9] for related work.

However, although the registration problem is easily stated it is hard to be
solved. A key difficulty is the ill-posedness of the problem: For a particular point
x, scalar intensity values R(x) and T (x) are given but a transformation vector
y(x) vector is to be computed. A common approach is to phrase image regis-
tration as an optimization problem involving a distance measure D reflecting
similarity of images and a regularization term S reflecting reasonability of the
transformation. Though appropriate regularization results in a well-posed prob-
lem in the sense of Hadamard [10] (see, e.g. [11–13]), it is sometimes difficult or
even impossible to find an application conform regularization.



Fig. 1. Reference (left) and template (right) images.

A simple example is shown in Fig. 1, where the reference and template image
cover the full intensity range and share some obvious symmetries. Considering
only rigid transformations, there are four different solutions for any reasonable
distance measure. Regularization can be used to privilege one of these (for exam-
ple by penalizing rotations). However, any regularization is somehow artificial
and may favor a meaningless solution.

One way to obtain better results and to guide the model towards a more
realistic solution is by using landmarks. In the above example, just adding the
information that the top-left corner of the square in the reference image corre-
sponds to the bottom-right corner of the square in the template image eliminates
three of the above solutions. Adding landmark information to image registration
is far from being new, see e.g. [14–18, 4] and references therein.

Although landmarks have been used extensively in the past, the effective nu-
merical implementation of image registration with landmark is unsatisfactory.
For example, no landmark registration scheme known to us allow for the incorpo-
ration of scale space or multi-level techniques which are frequently used to avoid
local minima. Typically, landmark constraints are described in a discrete sense,
where the ith pixel in a fixed discretization is constrained. This causes troubles if
the discretization is variable, that is, if discretization on different scales is used.

The goal of this paper is to develop a multilevel technique for the incorpora-
tion of landmarks in a registration process. We stress that ignoring issues such
as local minima, different algorithms than the one proposed here (for example
[17]) should give similar results. Thus, the focus of this work is on numerical im-
plementation of multilevel algorithms with landmark constraints. Starting with
a variational formulation of the landmark constrained registration problem, this
paper provides a consistent numerical approach. The new approach is based
on discretize-then-optimize approach and takes advantage of a multi-level dis-
cretization. The new approach automatically resolves the problem resulting from
a fixed number of constraints versus a varying number of unknowns and related
inconsistency of the constraints. A numerical stable and computational feasible
basis of the constrained manifold is derived. Using a reduced formulation gives



a handle to an elegant algorithm, where indefinite Karush-Kuhn-Tucker systems
[19] can be avoided.

This paper is organized as follows. Sect. 2 introduces the basic notation and
states the problem in a variational framework. A discretized then optimize ap-
proach is used to numerically solve the constrained registration problem. Details
are outlined in Sect. 3, where the discretization, the construction of a basis for
the constraint manifold, the numerical optimization, and a multi-level strategy
are described. Sect. 4 presents some numerical results. Conclusions are given in
Sect. 5.

2 Variational Formulation

In this section we formulate the constrained registration problem. Let d ∈ N

denote the spatial dimension (typically d = 2, 3) and Ω ⊂ R
d the region of

interest and let T ,R ∈ L2(R
d, R) denote the template and reference image,

respectively. The objective is to find a transformation y : R
d → R

d such that
the transformed image T [y] in similar to R and the transformation y is regular,
where similarity and regularity are measured by D and S, respectively. More
precisely,

T [y](x) := T (y(x)) for all x ∈ Ω,

D[T ,R] := 1
2

∫

Ω
(T −R)2 dx,

S[y] := α
2

∫

Ω
|By|2 dx, B := Id ⊗ ∆.

Here, for ease of presentation, it is assumed that similarity is quantified by the
energy in the difference image. However, other distance measure like mutual in-
formation [20, 21] or normalized gradient fields [22, 23] can be handled similarly.
Regularity is measured using the curvature regularizer [24, 25] where the partial
differential operator B is the vector valued Laplacian, | · | denotes the Euclidian
norm in R

n, and α is a regularization parameter. Note that the order of the
regularizer has to be sufficiently high to cover the landmark constraints [26, 4].

It is assumed that a number L of landmarks r1, ..., rL ∈ R
d in the reference

and corresponding landmarks t1, ..., tL ∈ R
d in the template image are given.

The automatic detection of landmarks is beyond the scope of this paper; see [16]
for an overview. The point evaluation functional is denoted by δx. With

(Id ⊗ δrℓ
)[y] = (y1(rℓ), ..., y

d(rℓ)) = y(rℓ) ∈ R
d

the landmark constraints can be phrased as

C[y] = t := (t1, ..., tL)⊤ ∈ R
L,d,

where C[y] = ((I⊗δr1
)[y], ..., (I⊗δrL

)[y])⊤ ∈ R
L,d, and the landmark constrained

registration problem reads:

minimize J [y] = D[T [y],R] + S[y − yref ] subject to C[y] = t, (1)



where yref allows for a bias towards a particular solution.

The above problem is strongly related to plain landmark based registration,
where D = 0 and S = STPS is the bending energy of a thin-plate-spline; see,
e.g. [26, 4] for an extended discussion. The solution yTPS is explicitly known and
a linear combination of shifts of a radial basis function ρ associate to S and a
polynomial correction. Following [4], the kth component of yTPS reads

yk
TPS(x) =

L
∑

ℓ=1

θk
ℓ ρ(|x − rℓ|) + (1, x1, ..., xd)(θk

L+1, ..., θ
k
L+d+1)

⊤, (2)

where the coefficients are given by Aθk = (tk1 , . . . , tkL, 0, . . . , 0)⊤ with

A =

(

[ρ(|ri − rj)|)]Li,j=1 P⊤

P 0

)

, P =
(

1 · · · 1
r1 · · · rL

)

∈ R
d+1,L,

and ρ(t) =

{

t2 log t (d = 2)
t (d = 3)

.

In our final formulation of the continuous problem, we use this function as a
reference for regularization, i.e. yref = yTPS, and it is thus convenient, to rephrase
the problem in the update u = y − yref :

minimize J [u] = D[T [yref + u],R] + S[u] subject to C[u] = 0. (3)

The role of the plain landmark solution as a reference is manifold. It can be
seen as a good starting guess for a later implementation, minimizing the risk
of being trapped by a local minimum. Moreover, it injects boundary values to
region of interest. In fact, these boundary conditions make yTPS linear for x → ∞
and thus invertible, which is preferable for most applications. Finally, it yields
homogeneous constraints. As it is pointed out later, this is a crucial point for
the discretization as now the feasible set is always non-empty.

3 Numerical treatment

A discretize-then-optimize approach is used to compute a numerical solution of
(3). The discretization is briefly outlined for dimension d = 2, see [27] for a
detailed and general description. Note that the discretization is variable during
the course of optimization and all quantities introduced in this section depend
on the discretization with h. However, in this section a fixed discretization level
is assumed and in order to keep the presentation clear, dependencies on h are
neglected.
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Fig. 2. Discretization of a 2D domain Ω = (0, ω1) × (0, ω2) ⊂ R
2 (left); discrete 2nd

derivative ∂
2,h
i (middle); linear interpolation (right).

3.1 Discretization

Fig. 2.a shows the discretization of a domain Ω in m = (3, 4) cells with cell-
centers xj , j = 1, ..., n = m1m2.

Note that all discrete quantities depend on the discretization width h, hi =
ωi/mi and ĥ = h1 · · ·hd. The next equations describes how the discrete quanti-
ties are assembled.

X = (x1
1, ..., x

1
n, ..., xd

n) ∈ R
dn, R = (R(x1), ...,R(xn)) ∈ R

n,
U = (u1

1, ..., u
1
n, ..., ud

n) ∈ R
dn, T (U) = (T (u1), ..., T (un)) ∈ R

n.

The discretization of the curvature operator can by expressed as Kronnecker-
products [25] of identity matrices Iq ∈ R

q,q and discrete 2nd derivatives ∂2,h
i

(see Fig. 2.b): B ≈ B = Id ⊗ (Im2
⊗ ∂2,h

1 + ∂2,h
1 ⊗ Im1

). Finally, the integrals are
approximated using a midpoint quadrature rule. Thus

J [u] ≈ J(U) = 1
2 ĥ |T (yTPS(X) + U) − R|2 + 1

2 αĥ |BU |2.

The final step is the discretization of the point evaluation functional δx. For
an arbitrary location rℓ, a d-linear interpolation of discrete point evaluation
functionals located at the 2d closest grid points is exploited. For example, let
d = 2 and let the four neighboring grid points of rℓ be denoted by xa, ..., xd; see
Fig. 2.c. Thus,

δrℓ
[u] ≈ δh

rℓ
u = Cℓ u(X)

= (1 − ξ1)(1 − ξ2)u(xa) + ξ1(1 − ξ2)u(xb) + (1 − ξ1)ξ2u(xc) + ξ1ξ2u(xd),

and Cℓ is a sparse row vector with non-zero entries only at positions related to
the locations of xa, ..., xd. If for a certain discretization a landmarks rℓ would
be located precisely on a grid point xj , then Cℓ has only one non-zero entry at
position j.

Assembling these rows for ℓ = 1, ..., L results a sparse L-by-n matrix C with
at most 2d non-zero entries per row, see Fig. 3.b. The Kronnecker-products Id⊗C
enables a simultanuous treatment of all components of the discretized vector field
U . Note that even for a very coarse discretization (n < L) there exists a feasible
solution fulfilling the constraints: U = 0. Thus the feasible set is non-empty.



The discrete formulation of the constrained registration problem thus reads:

minimize J(U) = 1
2 ĥ |T (yref(X) + U) − R|2 + 1

2 ĥα |BU |2

subject to (Id ⊗ C)U = 0, U ∈ R
dn.

(4)

3.2 An efficient basis for the feasible set

The objective is to derive a numerical feasible basis for the nullspace of the
operator C. Note the size L-by-n of C can be large (e.g. n = 1283 and L = 100)
and the rank of this matrix is generally unknown. For a coarse discretization, C
has more rows than columns and a fine discretization it has more columns than
rows.

The basic idea is to reorder the columns of C, such that the non-zeros columns
are placed first. Let Π denote the corresponding n× n permutation matrix and
C∗ be a matrix consisting of the non-zeros columns of C, such that

CΠ = (C∗ | 0 ).

The size of C∗ is L-by-p, where p ≤ 2dL since each row of C can have at most 2d

non-zeros entries. The matrix C∗ is not only relatively small but also very sparse.
Assuming the number of landmarks to be less then 1.000, it is thus possible to
compute a singular value decomposition (SVD) of C∗ [28], i.e.

C∗ = WΣV ⊤, where W⊤W = IL, V ⊤V = Ip,

and Σ = diag(σ1, ..., σmin{L,p}) ∈ R
L,p, σ1 ≥ · · · ≥ σmin{L,p} ≥ 0.

The above SVD enables the computation of the numerical rank of the matrix
C∗ and hence C. To this end let tol be a user proscribed tolerance (e.g. tol = 0
or tol = 10−16) and let k the largest integer such that σk > tol. The last p − k
columns of V are a basis of the (numerical) nullspace of the matrix C∗ and thus
the columns of Z form a basis for the nullspace of C, where V (:, k+1 : p) ∈ R

p,p−k

Z = Π

(

V (:, k + 1 : p) 0
0 In−p

)

∈ R
n,n−k,

and the final step undoes the permutation.
Important issues are summarized as follows. The matrix C∗ is relatively

small, such that the SVD becomes numerically feasible. The SVD enables a
uniform treatment independent of the rank of C∗ and thus handles a coarse
discretization (L > n) as well as a fine discretization (L < n). Note that in the
case L > n the solution is the thin plate spline solution since there are 0 degrees
of freedom. The columns of Z form a sparse, orthonormal, and numerically
stable basis for the set of constraints. For very fine discretizations, the matrix
Z is essentially the identity matrix and can be stored efficiently. Any feasible
vector is given by U = (Id ⊗Z)w, where w ∈ R

d(n−k), and there always exists a
feasible point w = 0.



3.3 Numerical optimization

The final version of the discrete constrained registration problem is given in
terms of the reduced basis and reads

minimize J(w) = 1
2 ĥ |T (yref(X) + Zdw) − R|2 + 1

2 ĥα |BZdw|2. (5)

where Zd = Id ⊗ Z.
In order to find a numerical solution to (5) standard optimization techniques

can be applied; see e.g. [19] for an overview. Here, we use a Gauss-Newton type
algorithm with an Armijo line search as outlined in [27]. The quasi-Newton sys-
tem is given by Z⊤

d HZdδw = −∇J(w) where δw is the new search direction and
H = ∇T⊤∇T + αB⊤B is an approximation to the Hessian. Note that since
the regularization is quadratic the term B⊤B is exactly the Hessian of the reg-
ularization part and only the data fitting term is approximated. A generalized
Gauss-Newton strategy can be used to handle other distance measures as men-
tioned before. For a numerical solution of the Newton-systems, a preconditioned
conjugate gradient solver is used with symmetric Gauss-Seidel preconditioned;
see [29] for details.

3.4 The multilevel strategy

It remains to describe the multi-level framework. To this end, a multi-level rep-
resentation {T ℓ

D, Rℓ
D,mℓ} of given discrete data is initialized, where for ease of

presentation it is assumed that mℓ
i = 2ℓ, i = 1, ..., d, ℓ = ℓmin, ..., ℓmax. Note that

hℓ
i = ωi/mℓ

i depends on the level. More precisely,

T ℓmax = original data, T ℓ−1 = downsample(conv(G,T ℓ)),

where G is a smoothing kernel (in our numerical experiments we used the block
smoother G = (1, 1, 1)⊤(1, 1, 1)/9).

In general, we compute updates to the thin plate spline solution on different
grids. Similar to many other multilevel algorithms, the solution on finer grid is
initialized by the coarser grid solution.

To be more specific, running from coarse to fine, the continuous represen-
tation T ℓ,Rℓ for T ℓ

D, Rℓ
D are computed (in our numerical experiments, spline

interpolation is used). Moreover, the discretized thin-plate spline solution Y ℓ
ref =

yTPS(Xℓ) (cf. (2)) for a cell-centered grid Xℓ of size mℓ and the matrix Zℓ

(cf. Sect.3.2) is initialized. A numerical solution wℓ
opt of the discretized reg-

istration problem (5) is computed and the current grid solution is given by
Y ℓ

opt = Y ℓ
0 +Zℓ

dw
ℓ
opt. On the coarse grid, the initial guess we choose wℓmin

0 = 0 as

starting guess such that Y ℓmin

0 = Y ℓmin

ref . The starting guess wℓ
0 for a finer grid is

chosen as the best least squares approximation of the prolongated coarser grid so-
lution, where P ℓ

ℓ−1 denotes the linear prolongation operator. Since the constraint

basis Zℓ is orthogonal, the computation simplifies to wℓ
0 := Zℓ⊤P ℓ

ℓ−1Z
ℓ−1wℓ−1

opt .
When designing a multilevel strategy we require set the number of levels.

Unfortunately, setting the number of levels is non-trivial. In general, similar



to other problems, one requires that the coarsest level actually represents the
problem [30].

4 Results

4.1 Artificial 2D data

We use the hand data shown in Fig. 4. In this example, a synthetic transforma-
tion ytrue has been specified and the reference is a transformed copy of the tem-
plate image R = T [ytrue]; see Fig. 4. This construction allows a comparison with
a ground truth. Here, 47 manually detected landmarks t̃j haven been chosen in
the template image. Using a numerical approximation to the inverse of the trans-
formation, the landmarks in for the reference are defined by rj ≈ y−1

true(t̃j) and
corresponding landmarks in the template image are defined by tj := ytrue(rj).
Note that since ytrue is explicitly known, there are no errors in the landmark
pairing. The original data is 128-by-128 and the level ranges from ℓmin = 3 to
ℓmax = 7.

Fig. 3.a shows the coarse grid representation of the data. Here, many land-
marks can be found in some particular cells. The problem is over-constrained
and the 47-by-64 matrix Cℓmin is rank deficient (the rank being 27). The non-zero
pattern of this matrix is shown in Fig. 3.b.

Fig. 3. Coarse grid representation of data with 47 landmarks (circles), ℓmin = 3 (left);
non-zero pattern of the matrix Cℓmin (right).

Fig. 4 shows the original data (a,b,c) and the results based on the thin-
plate-spline solution yTPS (d,g), an unconstrained solution yun (e,h), and the
constrained solution ycon (f,i). The distance measure and landmark error are
given by

err(Y ) := 100 D(Y )/D(X)[%], D(Y ) = |T (Y ) − R|2,

LM(Y ) := |(Id ⊗ C)Y − t|Frobenius.

All three registration approaches (TPS, unconstrained, constrained) perform
well for this example. The TPS approach gives perfect results for the landmarks



err ≈ 100%

LM ≈ 8.1

err ≈ 9%

LM ≈ 10−14

err ≈ 0.6%

LM ≈ 0.68

err ≈ 0.4%

LM ≈ 10−14

Fig. 4. Original template image with landmarks (crosses) and visualization of an arti-
ficial transformation ytrue (top left); reference (top middle) is a transformed template
R(x) = T (ytrue(x)), with visualization of transformed landmarks and initial grid; ini-
tial difference |T −R| (top right); transformed template T [y] based on thin-plate spline
solution yTPS (center left), unconstrained solution yun (center middle), and constrained
solution ycon (center right); differences |T [y] −R| for y = yTPS (bottom left), y = yun

(bottom middle), and y = ycon (bottom right).



but a large difference for the trapezoid. The unconstrained approach results
a very small difference but the landmark error is relatively large. Finally, the
constrained approach performs perfect on the landmark and results the smallest
difference. The later is due to the fact that the stopping criteria is relative to
the initial guess, which is results a smaller distance in the constrained approach.

4.2 3D example

For our 3D experiment we use real data from CT and 3D power Doppler ultra-
sound (US) of a human liver. The goal of this application is the alignment of
vessels that have been segmented from the original data. Consequently, we have
binary images allowing for a direct comparison by the SSD distance measure.
The size of the data in our experiment is 171×165×186 voxels. Additionally, we
have 11 corresponding landmarks that were manually picked by an expert; see
Fig. 5 (a,b). For the registration we used four levels starting from 22 × 21 × 24
and ranging to the original resolution with 171 × 165 × 186 voxels. Results for
a plain landmark based registration by using only the thin-plate-spline solution
yTPS and the constrained solution ycon = yTPS+u are shown in Fig. 5(c,d). As it
turns out, the landmark solution provides a reasonable alignment but is far from
being perfect. On the other hand, using the constrained approach improved the
quality of the results considerably and leads to an almost perfect alignment of
large parts of the vessel system.

5 Conclusions

The paper presents a variational framework for the landmark constrained reg-
istration problem and a discretize-then-optimize approach for computing a nu-
merical solution. A difficulty for the multi-level discretization is that the number
of constraints is constant while the number of degrees of freedom varies. In par-
ticular for a coarse discretization, inconsistent constrains are to be expected.

This paper provides a technique to overcome this problem by mixing land-
mark and update components, which results in compatible constraints. Moreover,
it is shown how to efficiently compute a stable, orthogonal, and sparse basis for
the constraint manifold and thus enabling a reduced space optimization avoiding
saddle point problems.
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11. Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in PDE-
based computation of image motion. Int. J. Computer Vision 45(3) (2001) 245–264



12. Hinterberger, W., Scherzer, O., Schnörr, C., Weickert, J.: Analysis of optical flow
models in the framework of calculus of variations. Num. Funct. Anal. Opt. 23

(2002) 69–82
13. Droske, M., Rumpf, M.: A variational approach to non-rigid morphological regis-

tration. SIAM Appl. Math. 64(2) (2004) 668–687
14. Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of

deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence
11(6) (1989) 567–585

15. Maurer, C.R., Fitzpatrick, J.M.: A Review of Medical Image Registration. In:
Interactive Image-Guided Neurosurgery. Park Ridge, IL, American Association of
Neurological Surgeons (1993) 17–44

16. Rohr, K.: Landmark-based Image Analysis. Computational Imaging and Vision.
Kluwer Academic Publishers, Dordrecht (2001)

17. Fischer, B., Modersitzki, J.: Combining landmark and intensity driven registra-
tions. PAMM 3 (2003) 32–35

18. Ashburner, J., Friston, K.: Spatial normalization using basis functions. In Frack-
owiak, R., Friston, K., Frith, C., Dolan, R., Friston, K., Price, C., Zeki, S., Ash-
burner, J., Penny, W., eds.: Human Brain Function. 2nd edn. Academic Press
(2003)

19. Nocedal, J., Wright, S.J.: Numerical optimization. Springer, New York (1999)
20. Collignon, A., Vandermeulen, A., Suetens, P., Marchal, G.: 3d multi-modality med-

ical image registration based on information theory. Kluwer Academic Publishers:
Computational Imaging and Vision 3 (1995) 263–274

21. Viola, P.A.: Alignment by Maximization of Mutual Information. PhD thesis,
Massachusetts Institute of Technology (1995)

22. Clarenz, U., Droske, M., Rumpf, M.: Towards fast non–rigid registration. In:
Inverse Problems, Image Analysis and Medical Imaging, AMS Special Session In-
teraction of Inverse Problems and Image Analysis. Volume 313., AMS (2002) 67–84

23. Haber, E., Modersitzki, J.: Intensity gradient based registration and fusion of multi-
modal images. Methods of Information in Medicine, Schattauer Verlag, Stuttgart
46(3) (2007) 292–299

24. Fischer, B., Modersitzki, J.: Fast curvature based registration of MR-
mammography images. In Meiler, M., et al., eds.: Bildverarbeitung für die Medizin,
Springer (2002) 139–143

25. Fischer, B., Modersitzki, J.: A unified approach to fast image registration and a
new curvature based registration technique. Linear Algebra and its Applications
380 (2004) 107–124

26. Light, W.A.: Variational methods for interpolation, particularly by radial basis
functions. In Griffiths, D., Watson, G., eds.: Numerical Analysis 1995, London,
Longmans (1996) 94–106

27. Haber, E., Modersitzki, J.: A multilevel method for image registration. SIAM J.
Sci. Comput. 27(5) (2006) 1594–1607

28. Golub, G.H., van Loan, C.F.: Matrix Computations. Third edn. The Johns Hopkins
University Press, Baltimore (2000)

29. Barrett, R., Berry, M., Chan, T.F., Demmel, J.W., Donato, J., Dongarra, J., Ei-
jkhout, V., Pozo, R., Romine, C., van der Vorst, H.: Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods. second edn. SIAM (1994)

30. Trottenberg, U., Oosterlee, C., Schuller, A.: Multigrid. Academic Press (2001)


