
European Journal of Control (2001)7:1±16
2001 EUCA

Symbolic Verification of Hybrid Systems: An Algebraic Approach

Martin v. Mohrenschildt

Department of Computing and Software, Faculty of Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4K1

In this paper we present a new symbolic, computer
algebra based approach to hybrid systems. Hybrid
systems are systems containing both, continuous and
discrete changing quantities. As is commonly done, we
model hybrid systems using hybrid automata. Hybrid
automata extend the classical notion of finite state
machines by combining differential equations to model
the dynamic behavior of systems with a finite control.
In contrast to other approaches we consider hybrid
automata as a generalization of differential equations
and develop the notion of an `̀ explicit symbolic
solution'' of a hybrid automaton. An explicit symbolic
solution is an expression which gives the value of the
quantities in question, the state variables, as a function
of the design parameters and time. These solutions
allow us to perform the verification of design proper-
ties. We present an algorithm leading to an implemen-
tation which computes these explicit symbolic solutions.
We were able to detect design constraints on control
systems that other methods fail to detect. This paper
gives the basic definitions, algorithms, and three
examples to demonstrate the advantage of the proposed
approach.

Keywords: Computer algebra; Differential equations;
Hybrid systems; Hybrid system design; Symbolic
solutions; System verification

1. Introduction

Many engineered systems contain both traditional
analog components and modern digital (finite state)
components. Such mixed continuous-discrete systems
are often called Hybrid Systems. Hybrid systems are
studied in the control theory community as well as in
the computer science community. It is essential to
develop precise models for hybrid systems in order to
develop and verify control software (hardware) for
systems such as nuclear reactors, petrol chemical
plants, or car engines. As one models systems using
hybrid systems, it is essential that one is able to verify
the properties of such systems, especially as hybrid
systems are part of safety critical systems. The ver-
ification of safety critical properties of systems has to
be exact, meaning formal, using logic or algebra; a
numerical simulation of hybrid systems is not suffi-
cient. A detailed overview and references of different
applications of hybrid systems can be found in [21].
In literature one finds a variety of approaches to the
verification of hybrid systems including model check-
ing techniques and various approaches using logic
and symbolic methods [2,18,20]. Even if many veri-
fication methods are quite successful and some can
be automated we found that it is essential to develop
symbolic methods that can be automated to assist
system developers in the verification of safety prop-
erties of hybrid systems.

In this paper we present a symbolic, algebraic
approach to hybrid systems deriving an algorithm
which allows us to compute symbolic solutions of

Correspondence and offprint requests to: Martin v. Mohrenschildt,
Department of Computing and Software, Faculty of Engineering,
McMaster University, Hamilton, Ontario, Canada L8S 4K1.
E-mail: mohrens@mcmaster.ca.

Received 11 April 2001; Accepted . . . ;
Recommended by . . .

hybrid systems. As commonly done in literature
[1,2,4,12,14±16,18,19,21], we model hybrid systems
using the so called hybrid automata which are essen-
tially differential equations combined with a finite
state control. Hybrid automata combine the regions
of continuous state changes into modes and model
them using differential equations. The discrete state
changes are modeled using transition between these
modes. The type of hybrid automata defined and used
in this paper are a variation of those found in litera-
ture e.g. [1], and similar to the so called transition
systems as defined in [18] but allowing more general
differential equations. To be able to prove a unique-
ness theorem we restrict ourselves to deterministic
automata.

We have developed a theory which defines and
allows us to compute expressions called explicit sym-
bolic solutions of a hybrid automaton. An explicit
symbolic solution of a hybrid automaton is defined as
an explicit expression which, when evaluated, meaning
interpreted as a function, determines the value of each
of the state variables as the system evolves in time. The
theory of explicit solutions of hybrid automata is in
some sense an extension to the theory of unique solu-
tions of initial value problems. As amode is entered in a
specific state the system is described by an initial value
problem that has a unique solution. Obviously, the
initial conditions to each mode are not given explicitly.
Our idea is to derive a recurrence relation which,
solved, gives the initial conditions to the differential
equations in each mode. Using this information we are
able to construct expressions which give the value of
all state variables as a function of time. We give an
algorithm which computes these explicit solutions. The
presented algorithm is implemented into the computer
algebra system Maple. We perform all computations
exactly, not using floating-point approximations, hence
all results are exact: `̀ There are nomode switches due to
rounding errors''. To be able to represent these piece-
wise and periodic functions as algebraic expressions we
have to extend basic algebraic structures to contain
elements representing `̀ discrete switches'' [10,11] and
periodic functions.

Our algorithm will not succeed for any hybrid
automaton. Even for simple hybrid systems reach-
ability, the question if a system will reach some spe-
cific set of states, is undecidable [14,19]. It is not our
goal to define a class of decidable hybrid automata,
such as in [14,19,21], but to develop a general algo-
rithm that can be applied to many systems. One
should keep in mind that many hybrid systems are
designed with a specific behavior in mind. The
designer intends a specific trace, the sequence of
modes the system is in as time passes, and his goal is to

verify that the system actually has the designed
behavior.

The hybrid systems and hence the solutions of
hybrid automata often contain design parameters,
parameters that can be chosen in order to optimize the
behavior of the system by minimizing or maximizing
some cost-function as in control theory. The solutions
as defined here, being symbolic expressions, allow us
to verify design constraints and to optimize design
parameters. Our approach to verification does in con-
trast to most other approaches not only verify given
properties by proving, but allows us to derive prop-
erties of a given system. Further, in contrast to
numerical solutions symbolic solutions are exact, they
do not contain any rounding errors; rounding errors
could trigger an unwanted discrete state change. The
proposed approach differs from the logic based
approach which normally use fix-point computation
in order to derive formulas which hold in each mode
the system is in. Our approach allows the verification
of systems which do not converge, the state variables
convert to a point in the state space. Fix-point com-
putation methods cannot be applied to such systems.

This paper first gives a definition of hybrid auto-
maton and then defines their semantics. Then the
possible solutions are examined and a uniqueness
theorem is given. In Section 4, we develop the algo-
rithm used to compute the explicit solutions. We
present three `̀ classic'' examples found in literature to
demonstrate the presented approach.

2. Differential Equations with Piecewise
Continuous Coefficients

Normally, the definition of a solution of the differ-
ential equation

y�n� � f�y�nÿ1�, . . . , y, t�
assumes that f is Lipschitz continuous. But as we
model real systems, especially engineering systems
containing a discrete control, the differential equation
modeling the behavior of the system can change in a
discretely manner. These discrete changes can, in
general, be triggered not only by conditions on time
[9±11] but also by conditions on the solution itself.
Also, the solutions of classical ordinary differential
equations are local, meaning that the behavior of the
system is defined by the shape of the vector field at the
point of interest. Real systems can have a `̀ finite
memory'', the vector field (given by the coefficients of
the equations) can change based on a finite number of
events from the past (e.g. hysteresis). We could even

2 Martin v. Mohrenschildt

stop the system in any state (point of time) and then
continue with some variables (initial states) changed
in a discretely manner. Even the order of some dif-
ferential equations could change (as in the example
given later in the paper). Hybrid systems can perform
actions; assignments to the state variables. New initial
conditions can be given triggered by some conditions
on the state of the system. The above shows that, in
order to model hybrid systems we have to extend
the notion of differential equations to hybrid differ-
ential equations, which are differential equations
that can change their coefficients (form) obeying a
finite state machine. We have to extend the classical
theory of differential equations to a theory of differ-
ential equations containing elements that allow finite
state control. (See [9], even though we call such dif-
ferential equations piecewise continuous differential
equations).

Defining and computing the solution of a hybrid
differential equation is much more difficult than that
of a continuous differential equation. The variety of
possible behaviors is much larger. The classical uni-
queness theorems for initial value problems require
Lipschitz continuity of the equations. Hybrid systems
are not Lipschitz continuous.

We approach hybrid differential equations by
`̀ transforming'' [9] them into semantically equivalent
(having the same solution) hybrid automata. These
will be formally defined in the next section. Usually we
do not even give differential equations such as
y00 � y� signum(yÿ y0) but immediately give the cor-
responding hybrid automaton. A hybrid automaton
splits the system into modes; in each mode the dif-
ferential equation is continuous and all discrete state
changes are performed as the mode is changed.

3. Hybrid Automata

We study systems containing several (continuous)
variables changing continuously or discretely, in time.
A state of a system is given as each of the variables has
a specific value. Clearly, if we consider time as an
integral component of our systems, (non-autonomous)
the system will never be two times in the same state.
The values of the variables of the systems can either
change continuously in time, or instantly (discrete),
to new values. The continuous changes of the vari-
ables are described by differential equations, the dis-
continuous changes are described by assignments. As
is commonly done, we model such systems using
hybrid automata. Hybrid automata are build using a
finite set of modes and a finite set of transitions. Each
mode contains a system of differential equations.

The transitions between the modes are guarded with
conditions and can contain assignments (actions).

Formally, a hybrid automaton is defined as follows:

Definition 3.1 (Hybrid automaton). Given are:

� A ®nite set of state variables V� {yi}, i� 1, . . . ,m.
All variables depend on time. We write yi(t) to
denote the value of a variable yi at time point t.

� A ®nite set of modes S� {si}, i� 1, . . . , n. The mode
si contains the system of m autonomous differential
equations y0j � �i;j�y1, y2, . . . , ym, t�, j� 1, . . . ,m.
The differential equations �i,j are Lipschitz con-
tinuous in the yi. Without loss of generality, if
needed, we assume that these are coupled ®rst-order
systems.1 Derivatives are always derivatives by the
time t. If a mode does not contain a differential
equation in the variable yi then we assume that the
mode implicitly contains the equation y0i � 0, the
value of the state variable yi is not changed.

� A set of transitions T� {ti, j}, 1� i, j� n. The tran-
sition ti, j, leads from mode si to mode sj. A transi-
tion ti, j is a pair (ci, j, ai, j) of:
± Condition ci, j � ci, j a boolean expression which can

contain predicates depending on the variables yi
and time t. The conditions ci, j have to be closed,
meaning that the sets

Ci;j � f�t, y1, . . . , ym�jt, yk 2 <m�1,
ci;j�t, y1, . . . , ym� � trueg

have to be closed but not necessarily bounded.
± Actions ai,j. An action ai;j � fyl1:�

cl1 , . . . , ylk :� clkg is a set of assignments to vari-
ables of V, where the cl1 are values. Actions are
used to `̀ trigger-events'' or to give new initial
conditions to the differential equations of the
next mode.

� An unique initial transition t0,i� (true, a0,i) with an
identical true condition and the action
a0;i � fy1 :� �1, y1 :� �1, . . . , ym :� �mg, that initi-
alizes all variables of V.

A hybrid automaton is then given by the four-tuple:

H � �V,S,T, t0;i�:

Some aspects of the hybrid systems as presented
here are kept general, e.g. we do not specify the form
of the transition conditions or restrict the type of
differential equations, since it is not our intent to

1Although we sometimes use higher order equations for conve-
nience, the formal definition is based on first-order systems. Higher
order ODEs can be converted into systems of first-order.

Symbolic Verification of Hybrid Systems 3

define a class of decidable hybrid systems, as in
[14,19], but to develop a general algorithm, knowing
that the presented methods will fail for some types of
hybrid systems. In Section 5.2.1 we present some
necessary properties of hybrid systems such that our
methods will succeed.

Often a graphical representation of hybrid systems
is given such as the one in Fig. 1.

The hybrid automata defined here are a variation of
those found in literature [1,4,7]. The main differences
can be observed in the definition of the semantics,
discussed in more detail later.

Definition 3.2 (State of hybrid automata). The state of
a hybrid automaton is given by a time point t and the
value of all state variables yi at this time point t. We
write �t, y1, . . . , ym� to denote the state a time point t.

3.1. Semantics of Hybrid Automata

In order to give a deterministic semantics and, later, to
be able to prove a uniqueness theorem for solutions of
hybrid automata we restrict the general definition of
hybrid automata.

Definition 3.3 (Well-defined). A hybrid automaton is
well-defined if

� Deterministic In any mode si only one of the con-
ditions ci,j can be true at any instance of time. This
means that Ci;j ^ Ci;k � f g, i 6� j, the conditions
partition the state space in each mode.

� No-zero-time If a condition ci,j is true at time point
tk and the automaton changes to mode sj, then
there is no transition condition cj,l, leading out of sj
true at time point tk. We require that the system
remains in each mode for a time t with t>". This
implies that we cannot `̀ pass through'' a mode or
else we could de®ne an automaton which would
never stay in any mode, and hence never proceed in
time. (Such systems are commonly called Zeno
systems).

� Unique transition There exists at most one unique
transition ti,j leading from mode si to mode sj.

Now, we are ready to give the semantics of a hybrid
automaton. Our semantics can be called an earliest
time semantics that is, the automaton changes mode at
the earliest possible point of time. Other semantics
found in literature, e.g. [1,4,7] allow mode changes at
any point of time a transition condition is true given
that some additional state invariant remains true,
possibly leading to a nondeterministic behavior. We
see the possibility of generalizing our approach in
future work using intervals as solutions. This means
that each possible solution will be enclosed by an
interval with functions as boundaries. This approach
would allow us to model some non-deterministic
behavior.

With ti we denote the time point where the auto-
maton switches mode the ith time.

Definition 3.4 (Semantics of a well-defined hybrid
automaton). Let H be a well-defined hybrid
automaton.

� The automaton starts with the initial transition t0,i,
where all state variables are assigned a speci®c
initial value. The time starts at zero, t0� 0.

� When entering the mode si at time point tk we start
the `̀ dynamic system'' de®ned by the differential
equations in this mode si. The initial conditions are
given by the value of the variables at time point tk.
The state variables yi change now continuously in
time obeying the differential equations of mode si.
As soon, if, as a condition ci,j becomes true, mean-
ing that

d � min
d

ci;j�tk � d, y1�tk � d�, . . . , ym�tk � d��
� true, d > 0

exists, the automaton changes mode to sj perform-
ing the assignments given in the action ai,j and
tk� 1� tk� d. If this minimum does not exist we
remain in that mode forever; no further discrete
transition will be performed.2 Since the automaton
is `̀ no-zero-time'' the system will stay for some time
d>" in mode si.

Also, we restrict our examination to hybrid auto-
mata, where no variable can be changed by external
`̀ events''. All changes of variables are performed by
the hybrid automaton itself. Such automata are called
closed hybrid automata.

y99=y

y$0

y: =2, y9: =2

y99= –y

y#0

Fig. 1. Sample system.

2We assume that this mode switch happens instantly. A hybrid
automaton where transitions take time can always be obtained by
adding extra modes modeling the time a transition would take to
perform.

4 Martin v. Mohrenschildt

Definition 3.5 (Transition±Trace, Trace). A transi-
tion±trace TT of a hybrid automaton is the (finite or
infinite) sequence of transitions tik;ik�1 that the hybrid
automaton performs as time passes. The trace T of a
system corresponding to a transition±trace is the
sequence of modes sik in which the hybrid automaton
is in as time passes.

We define the run corresponding to a trace of a
hybrid automaton that gives the values of all variables
as time passes.

Definition 3.6 (Run). The run R corresponding to the
trace T � si0 , si1 , si2 , . . . , of a hybrid automaton is a
sequence of pairs (tk, fk) where tk is the time point at
which the automaton switches from mode sik to mode
sik�1 and fk is a vector valued function, giving values
for all state variables yl, and satisfying the differential
equations in mode sik�1 with initial values y�tk�1� �
fk�tk� � f0(t0) is the initial condition of mode sq given
by the initial transition t0,q.

3.2. Solutions and Uniqueness

As stated, our aim is to develop a theory of solutions
of hybrid automata, which is similar to the solutions
of initial value problems.

Following the idea of a solution to an initial value
problem for differential equation and based on the
semantics given in Section 3.4 we say that a hybrid
automaton with initial transition t0,i defines a vector
valued function �f of time t:

�f�t� � � fy1�t�, fy2�t�, . . . , fym�t��:

Following the theory of differential equations, we call
the function �f the solution of the hybrid automaton.
Now we are able to state a uniqueness theorem for

solutions of closed, well-defined hybrid automata.

Theorem 3.7 (Unique Trace, Run). The trace and run
of a well-defined closed hybrid automaton is unique.

Proof. We point to the uniqueness results for initial
value problems of Lipschitz continuous differential
equations. The system enters mode si from some
mode sk at time point tl or by the initial transition,
using a transition tk,i performing the actions ak,i. The
values of all variables y1, . . . , ym at time point tl give a
unique initial condition for the system of differential
equations �i,j in mode si. Hence there is a unique
continuous behavior of the state variables defined by
the differential equations in mode si. The hybrid
automaton is well defined; the `̀ no-zero-time'' con-
dition guarantees that there is no transition condi-
tion leading out for this mode true at the point

of time tl, the time we enter the mode, even stronger,
we will remain for at least " in this mode. If the
minimum

min
d

ci; j�tl � d, y1�tl � d�, . . . , ym�tl � d��
� true, d > 0

exists then d is equal to this minimum, else we remain
in mode si from now on. If the minimum exists we also
obtain a ci,j and define tl�1 :� tl � d. The system takes
the transition ti,j leading to mode sj performing the
action ai,j. This leads again to a unique initial con-
dition for the system of differential equations in
the mode sj. Hence, the sequence of modes sil , and the
times tl where the automaton switches mode are
unique for one hybrid automaton. &

Behaviors of solutions of hybrid automata We give the
following classification of behaviors of traces of
hybrid automata:

� Finite Trace The trace is ®nite. This means that the
automaton enters some mode si at some time point
tk where ci; j�y1, . . . , ym, t� � false for all t > tk, it
remains in that mode from now on,

si0 , si1 , . . . , sin :

� Periodic Trace The trace is in®nite, but periodic.
This means that after an initial sequence of modes,
the automaton cycles through a ®nite sequence of
modes:

si0 , si1 , . . . , sik , sik�1 , sik�2 , . . . sik�p , sik�1 , sik�2 , . . .:

� General Trace The trace is in®nite and not periodic.

Note that a periodic trace does not imply that the
values of the variables are periodic, only that after a
finite sequence of modes, we cycle through a fixed
sequence of modes.

With the methods presented here we can only solve
systems with solutions falling into the first two classes
of behaviors.

4. Transformations of Hybrid Automata

We present a transformation of hybrid automata
which we will use later to simplify our algorithms.

Definition 4.1 (Equivalence). Two hybrid automata H
and ~H are equivalent if the functions f defined by H
and ~f defined by ~H are the same for each possible
action in the initial transition t0,i.

Theorem 4.2 (Single condition, action entrance). Given
a hybrid automaton H, we can construct a hybrid

Symbolic Verification of Hybrid Systems 5

automaton ~H where all transitions ti,j leading to any
mode si have the same condition and same action:

8j, ktj;i, tk;i 2 Tcj;i � ck;i ^ aj;i � ak;i

and H and ~H are equivalent.

Proof. Let si be a mode with two transitions tj;itk;i
with different conditions or different actions leading
to it. We add a new mode s~i. The transition tj,i is
changed to the transition tj;~i (tj,i is deleted) and for
each transition ti,k we add a new transition t~i;k with
identical condition c~i;k � ci;k and identical action
a~i;k � ai;k. Clearly, mode sk will have additional new
transitions leading to it, but their conditions and
actions are identical. We continue until all modes have
only transitions with identical conditions and actions.
The process will terminate, since we will not add any
new `̀ problem transitions'' and the number of transi-
tions is finite. &

Transforming a hybrid system will reduce the
number of possible initial conditions in each mode.
This will be very useful in the algorithm computing the
solution of a hybrid automaton.

5. Computing Solutions and Verification

Our goal is to compute a closed-form expression
which will represent the behavior of a hybrid auto-
maton as a function of time. In contrast to other
approaches to the verification of hybrid automata, we
define and compute explicit solutions of hybrid
automata. This means that we find symbolic expres-
sions which compute the value of all state variables of
the hybrid system as a function of time in a systematic
manner that can be automated. The presented
approach supports a symbolic verification. As design
parameters are symbolic constants we are able to
detect (compute) constraints on the design parameters
in order to satisfy constrains put on the hybrid system.
Clearly, due to undecidability results for hybrid
automata we are not able to compute the solution of
each hybrid automaton.

5.1. Expressions, Symbolic Solutions

Our goal is to give explicit representations of solu-
tions. We define EXP, the set of expressions which we
use to represent `̀ solutions'' of hybrid automata. In
order to represent solutions of hybrid automata we
have to enlarge the expressions as used in standard
symbolic computation systems.

We start with the polynomials, formed using the
variables yi, formal parameters pi, time t, rational

numbers, and the function symbols � , ÿ , �. Further,
as needed, we add transcendent extensions such as e,
ln, sin, cos. For expressions t1, t2, . . . , tn and t we write
t � � � t � fyi1 ! ti1 , yi2 ! ti2 , . . .g to represent the
simultaneous substitution of the variables yik with the
expressions tl.

Next we extend EXP using three additional
expression constructors.

� Piecewise Continuous Functions In [8] a decidable
theory of piecewise continuous functions is pre-
sented. A piecewise continuous function is de®ned
using piecewise expressions, expressions of the
form:

piecewise�c1, f1, c2, f2, c3, f3, . . . , fn�
where the ci are conditions, and the fi are expres-
sions. In some state the value of the expression fi
is selected if the condition ci is true in that state,
else, if none of the ci is true, then the value of fn
is returned.3 Piecewise expressions extend EXP
such that we can represent discrete changes of
functions.

� Periodic and Generalized Periodic Expressions In
order to give expressions which represent periodic
functions such as the saw-wave function we provide
two additional constructs for EXP. A function f is
called periodic if for some p, the period,

8x 8k 2 Z f�x� � f�x� kp�:
We define the following two helper functions in order
to define the symbolic representations of periodic
functions.

Definition 5.1 (Integer divider and reminder). We
define irem : R! R� and idiv : R! Z

x idiv p � k,

where k 2 Z such that pk � x < p�k� 1�
x irem p � y,

where y such that 0�y < p, y � xÿ p �x idiv p�
We represent periodic expressions using the following
notation per�f;p�. So per�f;p��t� � f�t irem p� which is
commonly called the periodic extension of f.

We generalize further and even allow the period of a
function to change.

Definition 5.2 (Generalized periodic expressions). A
function f :R!R is represented by a generalized

3If two conditions are true at the same time, then the first in the
sequence of conditions is chosen.

6 Martin v. Mohrenschildt

periodic expression with period p if there exists an
expression g :R�Z!R with

f�x� � g�x irem p, x idiv p�,
we then write f � genÿperiodic�g;p�
Generalized periodic expressions allow us to

represent a large class of `̀ behaviors'' of hybrid auto-
mata in explicit form. Such a function is, for example,
x idiv p, the `̀ stairway to heaven'' function.

Now we are able to give the closed form repre-
sentation of many different functions, e.g. the saw-
wave function with period 1: per�piecewise�x <
1
2 , 1, 0�, 1�.

� Symbolic Solutions With a symbolic solution of a
differential equation y0 � f(y, t) we mean an expli-
citly given expression y depending on t as de®ned
in [3,17].

5.2. Computing Explicit Symbolic Solutions

We finally define what we mean with a symbolic
solution of a hybrid automaton:

Definition 5.3 (Solution of a hybrid automata). Given a
hybrid automaton H with m variables. Let �f be a
m-dimensional vector valued function defined by this
automaton (3.7). An expression of exp of EXP
with exp�t� � �f�t� is called a solution of this hybrid
automaton.

Now we are ready to develop our algorithm to
compute explicit solutions of hybrid automata. The
key idea behind our approach is the following: to
derive transformations which map the value of all
state variables and time, as some mode is entered, into
the value of all state variables and time as this mode is
exited. These transformations then, in the case of a
periodic trace, lead to a recurrence relation, which,
solved allows to compute the value of the state vari-
ables as any mode in the cycle is entered depending on
the number of repetitions the system passed through
the cycle.

The computation of the solution is performed in
four steps: (1) Solve the differential equations, deter-
mine the time spent in each mode and derive state
transformations, (2) compute the possible traces of the
system, (3) for periodic traces derive a recurrence
relation that computes the initial conditions of the
mode in the period, (4) construct the explicit solution.
We describe each step of the algorithm in general.
In the next section we will identify restrictions and
the level of automation we can achieve with our
implementation of our algorithm. Given a hybrid

automaton H we first transform H to a single
condition±action±entrance automaton ~H as given in
Theorem 4.2.

1. Solving Step As some mode si is entered in some
state �t, y1, . . . , ym� at some time point t, we com-
pute the sate of the system as this mode si is exited
together with the time the system remained in this
mode. This is done symbolically since entering time
and the value of some state variables might not be
known, resulting in the state transformation which
maps entering states, initial conditions, to exit
states. Speci®cally:
� Compute the solution (as de®ned in Section 5.1)

fi;yi�t, y1, . . . , ym� of the the initial value problem
y0j � �i;j�t, y1, . . . , ym� with yj�tsi� � yj;si in each
mode si where the starting time tsi is symbolic
and all yj�tsi�, not ®xed by the conditions or
actions leading to this mode si, are symbolic.
This means the value of yj�tsi� is c if ti,j contains
the assignment yj :� c, and yj�tsi� � yj;si other-
wise. This results in the substitution
soli � fyi ! fi;yjg, meaning that if mode si is
entered at time point tsi with initial conditions
yj�tsi� then, the value of the state variables after
some time t > tsi is given by the substitution soli.

� For each mode si and for each transition ti,j
leading form si to some other mode sj we com-
pute the time points transsi;sj , the time points
at which the mode is exited, by solving the
equation

ci;j � soli � true:

These time points will depend on the parameters
introduced as the initial conditions for this mode
and time. If an equation ci;j � soli � true has
several solutions we determine the smallest of
them which is larger then tsi so transsi;sj > tsi
(earliest time semantics). We would like to point
out that for some systems, containing design
parameters, we detect restrictions of these para-
meters as we solve ci;j � soli � true, since often a
solution only exists if certain conditions on the
design parameters hold.

2. Trace Determining Step First we determine all
possible loops of the hybrid automaton (a loop is a
repeating sequence of modes). Note, our hybrid
automaton ~H is a single±action±entrance auto-
maton. We only consider loops which enter each
mode once. The idea here is that any loop can be at
most as long as the number of modes the system
has (analogous to the `̀ pumping lemma'' for finite
state machines). We represent the possible traces as

Symbolic Verification of Hybrid Systems 7

sequences of modes:

si0 , si1 , . . . , sik , sik�1 , sik�2 , . . . , sik�p , sik�1 , sik�2 , . . .

In the next step we will have to decide which of the
possible traces are actually taken. This problem is,
in general undecidable but many practical hybrid
automata (e.g. control systems) are constructed
with a periodic trace in mind.

3. Recurrence Step For all periodic traces found in
step (2), we use the sequence of transformations in
each mode computed in (1) to derive a recurrence
relation. The solution of this recurrence relation
gives the value of the state variables as we re-enter
the first mode in the loop depending on the state
the system was in as we entered the first mode the
last time. Hence for the periodic trace

si0 , si1 , . . . , sik , sik�1 , sik�2 , . . . , sik�p , sik�1 , sik�2 , . . .

we derive the coupled system of recurrence
equations

fik�1;yi�n� 1� � fik�1;yi�n� � solik�p � � � �
� solik�2 � solik�1

where fik;yi�n� denotes the value of yi as we enter the
mode sik�1 the nth time. Now we proceed as follows:

� Solve the recurrence equations. The solution will
depend on n and fik;yi�0�.

� Compute the remaining initial conditions of the
modes sik�j , j � 2, . . . , p, using the solution of the
recurrence equations.

� Compute the actual period per of the auto-
maton, by computing the time needed for one
loop of the system.

per � transsik�1 ;sik�2 � transsik�2 ;sik�3 � � � �
� transsik�p ;sik�1

The period may be generalized, meaning it could
depend on n.

� Compute the value of fik;yi�0� by following the
sequence of modes si0 , si1 , . . . , sik leading to the
start of the period:

fik;yi�0� �fyi�tnÿ1� ! solnÿ1�tnÿ1�g � � � �
� fyi�t0� ! yi;t0g

4. Solution Construction Step Equipped with all the
pieces needed to construct the solution we proceed
as follows:

� Finite Trace Given a ®nite trace we can easily
construct a piecewise de®ned expression which is

the solution of the hybrid automaton. For the
trace

si0 , si1 , si2 , . . . , sin

we construct the expression

piecewise�t < transsi0 ;si1 , sol1 � fyi�t0� ! yi;t0g,
t < transsi0 ;si1� transsi1 ;si2 ;si1 ,

sol2 � fyi�t1�!sol1�t1�g � fyi�t0� ! yi;t0g, . . . ,

t > transsi0 ;si1 � � � � � transsinÿ1 ;sin ,

soln � fyi�tnÿ1�!solnÿ1�tnÿ1�g � � � �
� fyi�t0� ! yi;t0g�

where yi�t0� is the value of the state variables yi
at time point t0 given by the initial transition.

� Periodic Trace For a periodic trace

si0 , si1 , . . . , sik , sik�1 , sik�2 , . . . , sik�p , sik�1 , sik�2 , . . .

we first construct the expressions finit which
computes the value of the state variables for
time initt leading to the period si0 , si1 , . . . , sik and
the expression fcyc which computes the value
of the state variables for one period using the
piecewise construct as described for finite traces
above. Then we combine these two expressions
obtaining the final solution

piecewise�t < initt, finit,

genÿperiodic�fcyc � ft!transsi1
� ��� �transsik g, per�

�

where per is the period so the system.

We implemented these steps into the computer
algebra system Maple. Step one, three and four are
automated, step two needs user input to select candi-
dates from the possible traces. The total code consists
of about 700 lines of Maple code, which seems small,
but Maple is powerful; we can solve an initial value
problem in one line. The Maple code can be obtained
from the author upon request.

5.2.1. Limitations of Algorithm and Existence of
Symbolic Solutions

Obviously, our approach does not allow to compute
closed-form solutions for all systems. It is not our
intention to define a class of systems where our
algorithm is guaranteed to succeed, but the
presented algorithm is a semi algorithm, which
means that if it terminated then it found a solu-
tion. In the following we discuss necessary

8 Martin v. Mohrenschildt

conditions for the closed-form solution to be gener-
ated by our algorithm.

� Differential EquationsAs required in [18] we have to
be able to generate closed-form differentiable
expressions for the differential equations in each
mode of our system.

� Trace We have to be able to determine the trace,
®nite or periodic, of the system. Even one can
determine candidates for periodic traces by deter-
mining all possible loops, it in general undecidable
which trace is actually taken. One could verify if
some candidate is actually the periodic trace of the
system by constructing the solution corresponding
to this trace and if possible to verify that the times
trans and the period per of the system are positive.
For certain classes, e.g. Linear hybrid automata, as
identi®ed in [14,19] using a Bisimulation algorithm,
the possible traces are decidable. We like to point
out that the designer of a hybrid system designs his
system with some speci®c behavior in mind; the
trace the system is supposed to take is de®ned
beforehand.

� Exit times The exit times for each mode have to be
computed. As mentioned, sometimes the solver of
Maple is not able to ®nd a solution, but need
additional assumptions on the parameters, e.g. the
range of some parameter. Again, this is decidable
for linear hybrid automata.

� Recurrence Relation We have to compute a closed-
form solution for the recurrence relation generated
for a periodic trace. Maple is able to do this for
linear recurrence relations.

5.3. Verification

A closed form solution of a hybrid automaton allows
to verify properties of the system. With verification we
mean that given safety properties in the form of con-
straints on the state variables, e.g. the value of some
state variable has to stay within some given range, or a
predicate on the state variables, we verify that these
properties remain true for all times.

Some examples of verifications are given in the
water level control example (Section 6.1) and the
reactor control example (Section 6.2).

6. Examples

In the following we give three examples of hybrid
systems which we found in literature and apply the
here presented approach. We present each step of our
algorithm to demonstrate our approach even though

we are able to perform these computations fully
automated. The example show clearly that the com-
putations could not (easily) be performed by hand and
the advantage of using a symbolic algebra system such
as Maple. All computations are done exactly, no
floating-point approximation is done.

6.1. Example: Water Level Control

The water level control example can be found in sev-
eral places in literature [1,12,18,19]. Although, it is a
simple system, it allows us to demonstrate our meth-
ods. By verifying the safety properties of the water
level control system we were able to detect constraints
on the design parameters which we did not find in
literature.

The system consists of a reservoir which has an
intake valve and an out-flow. The intake valve can be
opened or closed. Clearly valves do not open or close
instantly, opening or closing takes time. The control
has to be designed so that the reservoir is never empty
and never overflows at any point in time.

We can easily identify four modes of the system,
(1) the valve is open, (2) the valve is closing, (3) the
valve is closed, and (4) the valve is opening. In each
of these modes the change of the water level y is given
by a differential equation. A graphical representation
is given in Fig. 2.

� Mode 1 y0(t)� a1 where a1 is the rate the reservoir
®lls if the intake valve is open.

� Mode 2 y00(t)� a2 where a2 is the closing rate of the
valve.

y9=a1

y=c12

y=c34

y9=a3

y: =c12

mode 4

mode 2

mode 3

mode 1

y9=a1

y9=a3y99=a4

y99=a2

Fig. 2. The water level.

Symbolic Verification of Hybrid Systems 9

� Mode 3 y0(t)� a3 where a3 is the out¯ow-rate of the
reservoir as the intake valve is closed.

� Mode 4 y00(t)� a4 where a4 is the opening rate of the
valve.

In contrast to other approaches we actually model the
dynamic phase of opening and closing the valve using
a second order differential equation and do not just
say it takes n seconds to open the valve. The two water
levels that trigger to close the valve or to open the
valve are called c12 and c34. The water levels after
opening (closing) the valves are called c23 and c41, but
they will cancel out in the calculation and are just used
to set up the symbolic solutions of the differential
equations. The transitions of our system are the fol-
lowing: t0,2� (true, y� c12), t1,2� (y� c12), t2,3�
(y0 � a3), t3,4� (y� c34), t4,1� (y0 � a1), our auto-
maton does not contain any actions (which would, in
fact, make it simpler to solve).

Assuming that c12< c34, a3< 0< a1 and a2< 0< a4
as first design constraints we observe that the trace is
periodic, cycling through modes 1, 2, 3, 4. We actually
do not have to determine this trace, since the entire
system is designed with this trace in mind. The con-
ditions on the design parameters are made so that the
system will actually have this trace.

`̀ Safety properties'' of the system

1. The reservoir is never empty, 8t y�t� > 0.
2. The reservoir will never over¯ow 8t y�t� < max,

where max is the maximal allowed water level in
the reservoir.

We can immediately observe the following design
constrains: (1) 0� c12�max and (2) 0� c34�max, the
sensors which cause the valve to open and close have
to lie within the range of the reservoir.
Now, given some a1, a2, a3, a4 (flow rates and valve

closing speeds) we have to determine the conditions
on c12, c24 and max such that the safety requirements
are met.

6.1.1. Solve Differential Equations

We start in mode one, and solve the differential
equations with the initial conditions y0(t)�
a1y(s1)� c41 resulting in

f1 � a1tÿ a1s1 � c41:

To switch from mode one to mode two, the water level
has to pass the c12 mark. Solving, we find that this
happens at time point

trans1;2 � a1s1 ÿ c41 � c12
a1

:

Now we are in mode two. The water level is c12. The
initial flow rate of the water is a1 since we are coming
from mode one. We solve the differential equation
y00(t)� a2 under the initial conditions y(s2)� c12,
y0(s2)� a1 obtaining

f2 � 1=2a2t
2 � �ÿa2s2 � a1�t� 1=2a2s

2
2

ÿ s2a1 � c12:

We have to determine the time point at which the
valve is closed. This is the case if y0(t) is a3. Computing
the derivative and solving the resulting equation we
receive

trans2;3 � ÿÿa2s2 � a1 ÿ a3
a2

:

Now, in mode three, we have to solve the differential
equation y0(t)� a3, we know the water level as we
enter this mode by using the previously computed
solution and time point.

f3 �1=2a2t2 � �ÿa2s2 � a1�t� 1=2a2s
2
2

ÿ s2a1 � c12:

We will switch to mode 4 as the water level reaches
c34, we solve the equation to determine this time
point.

trans3;4 � 1=2
2a3s3a2 � a21 ÿ a23 ÿ 2c12a2 � 2c34a2

a2a3
:

Finally, we are in mode four. Similar to mode two we
solve the equation y00(t)� a4 with the initial conditions
y(s4)� c34 and y0(s4)� a3 and determine the point of
time at which y0(t)� a1, at which the valve is closed
again,

f4�t� � 1=2a4t
2 � �ÿa4s4 � a3�t� 1=2a4s

2
4

ÿ s4a3 � c34,

and the time point where the valve is closed is

trans4;1 � a4s4 ÿ a3 � a1
a4

:

Step one is completed, we computed the solutions of
all ODS's and the times for all modes.

6.1.2. Construct Recurrence Relation

Using the previously computed solutions we are able
to find a recurrence relation which gives the water
level in mode 1 depending on the water level as we

10 Martin v. Mohrenschildt

entered mode 1 the last time in one period.

ft�n� 1�

:�
�
1

2
a4

�
2a3

�
ÿ1
2

a2�ÿ2a1ft�n�a4ÿa23 � a21 � 2c34a4 ÿ 2c12a4�
a4a1

ÿ a1 � a3

�
� a21 ÿ a23 ÿ 2c12a2 � 2c34a2

�
�
�a2a3� ÿ a3 � a1

��
a4:

Solving the recurrence relation and computing the
water level as we enter state 2, 3 and 4 we have all the
pieces and can construct the general solution.

per

a1t� 1

2

ÿa23 � a21 � 2c34a4
a4

, t<ÿ 1

2

%1

a4a1
,

1

2
a2t

2 � 1

2

a2%1

a4a1
� a1

� �
t� 1

8

a2%12

a24a
2
1

� 1

2

%1

a4
, t <

%2

a2
,

a3t� 1

2

ÿ2a3%2ÿ a21 � a23 � 2c12a2
a2

, t <
1

2

%3

a2a3
,

1

2
a4t

2 � ÿ 1

2

a4%3

a2a3
�a3

� �
t� 1

8

a4%32

a22a
2
3

ÿ 1

2

%3

a2
, otherwise:

8>>>>>>>>>>><>>>>>>>>>>>:
%1 :� ÿa23 � a21 � 2c34a4 ÿ 2c12a4

%2 :� ÿ 1

2

a2%1

a4a1
ÿ a1 � a3

%3 :� 2a3%2� a21 ÿ a23 ÿ 2c12a2 � 2c34a2

A plot of the water level using some sample
numbers can be found in Fig. 3.

6.1.3. Verification

Now we verify the safety conditions of the system with
the goal to derive conditions on the design parameters
of the system.

1. Over¯ow: We verify under which conditions the
water reservoir would over¯ow. For this, we com-
pute the maximum of the water level using the
derivative as de®ned in [10], resulting in

1

2

2c34a4 ÿ a23
a4

:

The maximal water level has to be smaller than the
maximum the reservoir can hold, we solve this
resulting condition for c34

c34 <
1

2

a23 � 2max a4
a4

:

It turns out that we cannot freely choose the size of
the reservoir. Clearly the longer the valve takes to
close the larger the reservoir has to be to prevent
overflow.

2. Empty Reservoir: To verify that the reservoir will
not be empty we compute the minimal water level,
again using the derivative according to [10]:

1

2

2c12a2 ÿ a21
a2

:

The resulting condition is that

1

2

a21
a2
< c12:

The minimum possible value for c12 is restricted by
the closing speed of the valve but further we know
that c12< c34<max.

6.2. Reactor Temperature Control

The goal is to keep the temperature of a reactor in a
certain range using two cooling rods. This example is
proposed in [1,7,18]. The cooling rods can only be
used for a certain amount of time and then have to
regenerate, hence we use them in alternation. We have
to make sure that the reactor does not heat up to its
critical temperature. The problem is usually presented
as an automaton having four modes, shown in Fig. 4a.
The `̀ Shutdown'' mode is special, it is not a mode, but
is used to express the required safety property of the
system, namely that we have to shutdown the reactor
if no cooling rod is available but the temperature of

10 20 30 40
t

0

1

2

3

4

5

6

7

Fig. 3. The plot of the system.

Symbolic Verification of Hybrid Systems 11

the reactor is critical. In our modeling we do not use
this mode but verify the property directly.

For easy readability and space reasons, we demon-
strate the computation using sample numbers, the para-
meterized solutions are too large to be presented here. In
the verification step we use the fully parameterized sys-
tems, meaning that even reactor heating, regenerating
and usage times for each individual rod are symbolic.

In this example we used the method presented in
Section 4.2 to construct a hybrid automaton with only
a single entrance to each mode. The original auto-
maton, having 3� 1 modes, is extended to an auto-
maton with 4 modes as shown in Fig. 4b.

We use the following variables and constants:

� x is the timer for cooling rod one, y is the timer for
cooling rod two, z the temperature of the reactor. If
no cooling rod is inserted the temperature of the
reactor is modeled using the differential equation
z0 � �zÿ zheat�=10. If a cooling rod is inserted
having the cooling effect cool then the temperature
behaves like z0 � (zÿ heatÿ cool)/10. We normalize
the constants heat and cool resulting in the equation
is z0 � 1=10 � zÿ zheat ÿ zrefi . The cooling effect of
the rods are zref1 , zref2 , both assumed to be 10. The
heating rate of the reactor without any rod inserted
is zheat� 50.

� The critical and normal temperature tcrit, tnor, we
use tcrit� 550, tnor� 510.

� The regeneration time of the rods are txr and tyr,
assumed to be 3 and 4.

As stated, we are able to perform the entire com-
putation just using symbols, e.g. parameterizing the

cooling effect and the regenerating times of each
individual rod as shown in Fig. 4. The differential
equations and the known initial conditions in each
mode are as follows:

Mode M1: Wait until cooling rod one is regenerated,
the reactor is not cooled.

x0 � 1, y0 � 1, z0 � 1
10 zÿ 50, x�s1� � x1,

y�s1� � 0, z�s1� � tnor:

Mode M2: Rod one is used to cool the reactor.

x0 � 1, y0 � 1, z0 � 1
10 zÿ 60, x�s2� � x2,

y�s2� � y2, z�s2� � tcrit:

Mode M3: Wait until cooling rod two is regenerated,
the reactor is not cooled.

x0 � 1, y0 � 1, z0 � 1
10 zÿ 50, x�s3� � 0,

y�s3� � y3, z�s3� � tnor:

Mode M4: Cooling rod two is inserted into the
reactor.

x0 � 1, y0 � 1, z0 � 1
10 zÿ 60, x�s4� � x4,

�s4� � y4, z�s4� � tcrit:

6.2.1. Solving the Equations

We solve the differential equations in each mode and
determine how long the system remains in this mode
and how the state variables change during this time.

M3M4

M1 M2

Cooling Rod 1

y:=0, x:=0
z:=tnor

x9=1
y9=1

y:=0

Cooling Rod 2
No Rod inserted

No Rod inserted

x9=1
y9=1

x9=1
y9=1

x9=1
y9=1

z9=.1z–zheat

z9=.1z–zheat

z#tnor, z#tnor,

x:=0

z9=.1z–zheat
–zref2

z9=.1z–zheat
–zref1

y$tyr and z$tcrit

z$tcrit and x$txr

Shutdown

Cooling Rod 1

z#tnor, x:=0

y:=0

y:=0, x:=0
z:=tnor

x9=1
y9=1

x9=1
y9=1

Cooling Rod 2

y$tyr

z$tcrit and x$txr

No Rod inserted

x9=1
y9=1

z9=.1 z–zheat

z9=.1 z–zheat
–zref2

z9= .1z– zheat
–zref1

z$tcrit and
z#tnor, z$tcrit and

(x<txr or y<tyr)

Fig. 4. Reactor temperature control. (a) Original system and (b) Modified system.

12 Martin v. Mohrenschildt

Mode M1 Solving the first differential equation
results in:

sol1 :� y�t� � ÿs1 � y1 � t, x�t� � ÿs1 � x1 � t,

z�t� � 10
e�1=10t�

e�1=10s1�
� 500

We determine at which time point we have to switch
to mode M2, by computing the time the reactor
reaches the critical temperature, this is z(t)� tcrit.
Solving this equation we obtain ex1 the time spent in
mode M1 depending on s1, the time point in which
mode M1 is entered, and the resulting value of the
other state variables.

ex1 :� 10 ln�5� � s1, v1x :� x1 � 10 ln�5�,

v1y :� y1 � 10 ln�5�, v1z :� 10
e�ln�5��1=10s1�

e�1=10s1�
� 500

Mode M2 Again we solve the differential equations
resulting in:

sol2 :� z�t� � ÿ50 e�1=10t�

e�1=10s2�
� 600,

y�t� � ÿs2 � y2 � t, x�t� � ÿs2 � t

We determine when the reactor temperature is
normal, z(t)� tnor. Solving this equation we obtain ex2
the time spent in mode M2 depending on s2, the time
point in which mode M2 is entered, and the resulting
value of the other state variables.

ex2 :� 10 ln
9

5

� �
� s2, v2x :� 10 ln

9

5

� �
,

v2y :� y2 � 10 ln
9

5

� �
, v2z :� ÿ50 e

�ln�9=5��1=10s2�

e�1=10s2�
� 600

Mode M3 The solution of the differential
equation is:

sol3 :� z�t� � 10
e�1=10t�

e�1=10s3�
� 500,

x�t� � ÿs3 � x3 � t, y�t� � ÿs3 � y3 � t

Again we wait until the reactor temperature is cri-
tical, z(t)� tcrit. Again we solve to determine the time
and the resulting value of all state variables.

ex3 :� 10 ln�5� � s3, v3x :� x3 � 10 ln�5�,

v3y :� y3 � 10 ln�5�, v3z :� 10
e�ln�5��1=10s3�

e�1=10s3�
� 500,

Mode M4 Finally mode M4, the solution of the
equation is:

sol4 :� z�t� � ÿ50 e�1=10t�

e�1=10s4�
� 600,

x�t� � ÿs4 � x4 � t, y�t� � ÿs4 � t

Rod two is used until the reactor temperature is
normal again, z(t)� tnor. And for the last time we
determine the time send in the mode and the resulting
change of the state variables.

ex4 :� 10 ln
9

5

� �
� s4, v4x :� x4 � 10 ln

9

5

� �
,

v4y :� 10 ln
9

5

� �
, v4z :� ÿ50 e

�ln�9=5��1=10s4�

e�1=10s4�
� 600:

6.2.2. Solving the Recurrence Relations

Since we already know the trace we can easily derive
the recurrence relations by following the transitions of
one period in the trace. We do not present these steps
here. We directly state the solution of the resulting
recurrence relations:

ft�n� � 40 ln�3�n, fx�n� � 20 ln
9

5

� �
� 10 ln�5�,

fy�n� � 10 ln
9

5

� �
, fz�n� � ÿ50 e

�ln�9=5��1=10s4�

e�1=10s4�
� 600

The solutions are simple, since we know most of
the values of the state variables as we enter the
modes, hence fx, fy, fz are always the same as we exit
mode M1.

Using our equations we can compute the initial
conditions of each mode in one period, now depend-
ing on n. This is done mechanically, using our imple-
mentation and the results are not shown here.

The period of the system is easily computed to be
per� 40 ln(3)� 43.944. Finally, we are ready to con-
struct the solutions:

sfx :� periodic
ÿ40 ln�3� � 20 ln�9=5� � 10 ln�5� � t t < 10 ln�5� � 40 ln�3�;40 ln�3�;t�t�
ÿ10 ln�5� ÿ 40 ln�3� � t otherwise

�

sfy :� periodic
ÿ40 ln�3� � 10 ln�9=5� � t t < 10 ln�5� � 40 ln�3�;40 ln�3�;t�t�
ÿ20 ln�5� ÿ 10 ln�9=5� ÿ 40 ln�3� � t otherwise

�

Symbolic Verification of Hybrid Systems 13

The plot in Fig. 5 shows the temperature s~fz�t�,
using s~fz�t� � sfz�t� ÿ 500 to compress the picture,
and the timers sfx(t) and sfy(t).

6.2.3. Verification

For the verification we performed the entire compu-
tation using the parameters. All parameters are
assumed to have positive values. The condition that
in mode M1 rod one is regenerated and ready to be
used as soon as the reactor reaches its critical temp-
erature is

10 ln
10zheat ÿ tcrit
10zheat ÿ tnor

� �
� 10 ln

10zheat � 10zref2 ÿ tnor
10zheat � 10zref2 ÿ tcrit

� �
< txr:

The condition that in mode M3 rod two is regen-
erated and ready to be used as soon as the reactor

reaches its critical temperature is

10 ln
10zheat ÿ tcrit
10zheat ÿ tnor

� �
� 10 ln

10zheat � 10zref1 ÿ tnor
10zheat � 10zref1 ÿ tcrit

� �
< tyr:

One should notice another implicit additional con-
dition. The arguments of the ln have to be positive
which implies that tcrit=10 < zheat � zrefi , i � 1, 2,
assuming that tnor< tcrit. These two conditions mean,
examining the differential equation for z(t), that
inserting the cooling rods actually cools the reactor.

6.3. The Cat and Mouse Game

The cat±mouse game is a simple example found in
literature [7,15]. We present it here since it is an example
of a non-periodic system. Our implementation can
compute the explicit solution of this system fully auto-
mated. In contrast to other approaches which verify

sfz :� periodic

10

81
e�1=10t� � 500 t < 10 ln�5� � 40 ln�3�

ÿ50 e�1=10t�

e�ln�5��4 ln�3��
� 600 t < 10 ln�9=5� � 10 ln�5� � 40 ln�3�;40 ln�3�;t�t�

10
e�1=10t�

e�ln�9=5��ln�5��4 ln�3��
� 500 t < 20 ln�5� � 10 ln�9=5� � 40 ln�3�

ÿ50 e�1=10t�

e�2 ln�5��ln�9=5��4 ln�3��
� 600 otherwise

8>>>>>>>>>>><>>>>>>>>>>>:

20 40 60 80
x

0

10

20

30

40

50

Fig. 5. Plot of solution.

14 Martin v. Mohrenschildt

given properties we are actually able to derive the
properties of the system. The game works as follows:
The mouse and the cat are at position X0, the mouse
starts running with speed vm, the cat waits for � seconds
and the starts running with speed vc. If the mouse
reaches home before the cat can catch up the mouse
wins, else the cat wins. We use the following variables
and symbols:

� X0> 0 initial position of cat and mouse,
� xm> 0 position of mouse, vm speed of mouse,
� xc> 0 position of cat, vc> 0 speed of cat, y> 0

timer used by cat, � > 0 time the cat waits until
running.

The game is described by the hybrid automaton
given in Fig. 6a, Again, for the actual verification
we do not use the automaton presented in 6a, but
we modify the automaton as given in Fig. 6b to
obtain a deterministic 3 mode automaton and
verify the property that xm(t)< xc(t) in mode 3,
meaning we verify under which condition the
mouse wins.

The computations are again performed using the
computer algebra system Maple.

6.3.1. Differential Equations with Initial Conditions

Mode 1: Mouse runs, Cat waits until timer y is �

deq1 :� @

@t
xm�t� � ÿvm, @

@t
xc�t� � 0,

�
@

@t
y�t��1, xm�0��X0, xc�0� � X0, y�0� � 0

�

Mode 2: Mouse and cat run

deq2 :� @

@t
xm�t��ÿvm, @

@t
xc�t� � ÿvc, xm�st2� � x2,

�
xc�st2� � X0

�
Solve Mode 1 Solving differential equation 1 we get

sol1 :� fxm�t� � X0 ÿ vmt, xc�t� � X0, y�t� � tg:

Next we determine the time spend in mode 1 by
solving the equation y(t)� �, which happens after a
period of �. A time point � the value of xm is

xm��� � X0 ÿ vm�:

Solve Mode 2 Solving differential equation 2, we
obtain

sol2 :�fxm�t� � vmst2 � x2 ÿ vmt,

xc�t� � vcst2 � X0 ÿ vctg:
Mode 3 The solution in mode 3 is the same as the

one in mode 2. We only have to decide at which time
points we enter mode 3. This is accomplished using
parameters st2 and x2:

xm :� X0 ÿ vmt:

xc :� vc� � X0 ÿ vct:

We now can decide in which sate the system will
end up.

The time point when Mouse is home obtained by
solving xm� 0

cm :� X0

vm
:

xc9= –vc

xm9= –vm

xm9= –vm
xm: =X0 xc: =X0

Cat wins Mouse wins

xc#0 xm#0

y$δ

xc9= –vc

xm9= –vm

xm9= –vm

xm:=X0 xc:=X0

y$δ

Mode 2

Mode 1

xc#0 or xm#0

Mode 3

xm9= –vm

xc9= –vc

Fig. 6. Cat-Mouse system. (a) Original system (b) Modified system.

Symbolic Verification of Hybrid Systems 15

Next we compute the time point at which the car
arrives at home, obtained by solving xc� 0

cc :� � � X0

vc
:

We reached mode 3 and would like to determine
if the mouse reached home first, by deciding which
of the quantities pm or pc is first to be zero. The can
easily be computed by solving pm� 0 and pc� 0
resulting in:

X0

vm
< � � X0

vc
:

The solution (computed using our Maple imple-
mentation) is

xm�t� �
X0 ÿ vmt t < �,

X0 ÿ vmt otherwise

�

xc�t� �
X0 t < �,

vc� � X0 ÿ vct otherwise

�

y�t� � t t < �:

tÿ � otherwise

�
Note, the solution has only two conditionals, the
solutions in mode 2 and 3 are equal.

7. Conclusions

The presented approach to the verification of hybrid
automata differs from other approaches in that it
considers hybrid automata as a generalization of dif-
ferential equations, states a uniqueness theorem, def-
ines solutions and gives an algorithm to compute
explicit symbolic solution of an hybrid automaton.
These explicit solutions allow then to verify dynamic
and static properties of hybrid systems such as com-
puting themaximumorminimum value of certain state
variables. We were able, using the presented methods,
to automatically derive design constraints of systems
which other methods found in literature fail to detect.

Acknowledgements

The author would like to thank the anonymous
referees for their constructive comments.

References

1. Alur R, Coucoubetis C, Halbwachs N, Henzinger TA,
Ho PH, Nicolin X, Olivero A, Sifakis J, Yovine S.

`̀ The Algorithmic Analysis of Hybrid Systems'', Theor
Comput Sci 1995; 138: 3±34

2. Alur R, Henzinger TA, Ho PH. Automatic symbolic
verification of embedded systems. In: Proceedings of
the 14th Annual IEEE real-time systems symposium
(RTSS) 1993, pp 2±11

3. Bronstein M. The transcendental risch differential
equation. J Symbol Computation, 1990; 9: 49±60

4. Henzinger TA. The theory of hybrid automata. In: 11th
Annual IEEE symposium on logic in computer science
(LICS) 96, 278±292

5. Filipoph P. Differential equations with discontinuous
right-hand side. Mathematics and its Applications.
Kluwer, ISBN 90-277-2699-X

6. Branicky MS. A unified framework for hybrid control:
model and optimal control theory. IEEE Trans Auto
Control 1998; 43(1)

7. Nicollin X, Olivero A, Sifakis J, Yovine S. An
approach to the description and analysis of hybrid
systems, Lecture Notes in Computer Science 1993; 736:
149±178

8. Mohrenschildt Mv. A normal form for rings of
piecewise functions. J Symbolic Computation 1998;
26: 607±619

9. Mohrenschildt Mv. Using piecewise to solve classes of
control theory problems. MapleTech 1997; 4(3): 33±37

10. Mohrenschildt Mv. Solving discontinuous differential
equations. In: (eds). The Combinatory Program,
Engeler E, Birkhauser, pp 98±116

11. Mohrenschildt Mv. Solving discontinuous ordinary
differential equations with a computer algebra system,
submitted to J Symbolic Computation

12. Hybrid Systems, Lecture Notes in Computer Science
(736)

13. Clarke FH. et al. Non-smooth analysis and control
theory. Springer, ISBN 0-387-98336-8

14. Kesten Y, Pnueli A, Sifakis J, Yovine S. Decidable
integration graphs: a class of decidable hybrid systems.
Information and Computation, 1999; 150: 209±243

15. Kurki-Suonio R. Hybrid models with fairness and
distributed clocks, Lecture Notes in Computer Science
1993, 736, pp 103±120

16. Nicollin X, Sifakis J, Yovine S. Compiling real-time
specifications into extended automata. IEEE TSE Real-
Time Systems 1992; 18(9): 794±804

17. Singer MF. Formal solutions of differential equations.
J Symbolic Computation 1990; 10: 59±94

18. Kapur D, Shyamasundar RK. Synthesizing controllers
for hybrid systems. Hybrid and Real Time Systems,
HART'97, Lecture Notes in Computer Science 1201,
Springer-Verlag, 1997; 361±375

19. Pappas G, Lafferriere G, Yovine S. A new class of
decidable hybrid systems, Hybrid Systems: Computa-
tion and Control, Lecture Notes in Computer Science
1569, HS'99, Nijmegen, The Netherlands, March 1999,
137±152

20. Manna Z, Sipma H. Deductive verification of hybrid
systems using STeP, HSCC 98, Lecture Notes in
Computer Science 1386, 1998; 305±318

21. Alur R, Henzinger A, Lafferriere G, Pappas GJ.
Discrete Abstraction of Hybrid Systems. Proceedings
of the IEEE, 2000; 88(2): 971±984

16 Martin v. Mohrenschildt

