
Article No. sy980229
J. Symbolic Computation (1998) 26, 607–619

A Normal Form for Function Rings of Piecewise
Functions

MARTIN VON MOHRENSCHILDT†

Computing and Software, McMaster University, Hamilton, Canada

Computer algebra systems often have to deal with piecewise continuous functions. These
are, for example, the absolute value function, signum, piecewise defined functions but
also functions that are the supremum or infimum of two functions. We present a new
algebraic approach to these types of problems. This paper presents a normal form for
a function ring containing piecewise polynomial functions of a real variable. We give a
complete rule system to compute the normal form of an expression. The main result
is that this normal form can be used to decide extensional equality of two piecewise
functions. Also we define supremum and infimum for piecewise functions; in fact, we
show that the function ring forms a lattice. Additionally, a method to solve equalities
and inequalities in this function ring is presented. Finally, we give a “user interface” to
the algebraic representation of the piecewise functions.

c© 1998 Academic Press

1. Introduction

One of the fundamental problems in computer algebra is to decide equality of two func-
tions defined by expressions. Many algorithms have been developed, using algebraic and
even statistical (Gonnet, 1985) arguments in order to decide or test the equality of
expressions representing continuous functions. On the other hand, we often have to com-
pute with piecewise continuous functions, e.g. in control theory and often in engineering
applications. Piecewise defined functions are functions consisting of conditions and cor-
responding functions; the value at a point is the value of the function where the corre-
sponding condition is true. The problem of deciding equality of piecewise defined function
is harder in the following sense than that of deciding equality of continuous functions. In
contrast to continuous functions, even if two piecewise defined functions are equal on a
dense set in a given interval, they are not necessarily the same; they could differ at only
one point. In order to decide equality of piecewise defined functions we propose to use
normal forms. Normal forms for expressions are one of the most fundamental and suc-
cessful concepts in symbolic computation. A normal form allows us to decide equality of
functions represented by expressions by defining a unique representation for expressions
defining the same function. In this paper we define a normal form for function rings of
piecewise continuous function which are closed under composition.

We define the function ring PPFR (Piecewise Polynomial Function Ring), a polynomial
function ring of one real variable extended with the function symbol step, step(x) is 1

†E-mail: mohrens@mcmaster.ca

0747–7171/98/110607 + 13 $30.00/0 c© 1998 Academic Press



608 M. von Mohrenschildt

for x > 0 and 0 for x ≤ 0. This step function enables us to express piecewise functions
foe example functions build using if-then-else construct. The expression if x > 0
then f(x) else g(x) can be translated into an equivalent PPFR expression using step:
g(x) + step(x)(f(x)− g(x)).

The main result of this work is that we develop an algorithm to decide extensional
equality of the PPFR expression using a normal form. The normal form contains no
products or powers of step and is non-nested, no step has a step as an argument. We
present a complete rule system to transform a PPFR expression into its normal form.

Using step we are able to express the supremum and the infimum of two functions. We
will prove that PPFR is a lattice: sup and inf of two functions of PPFR belong to PPFR
again. Also, we are able to solve equalities and inequalities in this function ring. To solve
inequalities we profit from the lattice structure: the inequality f(x) > 0 translates to the
equality step(f(x)) = 1 having the same solutions.

A “weak” normal form, a normal form without the equality property, for function fields
containing a conditional operator can be found in Aberer (1990). For differential equations
containing piecewise functions see Filippov (1988) and von Mohrenschildt (1994). In
the latter different forms of Heaviside kind of functions are used to define solutions of
differential equations having “piecewise continuous” coefficients. PPFR is implemented
in the computer algebra system Maple and it is part of it since version 4.

The paper is outlined as follows. First we define the ring PPFR. In the next section
we define the normal form and give a rule system to compute the normal form. Being
equipped with the normal form, we study the lattice structure of PPFR and discuss
algorithms to solve equations and inequalities. Last we show how to convert a function
in piecewise notation to a step expression and vice versa. We close with some examples
of computations with piecewise functions.

2. Function Ring of Piecewise Functions

We build PPFR, Piecewise Polynomial Function Ring, over the term algebra containing
the real algebraic numbers RA, the symbol x, the binary operations +,−,×, ◦ and the
unary function symbol step.

Examples of terms of PPFR are:

step(x), x+ step(x− step(x)), step(x− 2) step(x2 − 9).†

We restrict ourselves to real algebraic numbers RA, solutions of polynomials with integer
coefficients. The real algebraic numbers form a field and are computable. Further, the
sign of real algebraic numbers is decidable, this is essential to be able to compute the
value of step(a) and also needed in the presented rule system and algorithms. Even the
complexity of computing with real algebraic numbers can, in the worse case, be high
(Kung, 1973; Rump, 1976; Roy, 1990), most computer algebra systems represent them
in normalized form and provide built in methods to perform the needed computations
with real algebraic numbers efficiently. The presented theory can easily be extended to
any computable, algebraically closed, ordered real field of constants, e.g. the elementary
numbers defined in Richardson (1992).

We define an interpretation of the terms as functions of the real algebraic numbers

†As usual we write 2 x for 2× x and xn for x× x× x× · · · × x︸ ︷︷ ︸
n

.



A Normal Form for Function Rings of Piecewise Functions 609

RA → RA by defining the function symbols. The binary operations +,−,× have the
usual meaning being addition, subtraction, and multiplication of the real numbers. The
function symbol step is defined by

step(a) =
{

0 a ∈ RA and a ≤ 0
1 a ∈ RA and a > 0,

◦ represents the composition of terms and is defined by:

Definition 2.1. (Composition) Let f, g, h be PPFR terms and a be a real algebraic
number.

a ◦ h→ a a ∈ RA
x ◦ h→ h x is identity of composition

(f + g) ◦ h→ f ◦ h+ g ◦ h
same for − and ×

step(f) ◦ h→ step(f ◦ h)
(f ◦ g) ◦ h→ f ◦ (g ◦ h)

We do not show that the rules given in 2.1 are well defined because this definition is
common.

Definition 2.2. (Evaluation, Function) A term f of PPFR is evaluated at the
point p, p ∈ RA, by computing the composition of f and p, f ◦ p resulting in a real
algebraic number.

A term f of PPFR is interpreted as a real valued function by

f : RA → RA f(p) := f ◦ p p ∈ RA.
For example, (x step(x)) ◦ 2 = (x ◦ 2) step(x ◦ 2) = 2× 1 = 2.

We conclude that by construction of:

Corollary 2.3. PPFR forms a function ring and is closed under composition.

From now on, for most of the time, we use the functional notation, e.g. f(2), step(x+ 2)
instead of f ◦ 2, step ◦(x+ 2).

Note that the piecewise functions do not form a field, they contain zero divisors. But
in the ring of the piecewise functions we allow division by a number a 6= 0.

3. The Normal Form

Expressions of PPFR represent functions of the real algebraic numbers. Clearly there
exist several terms defining the same function. For example, x step(x)−x step(−x) and
−x+2x step(x) have the same extension, the absolute value function. Our main interest
is to decide if two terms represent the same function.

Definition 3.1. Two functions defined by PPFR terms f, g are extensionally equal if

f ' g iff ∀p ∈ RA f ◦ p = g ◦ p.



610 M. von Mohrenschildt

Next we define the normal form, which enables us to decide extensional equality. We
observe that step satisfies several extensional equalities:

1. as step is a 0-1 valued function step(f) to any power reduces to step(f), e.g.
step(f)2 ' step(f);

2. step is idempotent: step(step(x)) ' step(x);
3. a product of two steps can be represented as a sum of steps.

step(x+2) step(−x+1) ' step(x+2)−1+step(−x+1) and step(x−2) step(x−3) '
step(x− 3)

These properties enable us to define our normal form. The idea is the following: any
product of steps can be reduced to a sum of steps, hence the normal form contains no
product of steps. Using the property that step is a 0–1 valued function we can get rid of
nested steps.

Definition 3.2. (The PPFR Normal Form) A term f of PPFR is in normal form iff

f = f0 +
N∑
i=1

fi step(x− ai) +
M∑
i=1

hi step(−x+ bi)

fi and hi are step-free terms, that is polynomials, and the steps are collected: ai = aj →
fi = fj same for bi, hi(ai) 6= 0, and ai, bi,∈ RA.

Rules for PPFR:
f is a step-free term, g is a PPFR term and a, b ∈ RA

step(ax− b)→ step
(
ax− b
|a|

)
(3.1)

if a 6= −1, 1, 0 division of constants
f(x) step(−x+ a)→ f(x)(1− step(x− a)) if f(a) = 0, (3.2)

step(x− a) step(x− b)→ step(x− a) if a ≥ b (3.3)
else step(x− b),

step(−x+ a) step(x− b)→ step(x− b)− step(x− a) (3.4)
if a > b else 0,

step(−x+ a) step(−x+ b)→ step(−x+ b) if b ≤ a (3.5)
else step(−x− a),

step(step(±x∓ a)f + g)→ step(±x∓ a) step(f + g) (3.6)
+(1− step(±x∓ a)) step(g),

step(f)→ a0 +
N∑
i=1

ai step(±x∓ bi) f 6∈ RA, (3.7)

ai = ±1 by algorithm ‡

step(a)→ 1 if a > 0 else 0 a ∈ RA. (3.8)

‡The algorithm is given in the proof.



A Normal Form for Function Rings of Piecewise Functions 611

Example 3.3. Three different definitions for the absolute value function can be given
using piecewise functions:

abs1 :=
{
x x > 0
−x x ≥ 0 abs2 :=

{
x x ≥ 0
−x x < 0

abs3 :=

{
x x > 0
−x x < 0
0 x = 0

.

In Section 6 we describe the conversion of piecewise expressions to step-terms. We give
the PPFR representation of these functions and compute the normal form for each:
abs1 = x step(x)− x step(−x). The only rule which can be applied is rule 2, as −x is 0
at x = 0 hence: x step(x)− x (1− step(x)) resulting in −x+ 2 x step(x). For the second
abs2 = −x+ 2x step(x) is in normal form. And abs3 = x step(x)− x step(−x) + 0 (1−
step(x)− step(−x)) resulting in the normal form −x+ 2x step(x). We see that all three
normal forms are identical.

Note that deciding extensional equality is not a trivial problem. Let f be some PPFR
term. Consider the term

f (1− step(x− a)− step(−x+ a)),

its interpretation is extensional equivalent to 0 if f(a) = 0, but the term is not identical
0. For these situations we have rule (2). If f(a) = 0, we apply rule 2 resulting in

f − f step(x− a)− f(1− step(x− a)) = 0.

Theorem 3.4. (Normal Form) For any term of PPFR we can compute its normal
form. The PPFR normal form is well defined. normal(normal(f)) ≡ normal(f). The
normal form decides extensional equality. f ' g iff normal(f − g) ≡ 0.

Remark. It is possible to define a canonical form; a canonical form is a somehow
stronger definition of a normal form having the additional property: if f ' g then
normal(f) ≡ normal(g) (compare with, e.g., disjunctive normal forms in boolean alge-
bra and canonical forms for polynomials). In this possible canonical form the coefficients
hi are constants. This can be accomplished by changing rule 2 to f(x) step(−x + a) →
f(x)(1 − step(x − a)) − f(a)(1 − step(x − a) − step(−x + a)), all proofs, with some
minor modifications, would stay the same. But the canonical form would change the
relation of PPFR to the piecewise representation, any condition would be represented
as x < a, x = a, x > a, no ≤ or ≥. Even after we worked out all these details, we have
chosen to work with the normal, not the canonical form.

Proof. We prove the theorem in four parts. (1) We show by induction on the structure
that any PPFR term can be transformed to its normal form by performing a finite
sequence of rule applications. (2) If a term is in normal form then none of the rules
can be applied. (3) The rule system is confluent, meaning that the order in which the
rules are applied does not matter. And, finally, (4) the normal form decides extensional
equality: f ' g iff normal(f−g) ≡ 0. Also all occurrences of the composition operator ◦
are removed using the rules given in 2.1 before we start applying the normal form rules.
As stated we do not show that the rules in 2.1 terminate because they are common.

(1) Induction over the signature of a term. If f and g are PPFR terms in normal
form, then f + g, f × g, f ◦ g can be converted to their normal form using a finite number
of rule applications.



612 M. von Mohrenschildt

Atomic Expressions. Atomic expressions are the expressions which are not “created”
by one of the operation +,−,×, ◦. These are the numbers, x and step. f step free is in
normal form. §

step(a x − b) a, b ∈ RA is transformed into normal form by rule 1 or 8. Strictly, only
step(x) is atomic since for example step(x + 2) is step(x) ◦ (x + 2), but for reasons of
simplicity we cover the general step(a x− b) case. If a = 0 then the normal form is 0 for
b > 0 and 1 for b ≤ 0. If a 6= 1, a 6= −1 we use rule 1 step

(
ax−b
|a|

)
.

The normal form of step(g) where g is step-free is examined in the composition part.
Sum f+g. The sum of two terms in normal form will not produce any multiplication of

step and no nested steps. To convert the sum to normal form the steps are first collected,
then we check for rule 2. For any term of the form h(x) step(−x+ b) we verify if h(b) 6= 0
else we replace step(−x+ b) by 1− step(x− b) and collect the steps again.

Product f×g. The product of two terms in normal form can produce a finite number
of products of steps with steps. Using rules 3, 4, 5 we can reduce each product of steps to
a sum of steps. The result is then reduced using rule 2 as described above. We converted
f × g to its normal form using a finite number of rule applications.

Composition f◦g. Computing the composition of two PPFR functions in normal form
can result in nested steps. We only have to deal with arguments of step, e.g. step(x2 +4)
since we removed all other compositions, e.g. x2 ◦ step(x) = step(x) step(x) = step(x).
The zero-one rule 6 removes a step inside a step:

step
(
f0 +

N∑
i=1

fi step(x− ai) +
M∑
i=1

hi step(−x+ bi)
)

= step(x− a1) step
(
f0 +

N∑
i=1

fi step(x− ai) +
M∑
i=1

hi step(−x+ bi)
)

+(1− step(x− a1)) step
(
f0 + f1 +

N∑
i=2

fi step(x− ai) +
M∑
i=1

hi step(−x+ bi)
)
.

After a finite number of applications we obtain a term with no nested steps. It will
contain products of steps which are reduced using rule 3, 4, 5 as above.

If g is a step-free function, a polynomial, then step(g) is reduced to a sum of steps.
The idea is the following, we create a step term of the form

t := a0 +
N∑
i=1

ai step(±x∓ bi))

where ai ∈ {1,−1} and bi ∈ RA with t = 1 if p > 0 and t = 0 if p ≤ 0. See Figure 1.
The pseudo code algorithm computing the normal form of step(g):

snormal(p:Polynomial) ==
a1, . . . ,an := all real roots of p sorted smallest first
count the multiplicity of the roots
all roots with odd multiplicity are only once in the list
all roots with even multiplicity are twice in the list
i:=0;o:=0;

§The normal form of a polynomial is a0 + a1x+ a2x2 + · · ·+ anxn.



A Normal Form for Function Rings of Piecewise Functions 613

a1 a2 a3 a4 a5 a8

a6 a7

a9

Figure 1. Normal form of step of a polynomial.

if p("-infinity")< 0 then where:=-1 else where:=1 end;
/* test the highest coefficient and exponent */

if where=1 then o:=step(-x+a[i]);i:=i+1; endif;
repeat

if where=-1 and a[i]=a[i+1] then /* nothing*/
else o:=o+step(x-a[i])-step(-x+a[i+1]); where:=-where;
endif
i:=i+2;

until no more two a[i]
if one more a[i] then o:=o+step(x-a[i])

return o

The roots of polynomials over the real algebraic numbers are computable. We consider
only real roots of g. For example, the normal form of step(x2+2) is 1, that of step(−x2−2)
is 0 and step(x2) has the normal form step(−x) + step(x).

(2) No rule. can be applied to a term in normal form. We verify this property rule
by rule. Let f be a term in normal form then:

1. Rule 1, 6, 7, 8 cannot be used because the argument of all step in the normal form
is ±x∓ a with a ∈ RA.

2. Rule 2 cannot be used, this is stated in the definition of the normal form: hi(bi) 6= 0.
3. Rules 3, 4 and 5 cannot be used because in the normal form we have no product of

step with step.

(3) Confluence. We show that in whichever order the rules are applied we end up with
the same result, the unique normal form. Confluence if proven using the classical lemma
of Newman (1942) “A terminating rule system is confluent iff it is locally confluent”.
Hence we have to verify local confluence of the rules, meaning: if to a term t two rules
can be applied to the same expression resulting in t1 and t2, then there exists a sequence
of rules which reduces t1 and t2 to the same normal form. t1, t2 is called a critical pair.

Rule 1 cannot produce any critical pairs.
To a subterm of the form f step(x− a) step(−x+ b) with f 6∈ RA rules 2, 3, 4 or 5 can

be applied. Applying first rule 2 results in

f(x) step(a− x) (1− step(x− b)) = f(x) step(x− a)− f(x) step(x− a) step(x− b).
This is 0 for a >= b and f step(x − a) − f step(x − b) for a < b. Applying first rule 4



614 M. von Mohrenschildt

we end up with the same result. The other cases, e.g. step(−x + a) step(−x + b)f , are
similar.

To a term having a subterm of the form

step(x− a) step(x− b) step(−x+ c)

3, 4 or 5 could be applied. w.o.l.g. a >= b the term reduces to 0 if c ≤ a and to
step(x− a)− step(−x− c) if a < c by all possible orders of application of rules 3,4 and
5. The other case step(x− a) step(−x+ b) step(−x+ c) is similar.

Let f, g be step free and h a PPFR function. Then to a term having a subterm of the
form

step(f step(x− a) + g step(x− b) + h)

rule 6 can be used in different ways to this subterm. Computing both ways (assuming
a ≤ b) we end up with the same normal form:

step(h)− step(x− a) step(h) + step(x− a) step(f + h)− step(f + h) step(x− b)
− step(x− b) step(f + g + h).

Rules 7 and 8 cannot produce any critical pairs.
We conclude: the rule system is confluent. We showed that our rule system provides

us with an unique normal form.
(4) Equality. Last, we are left to show that

f ' g ⇔ normal(f − g) ≡ 0.

The implication normal(f − g) ≡ 0 ⇒ f ' g is the easy part, we have to verify rule
by rule: applying a rule to a term t, the resulting term t′ is extensionally equal t ' t′. We
show this in example with rule 2. f step(−x+ a) is f iff x < a, and 0 iff x ≥ a. We use
rule 2: if f(a) = 0, resulting in f (1 − step(x − a)), which is f iff x < a, f(a) iff x = a,
and 0 iff x > a.

The other direction: if f ' 0 then normal(f) ≡ 0.
Suppose f is a term of PPFR with f(p) = 0 for all p ∈ RA. The normal form of f has

the form:

f0 +
N∑
i=1

fi step(x− ai) +
M∑
i=1

hi step(−x+ bi).

We use the fact that the polynomials fi and hi have a maximal degree m, hence if
fi(p)=0 for m+ 1 different points p ∈ RA then fi ≡ 0.

Definition 3.5. Let f be a PPFR function in normal form. Let αi be the sorted list of
ai, bi from the normal form. A number x is close to the number α iff

(x < α ∧ ∀αj < α : x > αj)
∨
x = α

∨
(x > α ∧ ∀αj > α : x < αj).

We study the normal form of f close to points α and distinguish four cases depending
on whether α = ai∧α 6= bk, αi = bk∧α 6= aj , α = aj = bk (critical case) or α 6= aj∧α 6= bk
and show for all these cases that the corresponding sums of fk and hl are zero for an
infinite number of points close to α:



A Normal Form for Function Rings of Piecewise Functions 615

1. α = ai∧ = α 6= bj . Then f at points x close to point α has the form

l(x) + fi(x) step(x− ai)
where l(x) = f0(x) +

∑
i|ai<α fi(x) +

∑
i|bi>α hi(x). This is l(x) ' 0 for x ≤ α and

l(x)+fi(x) ' 0 for x > α. Because these functions are polynomials we can conclude
that fi(p) ' 0 for an infinite number of points.

2. α = bk α 6= aj . Then f at points x close to point α has the form

l(x) + hi(x) step(−x− bj)
where l(x) = f0(x) +

∑
i|ai<α fi(x) +

∑
i|bi>α hi(x). This is l(x) + hi(x) ' 0 for

x ≤ α and l(x) ' 0 for x > α. Again, using that these functions are polynomials
we can conclude that hi(p) ' 0 for an infinite number of points.

3. α = ai = bj . for some i, j then f at points x close to α has the form

l(x) + fi(x) step(x− ai)− hj(x) step(−x+ aj) ' 0

where l(x) := f0(x) +
∑
i|ai<α fi(x) +

∑
i|bi>α hi(x).

For x < α this is l(x)−fi(x) ' 0, for x > α we have l(x)−hi(x) ' 0, and for x = α
we get l(α) = 0. Now since hi(α) 6= 0, normal form, but l(α) = 0 and l + hi ' 0
we conclude using continuity of the l(x) and hi(x) that l(p) = 0, fi(p) = 0, and
hi(p) = 0 for an infinite number of points p. Note, for this proof the property
hi(α) 6= 0 of the normal form is essential.

4. α 6= aj ∧ α 6= bk. This is the simplest case, for all p close to α f(p) = 0.

As for any choice of α we showed that the corresponding polynomials are zero for an
infinite number of points p and we covered all possible combinations of the fi, hi we
conclude that fi ≡ 0 and hi ≡ 0, hence the normal form of f is identical 0, normal(f) ≡
0.

The application of the rules is not really restricted to functions containing no step.
step(f step(x)+h) can be reduced to step(x) step(f +h+(1− step(x)) step(h) even if f
or h contain steps. (von Mohrenschildt, 1994; Engeler and von Mohrenschildt, 1995). 2

Note. The existence of this normal form depends only on the computability of the zeros
of the “ground function ring”, the functions free of steps, and the continuity of these
functions. It is not difficult to extend PPFR with function symbols, e.g. exp, as long
as we can compute the zeros in the extended ring and the functions represented by the
function symbols are continuous.

4. Lattice Structure

Using step, we can express the supremum and the infimum of two functions. We show
that PPFR is a lattice, which means supremum and infimum of two functions of the
ring belong to the ring. For example, sup(x,−x) represents the piecewise function −x
for x ≤ 0 and x for x > 0, the absolute value function.

Definition 4.1. We define the sup and the inf of two PPFR functions f, g:

sup(f, g) = f step(f − g) + g step(g − f) +
f + g

2
(1− step(f − g)− step(g − f)),

inf(f, g) = g step(f − g) + f step(g − f) +
f + g

2
(1− step(f − g)− step(g − f)).



616 M. von Mohrenschildt

Theorem 4.2. sup and inf are well defined. PPFR is a lattice.

Proof. We have to show that (1) sup and inf are compatible with the ordering relation
of the field of constants RA. Further, we have to show that (2) sup(f, f) ' f , (3)
sup(f, g) ' sup(g, f), and (4) sup(f, sup(g, h)) ' sup(sup(f, g), h)) for any f, g, h.

(1) The supremum and infimum are compatible with the ordering relation of the ground
ring. That is, if a < b then sup(a, b) = a. sup(a, b) = a step(a− b) + b step(b− a) +
a+b

2 (1− step(a− b)− step(b− a)) = a

(2) sup(f, f) ' f step(f − f) + f step(f − f) + f+f
2 (1− step(f − f)− step(f − f)) ' f .

(3) sup(f, g) ' f step(f−g)+g step(g−f)+ f+g
2 (1−step(f−g)−step(g−f)) ' sup(g, f).

(4) To show transitivity we can use (1)

sup(f(p), sup(g(p), h(p))) ' sup(sup(f(p), g(p)), h(p))

for any point p. 2

Example 4.3.

sup(−x, x) = 2x step(x)− x,
sup(x2 − 2, x) = (x− x2 + 2) step(x+ 1) + (x− x2 + 2) step(x− 2)− x+ 2x2 − 4.

5. Computing Zeros and Solving Inequalities

We study equations and inequalities in PPFR. We show that:

Theorem 5.1. The solutions of PPFR equations are computable.

Theorem 5.2. The solutions of PPFR inequalities are computable.

We state these theorems separately because Theorem 5.2 depends on 5.1.

Proof of 5.1. Let f = 0 be the equation to be solved. First compute the normal form
of

f = f0 +
N∑
i=1

fi step(x− ai) +
M∑
i=1

hi step(−x+ bi).

If in the normal form all fi and hi are constant then we have the solution, it is the
union of the intervals where this piecewise constant function is 0. The solution can be
translated to an interval representation using the step to piecewise conversion algorithm
given in 6.

Otherwise, let αi be the sorted list of ai, bi of the normal form and L be the set of all
(step-free) functions lj lj := f0 +

∑
i|ai≤pj fi +

∑
i|bi≥pj hi where pj is 1

2 (αi+1 + αi) for
i = 1, . . . , N +M and p0 = α1 − 1 and pM+N+1 = αn+m + 1.

Next solve all these N +M + 2 equations, where N +M is the number of steps in the
normal form of f . Note that we can either solve all these equations over the hole real
axis or on the intervals [αi, αi+1]. Doing the letter we have to include the αi to the list of
possible zeros. Having all these zeros we verify if they are solutions of f = 0. We obtain
all solutions of f = 0. 2



A Normal Form for Function Rings of Piecewise Functions 617

Theorem 5.1 depends only on the computability of the zeros of step-free terms. If we
extend PPFR with additional function symbols, e.g. exp, then we have to verify that we
can solve the step-free equations.

Proof of 5.2. Any inequality of the form f > 0 can be written as step(f) = 1 and we
use Theorem 5.1 to solve the equation step(f) − 1 = 0. The inequality f >= 0 can be
written as step(−f) = 0. Again Theorem 5.1 is used to solve these equations. 2

Example 5.3. Solve x2 − 4 step(x) = 0. The equation contains a single step, hence we
solve the two equations: x2 − 4 = 0 and x2 = 0. The solutions are 2,−2, 0. Next, we
verify these solutions and find that 2 and 0 are the solutions of the original equation.

Next we solve x2 − 4 step(x) > 0. According to 5.2 we have to solve step(x2 −
4 step(x)) = 1. Computing the normal form results in step(−x) + step(x − 2). In the
normal form the fi are constant, hence we determine the intervals where step(−x) +
step(x− 2) is 0 using the algorithm in 6. We obtain x < 0∨ x > 2. Hence the solution is
x ∈ (−∞, 0) ∪ (2,∞).

6. Converting Piecewise and PPFR Functions

In this section, we describe the process of converting a piecewise-expression into a
step-term and vice versa.

The piecewise function piecewise(C1, f1, C2, f2, ...) is interpreted as an if .. elseif ..
elseif .. else .. statement. If the first condition C1 is true, then the piecewise expression
evaluates to the first function f1, otherwise, if the second condition C2 is true, then f2,
and so on. It is possible to give a last argument without a condition for the else case. If
all conditions are false and no else case is provided, the piecewise function evaluates to
its default value 0.

6.1. piecewise to PPFR

The conversion of a piecewise expression into its step representation is straight for-
ward. For every condition in the piecewise-expression we construct a step term which is
1 if and only if the condition is satisfied. We can describe the algorithm by a conversion
function S:

S(x > a)→ step(x− a)
S(x ≤ a)→ 1− step(x− a)
S(x < a)→ step(−x+ a)
S(x ≥ a)→ 1− step(−x+ a)
S(notE)→ 1− S(E)

S(E and B)→ S(E)S(B)
S(E or B)→ step(S(E) + S(B))

S(piecewise(E1, f1, E2, f2, E3, · · ·))→ S(E1)f1 + S(E2)(1− S(E1))f2

+S(E3)(1− step(S(E1) + S(E2))f3

+ · · · .



618 M. von Mohrenschildt

Example 6.1. Let us apply S to the absolute value function,

piecewise(x > 0, x, x ≤ 0,−x)
= S(x > 0)(1− S(x ≤ 0))x+ (1− S(x > 0))S(x ≤ 0)(−x)

= step(x)(1− step(−x))(x− (1− step(x)) step(−x))− x = 2x step(x)− x.

6.2. PPFR to piecewise

We give the algorithm to convert a PPFR term f into an semantical equivalent
piecewise expression.

1. Compute the normal form of f .
2. Sort the ai and bi of the normal form in increasing order resulting in α1, α2, . . . , αn.
3. We use the sorted αi to determine the type of the conditions, which is one of
x < a, x ≥ a or x ≤ a, x > a or x < a, x = a, x > a, for the piecewise function
according to:

(a) if αi = αi+1, that is, there are ai = bi, then the piecewise function contains the
condition x < αi , x = αi , x > αi;

(b) if αi is an aj , then the piecewise function contains the condition x ≤ αi, x > αi;
(c) if αi is a bj , then the piecewise function contains the condition x < αi, x ≥ αi.

4. Determine the functions gi in every piece. (See 5.1 for the construction of the li.)

piecewise(cond1, l1, cond2, l2, · · · , condk, lk).

Example 6.2. Let us convert step(−x − 2) + x step(x) − step(x − 3) to a piecewise
expression:

1. The zero points αi are −2, 0, 3.
2. The conditions are: x ≤ −2, x ≤ 0, x ≤ 3, x > 3.
3. The piecewise function has the form

piecewise(x ≤ −2, g1, x ≤ 0, g2, x ≤ 3, g3, x > 4, g4).

4. We determine the gi by finding the sum of fi and ci in interval i: gi := f0 + fi1 +
· · · fin + cj1 + · · ·+ cjk . piecewise(x ≤ −2, 1, x ≤ 0, 0, x ≤ 3, x, x > 3, x− 1).

Let us convert step(x) + 2 step(−x) + step(x− 2) to a piecewise. As the normal form
has step(x) and step(−x) we are in the (a) case for the 0 and in the (b) case for the
step(x− 2). Hence, we obtain the conditions x < 0, x = 0, x ≤ 2, x > 2. This corresponds
to the piecewise function piecewise(x < 0, 2, x = 0, 0, x ≤ 2, 1, x > 2, 2).

7. Some Examples

These examples were computed using an implementation of PPFR in Maple:

|2− |x|| =


−2− x x ≤ −2
2 + x x ≤ 0
2− x x ≤ 2
x− 2 2 < x



A Normal Form for Function Rings of Piecewise Functions 619

f(x) : =

{
x x < −1
x2 x ≤ 1
x 1 < x

g(x) :=
{
x+ 1 0 ≤ x
3x otherwise

f(x) + g(x) =


1 + 2x x < −1
3 + 2x x ≤ 0
2 + 2x x ≤ 2
−2 + 4x 2 < x

f(x)g(x) =


x2 + x x ≤ −1
2 + 3x+ x2 x ≤ 0
−3x2 + 6x x ≤ 2
−6x+ 3x2 2 < x

g(f(x)) =

{ 3x x < −1
x2 + 1 x ≤ 1
x+ 1 1 < x

f(g(x)) =

{ 3x x < −1/3
9x2 x < 0
x+ 1 0 ≤ x

.

Other applications of PPFR can be found in Jeffrey et al. (1997) and von Mohren-
schildt (1996). The step function with normal form is implemented in MapleV.4. step is
called unitstep (not documented) and ‘simplify/unitstep‘(expression,var) com-
putes the normal form with respect to var. convert(expression,piecewise,var) con-
verts to the piecewise representation and convert(expression,unitstep) converts to
the PPFR representation.

References

——Aberer, K. (1990). Normal forms in function fields. Proc. ISSAC 90, pp. 1–7.
——Engeler, E., von Mohrenschildt, M. (1995). The Combinatory Program. Birkhäuser.
——Filippov, A. F. (1988). Differential Equations with Discontinuous Right-hand Sides. Kluwer Academic

Publishers.
——Gonnet G. (1985). Determining equivalence of expressions in random polynomial time. Proc. 16th ACM

Symp. Theory of Computing, 1984, pp. 334–341.
——Jeffrey, D.J., Labahn, G., von Mohrenschildt, M., Rich, A.D. (1997). Integration of signum, piecewise

and related functions. ISSAC 97.
——Kung, H. T. (1973). The computational complexity of algebraic numbers. Conf. Rec. Fifth Annual

(ACM) Symp. on Theory of Computing 30.2.
——Newman, M. H. (1942). On theories with a combinatorial definition of equivalence. Ann. Math., 43,

223–268.
——Richardson, D. (1992). The elementary constant problem. Proc. ISSAC ’92, pp. 108–116.
——Roy, M. F., Szpirlas, A. (1990). Complexity of computation on real algebraic numbers. J. Symb. Comput.,

10, 39–51.
——Rump, S. (1976). On the sign of a real algebraic number. Proc. 1976 ACM on Symb. and Algeb. Com-

putation. ACM76.
——von Mohrenschildt, M. (1994). Discontinuous ordinary differential equations, PhD Thesis, Department

of Mathematics, ETH Zurich, 10768.
——von Mohrenschildt, M. (1996). Using piecewise to solve classes of control theory problems. MapleTech97.

Originally Received 4 March 1997
Accepted 22 June 1998


