
The Maze Tracing Robot

A Sample Specification

c©Dr. M. v. Mohrenschildt

200,2002,2003,2005

Chapter 1

The Requirements

1.1 Requirements Specification

By convention, identifiers are italicized, type names end in T and constants are
in capital letters. The names of variables are prefixed with either i , for inputs,
or o , for outputs or s , for internal state representations.

The software is intended to find the shortest path through a 2-dimensional
maze and control the ‘draw-bot’ (a robot that is capable of moving a pen to
mark on paper), such that it traces that path on a picture of the maze.

1.1.1 Pen Position

We represent the location of the draw-bot pen tip using a Boolean, namely
o penDown, to indicate if the pen is touching the maze surface or not, and a
pair, 〈o penPos.x, o penPos.y〉 of reals, representing the location in the horizontal
plane where the pen tip is touching the maze (if o penDown is true) or would
touch the maze if lowered (if o penDown is false). The location is specified
by the distance, in millimeters, from the respective axis, which are parallel (x
= 0) and perpendicular (y = 0) to the front edge of the robot arm base. The
extent of the region of interest is defined by the constants MIN X , MAX X ,
MIN Y and MAX Y . The origin is the center of the robot base post. The
‘home’ location of the pen-tip (to which it is returned on initialization of the
draw-bot), is 〈HOME X ,HOME Y 〉.

1.1.2 Maze

As illustrated in Figure 1.1, the maze is contained within a

M WIDTH mm × M HEIGHT mm

region of the horizontal plane bounded by the lines x = −M X OFFSET , y =
M Y OFFSET , x = −M X OFFSET+M WIDTH and y = M Y OFFSET+

1

c© M. v. Mohrenschildt 2

Figure 1.1: Robot and Maze Parameters

M HEIGHT , which are the external walls of the maze. The ‘internal walls’ of
the maze are segments of the lines x = −M X OFFSET + n×M CELL SIZE

mm and y = M Y OFFSET + n × M CELL SIZE mm, where n is an integer
(i.e., a square grid with line spacing M CELL SIZE mm). The endpoints of the
walls lie at intersections of these grid lines. Figure 1.2 is a sample maze with
dashed lines indicating the possible wall locations.

1.1.3 Computer System

The draw-bot is controlled using a 80386 based PC running MS-DOS 6.0. The
computer is equipped with Borland C compiler (version 3.1) and libraries for
controlling the robot (robots.lib, robotm.lib and robotl.lib). The maze-
tracer software will be expected to compile and run in this environment.

1.1.4 Draw-Bot

The draw-bot is constructed using a RobixTM RCS-6 construction set. It con-
sists of three arms, each of which is controlled by a motor. The first two arms
move in the horizontal plane to position the pen and the third arm is used to
raise or lower the pen.

1.2 Environment Variables

This section gives the quantities in the environment to be monitored and/or
controlled by the system. Note that all environment variables are functions of
time.

1.2.1 Inputs

i mazeWalls : set of positionT

The set of points that make up the walls of the maze. Note that the
exterior walls (i.e., the perimeter) are included.

i mazeStart : positionT

Start position for the maze.

i mazeEnd : positionT

Finish position for the maze.

i stopButton : buttonT

The status of the button labeled “stop”.

i homeButton : buttonT

The status of the button labeled “home”.

c© M. v. Mohrenschildt 3

B

E

Figure 1.2: Sample Maze

c© M. v. Mohrenschildt 4

i backButton : buttonT

The status of the button labeled “back”.

i mazeFile : string

The file name passed on the command line.

1.2.2 Outputs

o penPos : positionT

The position of the pen relative to the ‘origin’ 〈0, 0〉, which is the center
of the robot base post.

o penDown : Boolean

true iff the pen is touching the plane containing the maze. Assumed to
be initially false.

o powerOn : Boolean

true iff the robot power is on. Assumed to be initially false.

o message : string

The message displayed on the operator console.

1.3 Behavioral Requirements

This section describes the required behavior of the Maze-Tracing Robot in terms
of the environmental quantities described in Section 1.2. To aid in understand-
ing, and to help expose students to a variety of formats, the requirements are
presented in two forms: Informal and State Machine. These descriptions are
intended to describe the same behavior and are in some sense complimentary,
since each method has its own strengths and weaknesses.

1.3.1 Informal Description

Safety Requirements

If at any time the stop button is pressed (i stopButton = Down) the robot must
stop moving within RESPONSE TIME seconds and must remain stationary
until the stop button is released (i stopButton = Up).

When the pen is down (o penDown = true) the pen tip must never come
within WALL SPACE mm of a wall point (wall(o penPos) = true).

Messages

Whenever a significant event occurs (i.e., a button is pressed or released, the pen
reaches a significant point in its journey, or an error is detected) the software
must output a diagnostic message describing the event and the system’s response
to it.

c© M. v. Mohrenschildt 5

Performance

The goal of the program should be to minimize the time between the pen first
touching the paper and it being returned to its home position.

Initialization

When the program is started i mazeFile is read. If an error occurs (e.g. file read
failure) or if there is no path through the maze, then an appropriate diagnostic
message must be output and the control program must exit without turning on
the robot power (o powerOn = false).

Starting

After i mazeFile has been read, and it has been determined that there is a path
through the maze, the robot power must be turned on (which meanso powerOn =
true), which initializes the pen to the home position

o penPos = 〈HOME X ,HOME Y 〉

with the pen up (o penDown = false). The pen must then be moved to the
start position of the maze

o penPos ∈ tol(i mazeStart).

Forward

Once the starting position has been reached (o penPos ∈ tol(i mazeStart)) the
pen must be lowered (o penDown = true) and a path traced through the maze
to the end (o penPos ∈ tol(i mazeEnd)). When the pen reaches the end of the
maze (o penPos ∈ tol(i mazeEnd)) it must be raised (o penDown = false) and
returned to the home position.

Reverse

If at any time while the path is being traced the “back” button is pressed
(i backButton = Down) the Draw-bot is required to reverse the direction of its
tracing within RESPONSE TIME seconds and begin to re-trace its path back
to the beginning (o penPos ∈ tol(i mazeStart)). It should continue to re-trace
its path only as long as the “back” button is held down—when it is released
the Draw-bot should continue in the forward direction. If, while reversing, it
reaches the start position it should stop there until either the “back” button is
released or the “home” button is pressed.

Home

If at any time while the path is being traced (in either direction) the “home”
button is pressed (i homeButton = Down) the Draw-bot is required to stop
tracing within RESPONSE TIME seconds, raise the pen (o penDown = false)
and return to the home position, without making any further marks.

c© M. v. Mohrenschildt 6

Done

When the pen has been returned to the home position, the power must be
turned off (o powerOn = false) and the system must exit.

1.3.2 State Machine

This section gives an alternate presentation of the the Maze-tracer requirements
by defining a Finite State Machine using the notation found in Section 3.7 of
[?].

State variables

s mode : { Init , Starting , Forward , Holding , Reverse, Home, Done }
The system mode.

s holdRet : { Starting , Forward , Reverse, Home }
The system mode to return to when the “stop” button is released.

s holdPos : positionT

The position in which the pen is to be held.

s holdDown : Boolean

The value of o penDown when the stop button was pressed.

Initial State

s mode := Init

Transitions and Outputs

Table 1.1 describes the state transition function, Table 1.2 describes the o message

event-output relation and Table 1.3 describes the o penPos, o penDown and
o powerOn condition-output relation. The performance goal, which does not
appear in this description, is to minimize the time between the transition to
s mode = Forward and s mode = Done.

The predicate reverse is true if the pen back-traces the path to the start
which it came. We do not give a formal definition for the predicate reverse.

1.4 Definitions

This section defines types, functions and constants used in the requirements
specification.

c© M. v. Mohrenschildt 7

Table 1.1: Transition Function

Condition
s mode Input New state

Init Error opening or reading i mazeFile s mode := Done

¬connected(i mazeStart, i mazeEnd) s mode := Done

connected(i mazeStart, i mazeEnd) s mode := Starting

Starting o penPos ∈ tol(i mazeStart) s mode := Forward

i stopButton = Down

s mode := Holding

s holdRet := Starting

s holdPos := o penPos

s holdDown := o penDown

Forward o penPos ∈ tol(i mazeEnd) s mode := Home

i stopButton = Down

s mode := Holding

s holdRet := Forward

s holdPos := o penPos

s holdDown := o penDown

i homeButton = Down ∧ i stopButton = Up s mode := Home

i backButton = Down ∧ i stopButton = Up ∧
i homeButton = Up

s mode := Reverse

Holding i stopButton = Up s mode := s holdRet

Reverse o penPos ∈ tol(i mazeStart)

s mode := Holding

s holdRet := Forward

s holdPos := o penPos

s holdDown := o penDown

i stopButton = Down

s mode := Holding

s holdRet := Reverse

s holdPos := o penPos

s holdDown := o penDown

i homeButton = Down ∧ i stopButton = Up s mode := Home

i backButton = Up ∧ i stopButton = Up∧
i homeButton = Up

s mode := Forward

Home o penPos = 〈HOME X ,HOME Y 〉 s mode := Done

i stopButton = Down

s mode := Holding

s holdRet := Home

s holdPos := o penPos

s holdDown := o penDown

Done true system exit

c© M. v. Mohrenschildt 8

Table 1.2: o message Event-Output Function

Condition
s mode Input o message

Init Error opening or reading i mazeFile appropriate diagnos-
tics

¬connected(i mazeStart, i mazeEnd) “No path found,
nothing to do.”

connected(i mazeStart, i mazeEnd) “Path found, starting
tracing.”

Holding i stopButton = Up “Stop button re-
leased, resuming.”

Forward o penPos ∈ tol(i mazeEnd) “End of maze
reached, returning to
home position.”

i homeButton = Down ∧ i stopButton = Up “Home button
pressed, returning to
home position.”

i backButton = Down ∧ i stopButton = Up ∧
i homeButton = Up

“Back button
pressed, reversing
direction.”

Reverse o penPos ∈ tol(i mazeStart)
i homeButton = Down ∧ i stopButton = Up “Home button

pressed, returning to
home position.”

i backButton = Up ∧ i stopButton = Up ∧
i homeButton = Up

“Back button re-
leased, resuming
forward tracing.”

Home o penPos = 〈HOME X ,HOME Y 〉 “Home position
reached, terminat-
ing.”

- i stopButton = Down “Stop button pressed,
holding.”

c© M. v. Mohrenschildt 9

Table 1.3: o penPos, o penDown and o powerOn Condition-Output Function

s mode o penPos | o penDown = o powerOn =

Init o penPos = 〈HOME X ,HOME Y 〉 false false

Starting true false true

Forward ¬wall(o penPos) true true

Reverse ¬wall(o penPos) ∧ reverse(o penPos) true true

Holding o penPos = s holdPos s holdDown true

Home true false true

Done o penPos = 〈HOME X ,HOME Y 〉 false false

1.4.1 Types

pathT = sequence of tuples of 〈s, f : positionT〉

positionT = tuple of 〈x : [MIN X . . .MAX X] , y : [MIN Y . . .MAX Y]〉

buttonT = { Up, Down }

1.4.2 Functions

connected : positionT × positionT → Boolean

connected(b, e)
.
=

{

∃pi ∈ postitionT p0 = b ∧ pn = e ∧ ∀t 0 ≤ t ≤ 1 ¬wall(tpi + (1 − t)pi+1)
1
}

tol : positionT → set of positionT

tol(p)
.
=

{

q ∈ postitionT

∣

∣

∣

(

√

(q.x − p.x)2 + (q.y − p.y)2 ≤ POS TOL mm
)}

wall : positionT → Boolean

wall(p)
.
= (∃q1, q2 ∈ i mazeWalls) (||t q1 − (1 − t)q2|| ≤ WALL SPACE mm)

1.4.3 Constants

Table 1.4 lists the constants used in this specification, their informal interpreta-
tion and their range of values. Your software should be able to be easily changed
to accommodate changes in these values within the specified ranges. The actual
values of these constants will be provided late in the term.

1tpi + (1 − t)pi+1 0 ≤ t ≤ 1 is the line connecting pi and pi+1

c© M. v. Mohrenschildt 10

Table 1.4: Constants

Name Possible Values Interpretation

MAX X [0. . . 500] Maximum valid x co-ordinate,
millimeters.

MIN X [-500. . . 0] Minimum valid x co-ordinate,
millimeters.

MAX Y [0. . . 500] Maximum valid y co-ordinate,
millimeters.

MIN Y [-500. . . 0] Minimum valid y co-ordinate,
millimeters.

HOME X [MIN X . . .MAX X] x location of pen ‘home’ position,
millimeters.

HOME Y [MIN Y . . .MAX Y] y location of pen ‘home’ position,
millimeters.

M X OFFSET [1. . .MAX X − M WIDTH] x distance of maze from origin,
millimeters.

M Y OFFSET [1. . .MAX Y − M HEIGHT] y distance of maze from origin,
millimeters.

M WIDTH [M CELL SIZE . . .MAX X] Width of maze, millimeters.
M HEIGHT [M CELL SIZE . . .MAX Y] Height of maze, millimeters.
M CELL SIZE [4 . . . 25] Width/Height of a maze cell, mil-

limeters.
RESPONSE TIME [2 . . . 15] Maximum delay before respond-

ing to a button, seconds.
MAX TIME [60 . . . 300] Maximum time allowed to trace

the maze, seconds.

WALL SPACE [1 . . . M CELL SIZE

2
] Minimum distance between the

pen and walls, millimeters.

POS TOL [1 . . . M CELL SIZE

2
] Maximum tolerance on locating

the start and end positions, mil-
limeters.

c© M. v. Mohrenschildt 11

1.5 Software Interface

This section describes how the Maze-tracer control software interfaces with the
operator and the robot by giving the relationship between the variables de-
scribed in Section 1.2 and quantities available to the software.

1.5.1 Inputs

Maze

The values of the i mazeStart, i mazeEnd and i mazeWalls are read from the text
file whose name is given by i mazeFile. Since the maze is constructed from lines
in a grid as described in Section 1.1.2, points are represented by the index of
the grid lines (integers). The first two lines of the file contain pairs that give
the location of i mazeStart and i mazeEnd, respectively, which are taken to be
the middle of the ‘cell’ with the given point as its lower left corner, i.e., if the
first line of the file contains “1 3” then i mazeStart is located at

〈

M X OFFSET + M CELL SIZE +
M CELL SIZE

2

M Y OFFSET + 3M CELL SIZE +
M CELL SIZE

2

〉

.

The remaining lines each contain four integers representing the endpoints of
a wall. For example a line containing “0 8 7 8” indicates that all the points
from

〈M X OFFSET , M Y OFFSET + 8M CELL SIZE 〉

to
〈M X OFFSET + 7M CELL SIZE

, M X OFFSET + 8M CELL SIZE 〉, inclusive, are in i mazeWalls. The bound-
aries of the maze region are also considered to be ‘walls’. The following is a
sample input file describing the maze appearing in Figure 1.2, with start point
in the lower left corner, and end point in the upper right.

0 0

14 14

1 0 1 7

3 0 3 5

4 1 4 4

4 1 6 1

6 1 6 4

4 4 6 4

7 0 7 1

7 1 15 1

7 2 10 2

11 2 15 2

7 2 7 8

10 2 10 9

c© M. v. Mohrenschildt 12

11 2 11 11

3 5 6 5

6 5 6 7

6 7 1 7

0 8 7 8

0 9 10 9

0 10 3 10

4 10 10 10

3 10 3 15

4 10 4 15

10 10 10 15

11 11 15 11

11 12 14 12

11 12 11 15

14 12 14 15

Note that there are several possible files to represent the same maze. Not
only can the walls be listed in any order, but it is possible to describe a segment
as one continuous segment or several shorter ones. Also note that in any line of
the file the endpoints can appear in either order.

Buttons

The values of the buttons are read using the following access programs of the
appropriate robot.lib library.

short i_homeButton(); /* Return 1 if Home button pressed 0 else */

short i_stopButton(); /* Return 1 if Stop button pressed 0 else */

short i_reverseButton(); /* Return 1 if Reverse button pressed 0 else */

1.5.2 Outputs

Pen Position

The pen position is controlled by manipulating the Draw-bot arms using the
routines in the appropriate robot library to set pen position. The following
access program controls the pen position.

short o_penPos(int x,int y); /* Move Pen to position x, y

Returns 0 if OK, <>0 if ERROR */

short o_penDown(int pen); /* Move Pen down pen=1, move Pen up pen=0

Returns 0 if OK, <>0 if ERROR */

Power

The motor power is turned on or off using the following access program.

c© M. v. Mohrenschildt 13

short o_power(int pow); /* Turn Power on pow=1, turn Power off pow=0

Returns 0 if OK, <>0 if ERROR */

Before the Draw-bot can be used it must be initialized using the following
access program.

short o_init(void); /* Call at the Beginning to initialize

returns 0 if status OK, 1 if error */

Message

Status and diagnostic messages are output using the o message function of the
library!

1.6 Expected Changes

The software should be designed to make it relatively easy to accommodate any
of the following classes of changes.

• Changes to the geometry of the robot such that the mapping from a po-
sition (i.e., 〈x, y〉 pair) to the robot inputs is different.

• Changes to the interface to the robot.

• Changes to the format of the maze input file.

• Changes to any constant value within the given ranges.

Chapter 2

The Design

2.1 Module Guide : Maze Tracing Robot

In the following we propose a modularization for our robot project. The mod-
ularization is illustrated in 2.1

Module Name: maze storage

Prefix: - ms

Service: - stores the maze

Secret: - how the maze is stored

Module Name: path storage

Prefix: - ps

Service: - stores the shortest path

Secret: - how the path is stored

Module Name: load maze

Prefix: - lm

Service: - loads the maze

Secret: - where and how the maze file is read in

Module Name: find path

Prefix: - fp

Service: - finds the shortest path through the maze

Secret: - the algorithm for finding the shortest path

Module Name: control

Prefix: - cn

Service: - controls the movement of the arm

Secret: - how the arm moves from position to position
and how the buttons are checked

Module Name: geometry

Prefix: - gm

Service: - handles geometric positioning of the arm

Secret: - how the calculations from cell coords to
robot coords are performed

Module Name: hardware

14

c© M. v. Mohrenschildt 15

Prefix: - hw

Service: - handles hardware aspects of arm (movement
and button checking)

Secret: - how it interfaces with the robot

Module Name: types constants

Service: - provides standard variable types and con-
stants to modules

Secret: - how the data structures are defined and con-
stants defined and calculated

2.2 maze storage : MIS

Imported Data Types: cell

Boolean
Imported Constants: NUM X CELLS

NUM Y CELLS
Exported Functions

NAME INPUT OUTPUT EXCEPTION
ms init
ms set maze start cell ms not initialized

ms cell out of range
ms set maze end cell ms not initialized

ms cell out of range
ms get maze start cell ms not initialzed

ms no start
ms get maze end cell ms not initialized

ms no end
ms set wall cell,cell ms not initialized

ms not valid wall
ms is connected cell,cell Boolean ms not initialized

ms cell out of range
ms not neighbours

State Variables

maze : set of tuple < cell, cell >

start : cell
end : cell
is init : Boolean

Access Function Semantics

ms init()

Transition: maze :=<>

start :=<>

end :=<>

is init := true

ms set maze start(c:cell)

c©
M

.
v
.

M
o
h
r
e
n
s
c
h
ild

t
16

path_storage

read_maze

maze_storage

find_path

control

geometry

hardware

Input

Output

arrow means USES
global types_constants

everything

F
igu

re
2.1:

R
ob

ot
M

o
d
u
les

c© M. v. Mohrenschildt 17

Exception: ¬is init ⇒ ms not initialized

¬(cell in range(c)) ⇒ ms cell out of range
Transition: start := c

ms set maze end(c:cell)

Exception: ¬is init ⇒ ms not initialized

¬(cell in range(c)) ⇒ ms cell out of range
Transition: end := c

cell ms get maze start()

Exception: ¬is init ⇒ ms not initialized

¬ms set maze start ⇒ ms no start
Output: start

cell ms get maze end()

Exception: ¬is init ⇒ ms not initialized

¬ms set maze end ⇒ ms no end
Output: end

ms set wall(c1,c2:cell)

Exception: ¬is init ⇒ ms not initialized

(wall is point) ∨ (wall is diagonal) ∨ (wall is out of range)
⇒ ms not valid wall

Transition: maze := maze || < c1, c2 >

Booleanms is connected(c1,c2:cell)

Exception: ¬is init ⇒ ms not initialized

¬(cell in range(c1)) ⇒ ms cell out of range

¬(cell in range(c2)) ⇒ ms cell out of range

¬(neighbour(c1, c2)) ⇒ ms not neighbours
Output: ∃(wall between c1 and c2)

2.3 path storage : MIS

Imported Data Types: cell

Boolean
Imported Constants: NUM X CELLS

NUM Y CELLS

MAX NUM CELLS
Exported Functions

NAME INPUT OUTPUT EXCEPTION
ps init
ps add to path cell ps not initialized
ps get next Integer cell ps not initialized

ps index out of range
ps get prev Integer cell ps not initialized

ps index out of range
ps get curr Integer cell ps not initialized

ps index out of range

c© M. v. Mohrenschildt 18

State Variables

path : sequence of cell

index : Boolean
is init : Boolean

Access Function Semantics

ps init()

Transition: path :=<>

index := −1
is init := true

ps add to path(c:cell)

Exception: ¬is init ⇒ ps not initialized

Transition: path := path||c
index := index + 1

cell ps get next(pos:Integer)

Exception: ¬is init ⇒ ps not initialized

(pos < 0 ∨ pos > index− 2) ⇒ ps index out of range

Output: path[pos + 1]

cell ps get prev(pos:Integer)

Exception: ¬is init ⇒ ps not initialized

(pos < 1 ∨ pos > index− 1) ⇒ ps index out of range

Transition: pos := pos− 1

Output: path[pos− 1]

cell ps get curr(pos:Integer)

Exception: ¬is init ⇒ ps not initialized

(pos < 0 ∨ pos > index− 1) ⇒ ps index out of range

Output: path[pos]

2.4 load maze : MIS

Imported Data Types: cell

String
Imported Access Functions: ms init

ms set start

ms set end

ms set wall /* from maze storage */

read cell
Exported Functions

NAME INPUT TYPE OUTPUT TYPE EXCEPTION
lm load maze String lm file error

State Variables

f : file

Access Function Semantics

c© M. v. Mohrenschildt 19

lm load maze(filename : String)

Exception: error opening, reading, file format ⇒ lm file error

Transition: f := open(filename)
ms set maze start(read cell)
ms set maze end(read cell)
until end of f do

ms set wall(read cell, read cell)
od

2.5 find path : MIS

Imported Data Types: cell

Boolean
Imported Constants: NUM X CELLS

NUM Y CELLS
Imported Access Functions: ms get maze start

ms get maze end

ms is connected

ps add to path
Exported Functions

NAME INPUT OUTPUT EXCEPTION
fp find path Boolean

State Variables

path:sequence of cell

Access Functions

Boolean fp find path()

Output: ∃path, path[0] = ms get maze start() ∧
path[|path| − 1] = ms get maze end() ∧
(∀i, 0 ≤ i ≤ |path| − 2, ms is connected(path[i], path[i + 1])) ∧
(∀i, 0 ≤ i ≤ |path| − 2, ps add to path(path[i]))

2.6 hardware : MIS

Imported Data Types: Boolean

button
Imported Access Functions: o init

o power

o penDown

o penPos

i stopButton

i homeButton

i backButton
Exported Functions

c© M. v. Mohrenschildt 20

NAME INPUT TYPE OUTPUT TYPE EXCEPTION
hw init hw init error

hw power Integer hw not initialized
hw power error

hw pen Integer hw not initialized
hw power not on
hw pen error

hw move Integer,Integer hw not initialized
hw power not on
hw move error

hw check button hw not initialized
hw power not on
hw button error

State Variables

stop flag : Boolean
pwr flag : Boolean
is init : Boolean

Access Function Semantics

hw init()

Exception: o init() 6= 0 ⇒ hw init error

Transition: is init := true

hw power(power:Integer)

Exception: ¬is init ⇒ hw not initialized

o power(power) 6= 0 ⇒ hw power error
Transition: if (power)

then pwr flag := true

else pwr flag := false

hw pen(pen:Integer)

Exception: ¬is init ⇒ hw not initialized

¬pwr flag ⇒ hw power not on

o penDown(pen) 6= 0 ⇒ hw pen error
Transition: o penDown(pen)

hw move(x,y:Integer)

Exception: ¬is init ⇒ hw not initialized

¬pwr flag ⇒ hw power not on

o penPos(x, y) 6= 0 ⇒ hw move error
Transition: o penPos(x, y)

button hw check(x,y:Integer)

Exception: ¬is init ⇒ hw not initialized

¬pwr flag ⇒ hw power not on
Transition: if i stopButton

stop flag := true

c© M. v. Mohrenschildt 21

Output: STOP if i stopButton

HOME if i homeButton

BACK if i backButton

2.7 geometry : MIS

Imported Data Types: cell

Boolean

button
Imported Access Functions: hw check

hw move
Exported Functions

NAME INPUT TYPE OUTPUT TYPE EXCEPTION
gm go cell

Access Function Semantics

gm go(c:cell)

Transition: if hw check 6= STOP, hw move(convert(dest))

2.8 control : MIS

Used External Data Types: Boolean, button, cell
Used External Modules &

Functions:
hardware, path storage, maze storage,

geometry
Exported Functions

NAME INPUT TYPE OUTPUT TYPE EXCEPTION
cn execute

State Variables

mode : {init, start, forward, reverse, home, done}
back flag : Boolean
pos : Integer

State Transformations

c© M. v. Mohrenschildt 22

MODE CONDITION ACTION NEW MODE
init lm file error mode := done

¬fp find path mode := done
fp find path hw init() mode := starting

hw power(ON) pos := 0
hw pen(UP) back flag := FALSE

starting hw check() = NONE gm go(ps get curr(pos)) mode := forward
hw pen(down)

hw check() = STOP mode := starting
forward back flag = TRUE back flag := false

hw check() = NONE gm go(get next(pos)) pos := pos + 1
mode := forward

hw check() = STOP mode := forward
hw check() = BACK gm go(ps get prev(pos)) pos := pos - 1

back flag := TRUE
mode := reverse

hw check() = HOME mode := home
o penPos = ms get end mode := home
∧ back flag = FALSE

reverse back flag = TRUE
hw check() = NONE gm go(ps get next(pos)) pos := pos + 1

mode := forward
hw check() = STOP mode := reverse
hw check() = BACK gm go(ps get prev(pos)) pos := pos - 1

mode := reverse
hw check() = HOME mode := home

home hw check() 6= STOP hw pen(UP) mode := home
hw check() = STOP mode := home
o penPos = HOME mode := done

done hw power(OFF) quit program

2.9 types constants : MIS

Exported Types: cell = tuple (x:Integer,y:Integer)

Boolean= {TRUE,FALSE}
String= sequence of char

button = set of {STOP,HOME,BACK,NONE}
Exported Constants: UP

DOWN

