
Basic Assembly

Ned Nedialkov

McMaster University
Canada

SE 3F03
January 2014

Assemblers Basic instructions Program structure I/O First program Compiling Linking

Outline

Assemblers

Basic instructions

Program structure

I/O

First program

Compiling

Linking

c© 2013–14 Ned Nedialkov 2/9

Assemblers Basic instructions Program structure I/O First program Compiling Linking

Assemblers

An assembler is a program that translates an assembly
language program into binary code

I NASM Netwide Assembler
I TASM Turbo Assembler (Boorland)
I MASM Microsoft Assembler
I . . .

We study NASM

c© 2013–14 Ned Nedialkov 3/9

Assemblers Basic instructions Program structure I/O First program Compiling Linking

Basic instructions

I add dest, source
I dest=dest+source
I dest register or memory location
I source register, memory location, immediate

I sub dest, source
I dest=dest-source

I mov dest, source
I dest <-- source
I dest register or memory
I source register, memory, or immediate
I both cannot be memory

c© 2013–14 Ned Nedialkov 4/9

Assemblers Basic instructions Program structure I/O First program Compiling Linking

Assembly program structure
% include "asm_io.inc"
segment .data
; initialized data
segment .bss
; uninitialized data
segment .text

global asm_main
asm_main:

enter 0,0 ; setup
pusha ; save all registers
; put your code here
popa ; restore all registers
mov eax, 0 ; return value
leave
re t

c© 2013–14 Ned Nedialkov 5/9

Assemblers Basic instructions Program structure I/O First program Compiling Linking

I/O

I C: I/O done through the standard C library
I Assembly: I/O through the standard C library
%include "asm_io.inc"

I Contains routines by the author for I/O
print_int prints EAX
print_char prints ASCII value of AL
print_string prints the string stored at the address of

EAX; must be 0 terminated
print_nl prints newline
read_int reads an integer into EAX
read_char reads a character into EAX

c© 2013–14 Ned Nedialkov 6/9

Assemblers Basic instructions Program structure I/O First program Compiling Linking

First program
;
; file: first.asm
; First assembly program. This program asks for two integers as
; input and prints out their sum.
;
; To create executable:
; Using djgpp:
; nasm -f coff first.asm
; gcc -o first first.o driver.c asm_io.o
;
; Using Linux and gcc:
; nasm -f elf first.asm
; gcc -o first first.o driver.c asm_io.o
;
; Using Borland C/C++
; nasm -f obj first.asm
; bcc32 first.obj driver.c asm_io.obj
;
; Using MS C/C++
; nasm -f win32 first.asm
; cl first.obj driver.c asm_io.obj

c© 2013–14 Ned Nedialkov 6/9

Assemblers Basic instructions Program structure I/O First program Compiling Linking

;
; Using Open Watcom
; nasm -f obj first.asm
; wcl386 first.obj driver.c asm_io.obj
% include "asm_io.inc"
;
; initialized data is put in the .data segment
;
segment .data
;
; These labels refer to strings used for output
;
prompt1 db "Enter a number: ", 0 ; don’t forget nul terminator
prompt2 db "Enter another number: ", 0
outmsg1 db "You entered ", 0
outmsg2 db " and ", 0
outmsg3 db ", the sum of these is ", 0
;
; uninitialized data is put in the .bss segment
;
segment .bss
;
; These labels refer to double words used to store the inputs

c© 2013–14 Ned Nedialkov 6/9

Assemblers Basic instructions Program structure I/O First program Compiling Linking

;
input1 resd 1
input2 resd 1
;
; code is put in the .text segment
;
segment .text

global asm_main
asm_main:

enter 0,0 ; setup routine
pusha
mov eax, prompt1 ; print out prompt
c a l l print_string
c a l l read_int ; read integer
mov [input1], eax ; store into input1
mov eax, prompt2 ; print out prompt
c a l l print_string
c a l l read_int ; read integer
mov [input2], eax ; store into input2
mov eax, [input1] ; eax = dword at input1
add eax, [input2] ; eax += dword at input2
mov ebx, eax ; ebx = eax
dump_regs 1 ; dump out register values

c© 2013–14 Ned Nedialkov 6/9

Assemblers Basic instructions Program structure I/O First program Compiling Linking

dump_mem 2, outmsg1, 1 ; dump out memory
;
; next print out result message as series of steps
;

mov eax, outmsg1
c a l l print_string ; print out first message
mov eax, [input1]
c a l l print_int ; print out input1
mov eax, outmsg2
c a l l print_string ; print out second message
mov eax, [input2]
c a l l print_int ; print out input2
mov eax, outmsg3
c a l l print_string ; print out third message
mov eax, ebx
c a l l print_int ; print out sum (ebx)
c a l l print_nl ; print new-line
popa
mov eax, 0 ; return back to C
leave
re t

c© 2013–14 Ned Nedialkov 7/9

Assemblers Basic instructions Program structure I/O First program Compiling Linking

C driver
#include "cdecl.h"
i n t PRE_CDECL asm_main(void) POST_CDECL;
i n t main()
{

i n t ret_status;
ret_status = asm_main();
return ret_status;

}

I All segments and registers are initialized by the C system
I I/O is done through the C standard library
I Initialized data in .data
I Uninitialized data in .bss (block started symbol)
I Code in .text
I Stack segment later

c© 2013–14 Ned Nedialkov 7/9

Assemblers Basic instructions Program structure I/O First program Compiling Linking

Compiling

I nasm -f elf first.asm
produces first.o

I ELF: executable and linkable format
I gcc -c driver.c

I produces driver.o
I option -c means compile only

I We need to compile asm_io.asm:
nasm -f elf -d ELF_TYPE asm_io.asm

I produces asm_io.o
I On 64-bit machines, add the option -m32 to generate

32-bit code, e.g. gcc -m32 -c driver.c

c© 2013–14 Ned Nedialkov 8/9

Assemblers Basic instructions Program structure I/O First program Compiling Linking

Linking

I Linker: combines machine code & data in object files and
libraries together to create an executable

I gcc -o first driver.o first.o asm_io.o

I On 64-bit machines,
gcc -m32 -o first driver.o first.o asm_io.o

I -o outputfile specifies the output file
I gcc driver.o first.o asm_io.o

produces a.out by default

c© 2013–14 Ned Nedialkov 9/9

	Assemblers
	Basic instructions
	Program structure
	I/O
	First program
	Compiling
	Linking

