Basic Assembly

Ned Nedialkov

McMaster University
Canada

SE 3F03
January 2014

Assemblers Basic instructions Program structure /0 First program Compiling Linking

Outline

Assemblers

Basic instructions
Program structure
/0

First program
Compiling

Linking

© 2013-14 Ned Nedialkov 2/9

Assemblers Basic instructions Program structure 110 First program Compiling

Assemblers

An assembler is a program that translates an assembly
language program into binary code

» NASM Netwide Assembler
» TASM Turbo Assembler (Boorland)
» MASM Microsoft Assembler

> ..

We study NASM

© 2013-14 Ned Nedialkov

Linking

3/9

Assemblers Basic instructions Program structure 110 First program Compiling

Basic instructions

» add dest, source

> dest=dest+source

» dest register or memory location

» source register, memory location, immediate
» sub dest, source

» dest=dest-source
» MOV dest, source

» dest <-- source

» dest register or memory

» source register, memory, or immediate
» both cannot be memory

© 2013-14 Ned Nedialkov

Linking

4/9

Assemblers Basic instructions Program structure

Assembly program structure

sinclude "asm_io.inc"
segment .data
; 1nitialized data
segment .bss
; uninitialized data
segment .text

global asm_main
asm_main:

enter 0,0

pusha

; put your code here

popa

mov eax, O

leave

ret

© 2013-14 Ned Nedialkov

/0 First program Compiling Linking

; Setup
; save all registers

; restore all registers
; return value

5/9

Assemblers Basic instructions Program structure /0 First program

/0

» C: I/O done through the standard C library
» Assembly: 1/O through the standard C library
sinclude "asm_io.inc"
» Contains routines by the author for I/O
print_int prints EAX
print_char prints ASCII value of AL

Compiling

Linking

print_string prints the string stored at the address of

EAX; must be 0 terminated

print_nl prints newline
read_int reads an integer into EAX
read_char reads a character into EAX

© 2013-14 Ned Nedialkov

6/9

Assemblers Basic instructions Program structure /0 First program Compiling Linking

First program

; file: first.asm
; First assembly program. This program asks for two integers as
; 1nput and prints out their sum.

; To create executable:

; Using djgpp:

; nasm —-f coff first.asm

; gcc —o first first.o driver.c asm_10.0

; Using Linux and gcc:
; nasm -f elf first.asm
; gcc —o first first.o driver.c asm_10.0

; Using Borland C/C++
; nasm —-f obj first.asm
; bcc32 first.obj driver.c asm_1o0.0bj

; Using MS C/C++

; nasm —-f win32 first.asm
; ¢l first.obj driver.c asm_io.obj

© 2013-14 Ned Nedialkov 6/9

Assemblers Basic instructions Program structure /0 First program Compiling Linking

;

; Using Open Watcom

; nasm —-f obj first.asm

; wcl386 first.obj driver.c asm_1io.0bj
sinclude "asm_io.inc"

;

; 1nitialized data 1s put in the .data segment

segment .data

7

; These labels refer to strings used for output

’

promptl db "Enter_a_number:_", 0 ; don’t forget nul terminatc
prompt2 db "Enter_another_number:_ ", 0

outmsgl db "You_entered ", 0

outmsg2 db "_and_ ", O

outmsg3 db ", _the_sum_of_these_is", 0

;
; uninitialized data is put in the .bss segment

7
segment .bss

7
; These labels refer to double words used to store the inputs

© 2013-14 Ned Nedialkov 6/9

Assemblers Basic instructions Program structure /0 First program Compiling
7

inputl resd 1

input2 resd 1

7
; code is put in the .text segment

7
segment .text

global asm_main
asm_main:
enter 0,0 ; setup routine
pusha
mov eax, promptl ; print out prompt
call print_string
call read_int ; read integer
mov [inputl], eax ; Store into inputl
mov eax, prompt2 ; print out prompt
call print_string
call read_int ; read integer
mov [input2], eax ; Store into input2
mov eax, [inputl] ; eax = dword at inputl
add eax, [input2] ; eax += dword at input2
mov ebx, eax ; ebx = eax

dump_regs 1

dump out register values

© 2013-14 Ned Nedialkov

Linking

6/9

Assemblers

7
7

7

Basic instructions Program structure /0

First program Compiling

dump_mem 2, outmsgl, 1 ; dump out memory

next print out result message as series of steps

mov
call
mov
call
mov
call
mov
call
mov
call
mov
call
call
popa
mov
leave
ret

eax, outmsgl

print_string ; print out first message
eax, [inputl]

print_int ; print out inputl

eax, outmsg2

print_string ; print out second message
eax, [input2]

print_int ; print out input2

eax, outmsg3

print_string ; print out third message
eax, ebx

print_int ; print out sum (ebx)
print_nl ; print new-line

eax, 0 ; return back to C

© 2013-14 Ned Nedialkov

Linking

7/9

Assemblers Basic instructions Program structure /0 First program

C driver

#include "cdecl.h"
int PRE_CDECL asm_main(void) POST_CDECL;
int main ()
{
int ret_status;
ret_status = asm_main{();
return ret_status;

Compiling Linking

All segments and registers are initialized by the C system
I/0O is done through the C standard library

Initialized data in .data

Uninitialized data in .bss (block started symbol)

Code in .text

Stack segment later

vV vV vy VY VvyYy

© 2013-14 Ned Nedialkov 7/9

Assemblers Basic instructions Program structure /0 First program Compiling

Compiling

» nasm —-f elf first.asm
produces first.o
» ELF: executable and linkable format
» gcc —-c driver.c
» produces driver.o
» option —c means compile only
» We need to compile asm_io.asm:
nasm —f elf -d ELF_TYPE asm_io.asm
» produces asm_io.o
» On 64-bit machines, add the option -m32 to generate
32-bit code, e.9. gcc -m32 -c driver.c

© 2013-14 Ned Nedialkov

Linking

8/9

Assemblers Basic instructions Program structure /0 First program Compiling Linking

Linking

» Linker: combines machine code & data in object files and
libraries together to create an executable

» gcc —-o first driver.o first.o asm_io.o

» On 64-bit machines,
gcc —-m32 -o first driver.o first.o asm_io.o

» —o outputfile specifies the output file

» gcc driver.o first.o asm_io.o
produces a.out by default

© 2013-14 Ned Nedialkov 9/9

	Assemblers
	Basic instructions
	Program structure
	I/O
	First program
	Compiling
	Linking

