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Multiplication

I mul is for unsigned integers
I imul is for signed integers
I 255 × 255 = 65025 if unsigned

255 is 1 if signed
I FFh = 1111|1111

I as unsigned is 255
I as signed is 1|1111111 = -1

I Two’s complement representation
I first bit 1 means -; 0 means +
I flip all the bits
I add 1
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mul

I mul source
I source can be register or memory
I the other operand is implicit

source other operand result
byte AL AX
word AX DX:AX
dword EAX EDX:EAX
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imul

I imul source
I source can be register or memory
I the other operand is implicit

I imul dest, source

I imul dest, source1, source2

See Table 2.2 for details
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Division

I div is for unsigned integers
I idiv is for signed integers
I both work the same way
I div source

I source can be register or memory

source division quotient remainder
byte AX/source AL AH
word (DX:AX)/source AX DX
dword (EDX:EAX)/source EAX EDX

Do not forget to initialize DX or EDX
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FLAGS register

I Contains various flags
I cmp a, b

I subtracts a − b
I does not store the result
I sets flags

I For unsigned integers
I ZF zero flag
I CF carry flag

I For signed integers
I ZF zero flag
I OF overflow flag; 1 when the result overflows
I SF sign flag; 1 when the result is negative
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cmp

I Unsigned integers

cmp a,b
a-b ZF CF
=0 1 0
>0 0 0
<0 0 1

I Signed integers

cmp a,b
a-b ZF SF,OF
=0 1
>0 0 SF=O, SF=OF
<0 0 SF=1, SF!=OF
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Branch Instructions

Unconditional branches
I jmp label
I call label

I unconditional branch
I like goto label

Conditional branches

I jxx label

I check flags
I if true, branch (transfer execution control) to label

I otherwise, continue from the next statement
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I jxx short label
I the jump is ±128 bytes from the current location
I advantage: the offset is 1 byte

I jxx near label
I the jump is to any location within a segment
I label is 32 bit
I default, same as jxx label

I jxx word label
I 16-bit label

I jxx far label
I outside a segment
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Do cmp a,b
Then

if signed unsigned
a=b je je
a!=b jne jne
a<b jl , jnge jb, jnae
a>b jg, jnle ja, jnbe
a>=b jge, jnl jae, jnb

For more instructions, see the text
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If statements
i f (condition) {
/* then block */
}
else {
/* else block */
}

Can be translated as
;; code that sets flags
;; e.g. cmp a,b
jxx else_block
;; code in then block
jmp end_if

else_block:
;; code in else block

endi_if:

jxx is a suitable branch instruction
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i f (condition) {
/* then block */
}

Can be translated as

;; code that sets flags
;; e.g. cmp a,b
jxx end_if
;; code in then block

endi_if:

jxx is a suitable branch instruction
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Examples

sum=0;
i=i-1;
i f (i>0) sum++;

Can be translated into

;; assume i is in ecx
mov eax, 0 ;sum=0
dec ecx ;i=i-1
j z end_if
inc eax ;sum++

end_if:
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i f (eax>=5)
ebx=1

else
ebx=2

Can be translated into

cmp eax, 5
jge then_block
mov ebx, 2
jmp next

then_block:
mov ebx, 1

next:
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...or into

cmp eax, 5
jnz else_block
mov ebx, 1
jmp next

else_block:
mov ebx, 2

next:
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Loop instructions
loop instruction

Example

sum = 0;
for (i=10; i>0; i--)

sum += i;

Can be translated into

mov eax, 0 ;sum=0
mov ecx, 10 ;ecx=10, loop counter

loop_start:
add eax, ecx ;sum+=i
loop loop_start ;ecx--, goto loop_start
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Example

sum = 0;
for (i=1; i<=10; i++)

sum += i;

Is the following a correct translation?

mov ebx, 1
mov eax, 0 ;sum=0
mov ecx, 10 ;ecx=10, loop counter

loop_start:
add eax, ebx ;sum+=i
inc ebx
loop loop_start ;ecx--, goto loop_start
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loop

I loop start_loop same as
I decrement ecx by 1
I if ecx!=0 goto start_loop

I loope start_loop
I loopz start_loop same as

I decrement ecx by 1
I if ecx!=0 and ZF==1 goto start_loop

I loopne start_loop
I loopnz start_loop same as

I decrement ecx by 1
I if ecx!=0 and ZF==0 goto start_loop

ZF unchanged if ecx=0
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While loops

Example

while (condition) {
/* body of the while loop */
}

Can be translated into

while:
;; code that sets flags
jxx end_while ;branch if false
;; code in the while body
jmp while

end_while:
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Do-while loops

Example

do {
/* body of the loop */
} while (condition)

Can be translated into

do:
;; body of the loop
;; code that sets flags
jxx do ;branch if true

end_while:
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