
Basic Assembly Instructions

Ned Nedialkov

McMaster University
Canada

SE 3F03
January 2014

Multiplication Division FLAGS register Branch Instructions If statements Loop instructions

Outline

Multiplication

Division

FLAGS register

Branch Instructions

If statements

Loop instructions

c© 2013–14 Ned Nedialkov 2/21

Multiplication Division FLAGS register Branch Instructions If statements Loop instructions

Multiplication

I mul is for unsigned integers
I imul is for signed integers
I 255 × 255 = 65025 if unsigned

255 is 1 if signed
I FFh = 1111|1111

I as unsigned is 255
I as signed is 1|1111111 = -1

I Two’s complement representation
I first bit 1 means -; 0 means +
I flip all the bits
I add 1

c© 2013–14 Ned Nedialkov 3/21

Multiplication Division FLAGS register Branch Instructions If statements Loop instructions

mul

I mul source
I source can be register or memory
I the other operand is implicit

source other operand result
byte AL AX
word AX DX:AX
dword EAX EDX:EAX

c© 2013–14 Ned Nedialkov 4/21

Multiplication Division FLAGS register Branch Instructions If statements Loop instructions

imul

I imul source
I source can be register or memory
I the other operand is implicit

I imul dest, source

I imul dest, source1, source2

See Table 2.2 for details

c© 2013–14 Ned Nedialkov 5/21

Multiplication Division FLAGS register Branch Instructions If statements Loop instructions

Division

I div is for unsigned integers
I idiv is for signed integers
I both work the same way
I div source

I source can be register or memory

source division quotient remainder
byte AX/source AL AH
word (DX:AX)/source AX DX
dword (EDX:EAX)/source EAX EDX

Do not forget to initialize DX or EDX

c© 2013–14 Ned Nedialkov 6/21

Multiplication Division FLAGS register Branch Instructions If statements Loop instructions

FLAGS register

I Contains various flags
I cmp a, b

I subtracts a − b
I does not store the result
I sets flags

I For unsigned integers
I ZF zero flag
I CF carry flag

I For signed integers
I ZF zero flag
I OF overflow flag; 1 when the result overflows
I SF sign flag; 1 when the result is negative

c© 2013–14 Ned Nedialkov 7/21

Multiplication Division FLAGS register Branch Instructions If statements Loop instructions

cmp

I Unsigned integers

cmp a,b
a-b ZF CF
=0 1 0
>0 0 0
<0 0 1

I Signed integers

cmp a,b
a-b ZF SF,OF
=0 1
>0 0 SF=O, SF=OF
<0 0 SF=1, SF!=OF

c© 2013–14 Ned Nedialkov 8/21

Multiplication Division FLAGS register Branch Instructions If statements Loop instructions

Branch Instructions

Unconditional branches
I jmp label
I call label

I unconditional branch
I like goto label

Conditional branches

I jxx label

I check flags
I if true, branch (transfer execution control) to label

I otherwise, continue from the next statement

c© 2013–14 Ned Nedialkov 9/21

Multiplication Division FLAGS register Branch Instructions If statements Loop instructions

I jxx short label
I the jump is ±128 bytes from the current location
I advantage: the offset is 1 byte

I jxx near label
I the jump is to any location within a segment
I label is 32 bit
I default, same as jxx label

I jxx word label
I 16-bit label

I jxx far label
I outside a segment

c© 2013–14 Ned Nedialkov 10/21

Multiplication Division FLAGS register Branch Instructions If statements Loop instructions

Do cmp a,b
Then

if signed unsigned
a=b je je
a!=b jne jne
a<b jl , jnge jb, jnae
a>b jg, jnle ja, jnbe
a>=b jge, jnl jae, jnb

For more instructions, see the text

c© 2013–14 Ned Nedialkov 11/21

Multiplication Division FLAGS register Branch Instructions If statements Loop instructions

If statements
i f (condition) {
/* then block */
}
else {
/* else block */
}

Can be translated as
;; code that sets flags
;; e.g. cmp a,b
jxx else_block
;; code in then block
jmp end_if

else_block:
;; code in else block

endi_if:

jxx is a suitable branch instruction
c© 2013–14 Ned Nedialkov 12/21

Multiplication Division FLAGS register Branch Instructions If statements Loop instructions

i f (condition) {
/* then block */
}

Can be translated as

;; code that sets flags
;; e.g. cmp a,b
jxx end_if
;; code in then block

endi_if:

jxx is a suitable branch instruction

c© 2013–14 Ned Nedialkov 13/21

Multiplication Division FLAGS register Branch Instructions If statements Loop instructions

Examples

sum=0;
i=i-1;
i f (i>0) sum++;

Can be translated into

;; assume i is in ecx
mov eax, 0 ;sum=0
dec ecx ;i=i-1
j z end_if
inc eax ;sum++

end_if:

c© 2013–14 Ned Nedialkov 14/21

Multiplication Division FLAGS register Branch Instructions If statements Loop instructions

i f (eax>=5)
ebx=1

else
ebx=2

Can be translated into

cmp eax, 5
jge then_block
mov ebx, 2
jmp next

then_block:
mov ebx, 1

next:

c© 2013–14 Ned Nedialkov 15/21

Multiplication Division FLAGS register Branch Instructions If statements Loop instructions

...or into

cmp eax, 5
jnz else_block
mov ebx, 1
jmp next

else_block:
mov ebx, 2

next:

c© 2013–14 Ned Nedialkov 16/21

Multiplication Division FLAGS register Branch Instructions If statements Loop instructions

Loop instructions
loop instruction

Example

sum = 0;
for (i=10; i>0; i--)

sum += i;

Can be translated into

mov eax, 0 ;sum=0
mov ecx, 10 ;ecx=10, loop counter

loop_start:
add eax, ecx ;sum+=i
loop loop_start ;ecx--, goto loop_start

c© 2013–14 Ned Nedialkov 17/21

Multiplication Division FLAGS register Branch Instructions If statements Loop instructions

Example

sum = 0;
for (i=1; i<=10; i++)

sum += i;

Is the following a correct translation?

mov ebx, 1
mov eax, 0 ;sum=0
mov ecx, 10 ;ecx=10, loop counter

loop_start:
add eax, ebx ;sum+=i
inc ebx
loop loop_start ;ecx--, goto loop_start

c© 2013–14 Ned Nedialkov 18/21

Multiplication Division FLAGS register Branch Instructions If statements Loop instructions

loop

I loop start_loop same as
I decrement ecx by 1
I if ecx!=0 goto start_loop

I loope start_loop
I loopz start_loop same as

I decrement ecx by 1
I if ecx!=0 and ZF==1 goto start_loop

I loopne start_loop
I loopnz start_loop same as

I decrement ecx by 1
I if ecx!=0 and ZF==0 goto start_loop

ZF unchanged if ecx=0

c© 2013–14 Ned Nedialkov 19/21

Multiplication Division FLAGS register Branch Instructions If statements Loop instructions

While loops

Example

while (condition) {
/* body of the while loop */
}

Can be translated into

while:
;; code that sets flags
jxx end_while ;branch if false
;; code in the while body
jmp while

end_while:

c© 2013–14 Ned Nedialkov 20/21

Multiplication Division FLAGS register Branch Instructions If statements Loop instructions

Do-while loops

Example

do {
/* body of the loop */
} while (condition)

Can be translated into

do:
;; body of the loop
;; code that sets flags
jxx do ;branch if true

end_while:

c© 2013–14 Ned Nedialkov 21/21

	Multiplication
	Division
	FLAGS register
	Branch Instructions
	If statements
	Loop instructions

