
Software Optimizations

Ned Nedialkov

McMaster University
Canada

SE 3F03
March 2013

Data locality Common subexpressions Strength reduction Loop invariant motion Loop unrolling

Outline

Data locality

Common subexpressions

Strength reduction

Loop invariant motion

Loop unrolling

2/12

Data locality Common subexpressions Strength reduction Loop invariant motion Loop unrolling

Data locality

Assume
I n particles with coordinates (x , y , z)
I We can store them (in C) as

double a[3][n];
or
double a[n][3];

I In C arrays are stored row-wise
I Which is one should we choose?

3/12

Data locality Common subexpressions Strength reduction Loop invariant motion Loop unrolling

I double a[3][n];

I Coordinates are stored as

x1 x2 x3 · · ·
y1 y2 y3 · · ·
z1 z2 z3 · · ·

I The layout in memory is

x1 x2 x3 · · · y1 y2 y3 · · · z1 z2 z3 · · ·

I Accessing (xi , yi , zi) is likely to result in cache misses

4/12

Data locality Common subexpressions Strength reduction Loop invariant motion Loop unrolling

I double a[n][3];

I Coordinates are stored as

x1 y1 z1
x2 y2 z2
x3 y3 z3
...

...
...

I The layout in memory is

x1 y1 z1 x2 y2 z2 x3 y3 z3 · · ·

When accessing (xi , yi , zi), in most cases it will be in cache

5/12

Data locality Common subexpressions Strength reduction Loop invariant motion Loop unrolling

Common subexpressions

I Assume
double a,b,c,s1,s2;

I Consider
s1 = a+b+c;
s2 = a+b-c;

I A compiler may re-arrange to
t = a+b; //temporary
s1 = t+c;
s2 = t-c;

I Try to eliminate common subexpressions

6/12

Data locality Common subexpressions Strength reduction Loop invariant motion Loop unrolling

I Consider
s1 = a+c+b;
s2 = a+b-c;

I In FP arithmetic (a+c)+b is not always (a+b)+c
I A compiler would evaluate from left to right
a+b+c is evaluated as (a+b)+c

I Put brackets if needed, to help the compiler

7/12

Data locality Common subexpressions Strength reduction Loop invariant motion Loop unrolling

I Consider
r = x[i]*x[i];
s = x[i]-1;

I As written, 3 memory accesses to x[i]

I An optimizing compiler would do
t = x[i];
r = t*t;
s = t-1;

8/12

Data locality Common subexpressions Strength reduction Loop invariant motion Loop unrolling

Strength reduction

I Replacement of an arithmetic expression by another one
that is faster

I Assume int i. Replace 2*i by i+i or i<<1
I Replace y = pow(x,2) by
y = x*x;

I Replace y = pow(x,4) by
y = x*x;
y *= y;

9/12

Data locality Common subexpressions Strength reduction Loop invariant motion Loop unrolling

Loop invariant code motion

I Consider
for (i=0; i<n; i++)
a[i] = r*s*a[i];

I Move r*s outside the loop
t = r*s
for (i=0; i<n; i++)
a[i] = t*a[i];

10/12

Data locality Common subexpressions Strength reduction Loop invariant motion Loop unrolling

Loop unrolling

I Consider computing a dot product

double dotproduct(i n t n, double *a, double *b)
{

i n t i;
double c = 0;
for (i=0;i<n;i++)
c += a[i]*b[i];

}

11/12

Data locality Common subexpressions Strength reduction Loop invariant motion Loop unrolling

I We can unroll the for loop 4 times as

double dotproduct(i n t n, double *a, double *b)
{

i n t i, rem = n&0x3;
double c = 0;
for (i=0;i<n-rem;i+=4)
{

c += a[i]*b[i];
c += a[i+1]*b[i+1];
c += a[i+2]*b[i+2];
c += a[i+3]*b[i+3];

}
for (i=n-rem;i<n;i++)
c += a[i]*b[i];

}

I What are the advantages and disadvantages of loop
unrolling?

12/12

	Data locality
	Common subexpressions
	Strength reduction
	Loop invariant motion
	Loop unrolling

