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Data locality

Assume
I n particles with coordinates (x , y , z)
I We can store them (in C) as

double a[3][n];
or
double a[n][3];

I In C arrays are stored row-wise
I Which is one should we choose?
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I double a[3][n];

I Coordinates are stored as

x1 x2 x3 · · ·
y1 y2 y3 · · ·
z1 z2 z3 · · ·

I The layout in memory is

x1 x2 x3 · · · y1 y2 y3 · · · z1 z2 z3 · · ·

I Accessing (xi , yi , zi) is likely to result in cache misses
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I double a[n][3];

I Coordinates are stored as

x1 y1 z1
x2 y2 z2
x3 y3 z3
...

...
...

I The layout in memory is

x1 y1 z1 x2 y2 z2 x3 y3 z3 · · ·

When accessing (xi , yi , zi), in most cases it will be in cache
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Common subexpressions

I Assume
double a,b,c,s1,s2;

I Consider
s1 = a+b+c;
s2 = a+b-c;

I A compiler may re-arrange to
t = a+b; //temporary
s1 = t+c;
s2 = t-c;

I Try to eliminate common subexpressions
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I Consider
s1 = a+c+b;
s2 = a+b-c;

I In FP arithmetic (a+c)+b is not always (a+b)+c
I A compiler would evaluate from left to right
a+b+c is evaluated as (a+b)+c

I Put brackets if needed, to help the compiler
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I Consider
r = x[i]*x[i];
s = x[i]-1;

I As written, 3 memory accesses to x[i]

I An optimizing compiler would do
t = x[i];
r = t*t;
s = t-1;
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Strength reduction

I Replacement of an arithmetic expression by another one
that is faster

I Assume int i. Replace 2*i by i+i or i<<1
I Replace y = pow(x,2) by
y = x*x;

I Replace y = pow(x,4) by
y = x*x;
y *= y;
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Loop invariant code motion

I Consider
for (i=0; i<n; i++)
a[i] = r*s*a[i];

I Move r*s outside the loop
t = r*s
for (i=0; i<n; i++)
a[i] = t*a[i];
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Loop unrolling

I Consider computing a dot product

double dotproduct( i n t n, double *a, double *b)
{

i n t i;
double c = 0;
for (i=0;i<n;i++)
c += a[i]*b[i];

}
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I We can unroll the for loop 4 times as

double dotproduct( i n t n, double *a, double *b)
{

i n t i, rem = n&0x3;
double c = 0;
for (i=0;i<n-rem;i+=4)
{

c += a[i]*b[i];
c += a[i+1]*b[i+1];
c += a[i+2]*b[i+2];
c += a[i+3]*b[i+3];

}
for (i=n-rem;i<n;i++)
c += a[i]*b[i];

}

I What are the advantages and disadvantages of loop
unrolling?
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