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Data locality

Assume
» n particles with coordinates (x, y, z)

» We can store them (in C) as
double a[3][n];
or
double a[n][371;

» In C arrays are stored row-wise
» Which is one should we choose?
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v

double a[3][n];
Coordinates are stored as

v

X1 Xo X3---

yi Yo Y3
21 2o Z3---

v

The layout in memory is

Xy Xo X3 - W1 Yo Y3 -0 24 22 Z3

v

Accessing (x;, yj, ;) is likely to result in cache misses
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» double a[n][3];
» Coordinates are stored as

X1 N4
X2 Y2 22
X3 Y3 Z3
» The layout in memory is

Xt 1 244 Xo Yo 2o X3 Y3 Z3---

Loop unrolling

When accessing (x;, i, Zj), in most cases it will be in cache
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Common subexpressions

» Assume
double a,b,c,sl,s2;

» Consider
sl = atb+c;
s2 = atb-c;

» A compiler may re-arrange to
t = atb; //temporary
sl = t+c;
s2 = t-c;

» Try to eliminate common subexpressions
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Consider

sl = at+c+b;

s2 = a+b-c;

In FP arithmetic (a+c) +b is not always (a+b) +c

A compiler would evaluate from left to right
atb+c is evaluated as (a+b) +c

Put brackets if needed, to help the compiler

Loop unrolling
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» Consider
r = x[1]1*x[1];
s = x[1]-1;

» As written, 3 memory accesses to x [1]
» An optimizing compiler would do

t = x[1];
r = txt;
s = t-1;
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Strength reduction

» Replacement of an arithmetic expression by another one
that is faster

» Assume int i. Replace 2«1 by i+1i or i<<1
» Replace y = pow(x,2) by

y = X*X;
» Replace y = pow(x,4) by

Yy = X*X;

y *= Y;
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Loop invariant code motion

» Consider
for (i=0; i<n; i++)
ali] = r*sx*xali]l;
» Move rxs outside the loop
t = rx*s
for (i=0; i<n; i++)
ali] = t*alil;

Loop unrolling
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» Consider computing a dot product

double dotproduct (int n,

double xa, double xb)
{

int i;

double ¢ = 0;

for (i=0;i<n;i++)
c += alil*b[i];
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» We can unroll the for loop 4 times as

double dotproduct (int n, double xa, double xb)
{

int i, rem = n&0x3;

double ¢ = 0;

for (i=0;i<n-rem;i+=4)

{
+= alil*b[i];

ali+l]*xb[i+1];
+= al[i+2]+b[i+2];
+= al[i+3]1*b[1i+3];

aaaa
+
I

}
for (i=n-rem;i<n;i++)
c += al[il*b[i];

}

» What are the advantages and disadvantages of loop
unrolling?
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