Software Optimizations

Ned Nedialkov

McMaster University
Canada

SE 3F03
March 2013



Data locality Common subexpressions Strength reduction Loop invariant motion Loop unrolling

Outline

Data locality

Common subexpressions
Strength reduction

Loop invariant motion

Loop unrolling

2/12



Data locality Common subexpressions Strength reduction Loop invariant motion Loop unrolling

Data locality

Assume
» n particles with coordinates (x, y, z)

» We can store them (in C) as
double a[3][n];
or
double a[n][371;

» In C arrays are stored row-wise
» Which is one should we choose?

312



Data locality Common subexpressions Strength reduction Loop invariant motion Loop unrolling

v

double a[3][n];
Coordinates are stored as

v

X1 Xo X3---

yi Yo Y3
21 2o Z3---

v

The layout in memory is

Xy Xo X3 - W1 Yo Y3 -0 24 22 Z3

v

Accessing (x;, yj, ;) is likely to result in cache misses

412



Data locality Common subexpressions Strength reduction Loop invariant motion

» double a[n][3];
» Coordinates are stored as

X1 N4
X2 Y2 22
X3 Y3 Z3
» The layout in memory is

Xt 1 244 Xo Yo 2o X3 Y3 Z3---

Loop unrolling

When accessing (x;, i, Zj), in most cases it will be in cache

512



Data locality Common subexpressions Strength reduction Loop invariant motion Loop unrolling

Common subexpressions

» Assume
double a,b,c,sl,s2;

» Consider
sl = atb+c;
s2 = atb-c;

» A compiler may re-arrange to
t = atb; //temporary
sl = t+c;
s2 = t-c;

» Try to eliminate common subexpressions

6/12



Data locality

Common subexpressions Strength reduction Loop invariant motion

Consider

sl = at+c+b;

s2 = a+b-c;

In FP arithmetic (a+c) +b is not always (a+b) +c

A compiler would evaluate from left to right
atb+c is evaluated as (a+b) +c

Put brackets if needed, to help the compiler

Loop unrolling

72



Data locality Common subexpressions Strength reduction Loop invariant motion Loop unrolling

» Consider
r = x[1]1*x[1];
s = x[1]-1;

» As written, 3 memory accesses to x [1]
» An optimizing compiler would do

t = x[1];
r = txt;
s = t-1;

8/12



Data locality Common subexpressions Strength reduction Loop invariant motion Loop unrolling

Strength reduction

» Replacement of an arithmetic expression by another one
that is faster

» Assume int i. Replace 2«1 by i+1i or i<<1
» Replace y = pow(x,2) by

y = X*X;
» Replace y = pow(x,4) by

Yy = X*X;

y *= Y;

912



Data locality Common subexpressions Strength reduction Loop invariant motion

Loop invariant code motion

» Consider
for (i=0; i<n; i++)
ali] = r*sx*xali]l;
» Move rxs outside the loop
t = rx*s
for (i=0; i<n; i++)
ali] = t*alil;

Loop unrolling

10112



Data locality Common subexpressions

Loop unrolling

Strength reduction Loop invariant motion Loop unrolling

» Consider computing a dot product

double dotproduct (int n,

double xa, double xb)
{

int i;

double ¢ = 0;

for (i=0;i<n;i++)
c += alil*b[i];

1112



Data locality Common subexpressions Strength reduction Loop invariant motion Loop unrolling

» We can unroll the for loop 4 times as

double dotproduct (int n, double xa, double xb)
{

int i, rem = n&0x3;

double ¢ = 0;

for (i=0;i<n-rem;i+=4)

{
+= alil*b[i];

ali+l]*xb[i+1];
+= al[i+2]+b[i+2];
+= al[i+3]1*b[1i+3];

aaaa
+
I

}
for (i=n-rem;i<n;i++)
c += al[il*b[i];

}

» What are the advantages and disadvantages of loop
unrolling?

12112



	Data locality
	Common subexpressions
	Strength reduction
	Loop invariant motion
	Loop unrolling

