
Structures. C++ and Assembly

Ned Nedialkov

McMaster University
Canada

SE 3F03
March 2013

Structures Accessing in assembly Passing/returning structures C++ and assembly Classes Inheritance and polymorphism

Outline

Structures

Accessing in assembly

Passing/returning structures

C++ and assembly

Classes

Inheritance and polymorphism

2/17

Structures Accessing in assembly Passing/returning structures C++ and assembly Classes Inheritance and polymorphism

Structures

I Example

struct S{
short i n t x;// 2 bytes
i n t y; // 4 bytes
double z; // 8 bytes

};

I Elements of a structure are arranged in memory in the
same order as in the structure (ANSI C)

I The first element is at offset 0
I What is the offset of y? 2 or 4?

3/17

Structures Accessing in assembly Passing/returning structures C++ and assembly Classes Inheritance and polymorphism

I offsetof in stddef.h returns the offset of an element in
a structure

I What is the output of
#include <stdio.h>
#include <stddef.h>
struct S{

short i n t x;// 2 bytes
i n t y; // 4 bytes
double z; // 8 bytes

};
i n t main()
{
printf("size of S : %d\n", sizeof(struct S));
printf("offset of x: %ld\n", offsetof(struct S,x));
printf("offset of y: %ld\n", offsetof(struct S,y));
printf("offset of z: %ld\n", offsetof(struct S,z));
return 0;

}

4/17

Structures Accessing in assembly Passing/returning structures C++ and assembly Classes Inheritance and polymorphism

I What is the output of
#include <stdio.h>
#include <stddef.h>
struct S{

i n t x; // 4 bytes
long i n t y; // 4 on 32-bit, 8 bytes on 64-bit machines
double z; // 8 bytes

};
i n t main()
{
printf("size of S : %ld\n", sizeof(struct S));
printf("offset of x: %ld\n", offsetof(struct S,x));
printf("offset of y: %ld\n", offsetof(struct S,y));
printf("offset of z: %ld\n", offsetof(struct S,z));
return 0;

}

5/17

Structures Accessing in assembly Passing/returning structures C++ and assembly Classes Inheritance and polymorphism

Accessing in assembly

I Example: set y to zero

void zero_y(S *s_p)

%define y_offset 4
zero_y:

enter 0,0
mov eax, [ebp + 8]
mov dword [eax + y_offset], 0
leave
re t

I Similar to accessing arrays

6/17

Structures Accessing in assembly Passing/returning structures C++ and assembly Classes Inheritance and polymorphism

Passing/returning structures in C

I C allows passing structures by value
I Not efficient, goes through the stack
I Pass by reference/pointer

I C allows returning structures
I Return values are in eax
I How is it done?
I Suppose struct S foo(), that is, returns a structure
I The compiler may rewrite as

struct S temp;
foo(&temp);

7/17

Structures Accessing in assembly Passing/returning structures C++ and assembly Classes Inheritance and polymorphism

C++ and assembly

I Overloading: more then one function with the same name
I Which one to call?
I The compile distinguishes by the number and type of

arguments
I Consider void f(int x, int y) and

void f(double x, int y)
I The compiler generates different names, e.g. f__Fii and
f__Fdi, respectively

I This is called name mangling
I Cannot overload by a return value

8/17

Structures Accessing in assembly Passing/returning structures C++ and assembly Classes Inheritance and polymorphism

Calling C functions in C++

I To call a C function in C++, use e.g.,

extern "C" {
i n t fun(i n t x, i n t y);
double fun2(double x);

}

I Without extern "C"... name mangling will occur

9/17

Structures Accessing in assembly Passing/returning structures C++ and assembly Classes Inheritance and polymorphism

References
I We can pass parameters by reference
I More convenient than pointers
I Example: the output is 10

#include<stdio.h>
void fun(i n t &x)
{

x++;
}
i n t main()
{

i n t y=9;
fun(y);
printf("%d\n", y);
return 0;

}

10/17

Structures Accessing in assembly Passing/returning structures C++ and assembly Classes Inheritance and polymorphism

Inline functions
I Disadvantages of macros

I Consider
I #define SQR(x) (x*x) and
I SQR(a+b)
I This expands to (a+b*a+b)

I Put as many brackets as you can, e.g.
#define SQR(x) ((x)*(x))

I This cannot happen with inline functions, e.g.,

inline double sqr(double x)
{

return x*x;
}

11/17

Structures Accessing in assembly Passing/returning structures C++ and assembly Classes Inheritance and polymorphism

I If not inlined, normal function call
I If inlined, the code of the function is inserted where it is

called
I no stack frame
I no parameter passing

12/17

Structures Accessing in assembly Passing/returning structures C++ and assembly Classes Inheritance and polymorphism

Classes

I Essentially structures + functions
I Example

class Simple {
public:
Simple ();
i n t get_data () const;
void set_data (i n t);

private:
i n t data;

};
Simple :: Simple() { data = 0; }
i n t Simple::get_data() const { return data; }
void Simple :: set_data (i n t x) { data = x; }

13/17

Structures Accessing in assembly Passing/returning structures C++ and assembly Classes Inheritance and polymorphism

The compiler may generate code corresponding to

struct Simple {
i n t data;

};
void set_data (Simple *s, i n t x) {
s->data = x;

}
i n t get_data (Simple *s) {

return s->data;
}

14/17

Structures Accessing in assembly Passing/returning structures C++ and assembly Classes Inheritance and polymorphism

Inheritance and polymorphism
Consider

#include<iostream>
using namespace std;
class A {
public:

v i r t u a l void print() = 0;
};
class B : public A {
public:

void print() { cout << "Class B" << endl; }
};
class C : public A {
public:

void print() { cout << "Class C" << endl; }
};

15/17

Structures Accessing in assembly Passing/returning structures C++ and assembly Classes Inheritance and polymorphism

i n t main(){
A *a1, *a2;
a1 = new B();
a2 = new C();
a1->print();
a2->print();

}

I class A is an abstract class
I B and C are derived from A

I Calling print on a pointer to A is essentially
polymorphism

16/17

Structures Accessing in assembly Passing/returning structures C++ and assembly Classes Inheritance and polymorphism

I How are virtual functions implemented?
I A class with virtual methods has a hidden pointer to a table

with pointers to functions, vtable
I a = new B: a points to an object of class B
I a->print()

I a points to B
I in the virtual table of B, call print
I 3 times dereferencing

17/17

	Structures
	Accessing in assembly
	Passing/returning structures
	C++ and assembly
	Classes
	Inheritance and polymorphism

