
Tutorial: Assignment 3, Optimization

Tutorial: Assignment 3, Optimization

Natalie Perna
pernanm@mcmaster.ca

Department of Computing and Software
McMaster University

February 23-24, 2016

mailto:pernanm@mcmaster.ca


Tutorial: Assignment 3, Optimization

Outline

1 Assignment

2 Compiler

3 Makefiles

4 Performance Optimization
Profiling
Experiments
Techniques
Reference



Tutorial: Assignment 3, Optimization

Assignment

Assignment



Tutorial: Assignment 3, Optimization

Assignment

Assignment

Review specification and code.



Tutorial: Assignment 3, Optimization

Compiler

Compiler



Tutorial: Assignment 3, Optimization

Compiler

Compiler

If your native C compiler doesn’t support OpenMP by default (if
the provided code fails to compile with make), check this list of
compatible compilers and versions:
http://openmp.org/wp/openmp-compilers/.
On OS X, this may mean:
brew install homebrew/versions/gcc49
then:
make CC=gcc-4.9

http://openmp.org/wp/openmp-compilers/


Tutorial: Assignment 3, Optimization

Makefiles

Makefiles



Tutorial: Assignment 3, Optimization

Makefiles

A Note about makefiles

Assignment 3 has specific instructions about how your makefile
should work. It may be a little tricky if you are not yet comfortable
customizing makefiles. Make sure to leave yourself time to write
the makefile or request help, if needed. Marks will be deducted
otherwise.



Tutorial: Assignment 3, Optimization

Performance Optimization

Performance Optimization



Tutorial: Assignment 3, Optimization

Performance Optimization

Profiling

Profiling

The best way to improve serial performance is through profiling to
identify bottlenecks/hotspots.
Very small improvements in “hotspots” have disproportionately
(enormous) benefits.
Knowing where your hotspots are is essential to optimizing serial
code.
“Make the common case fast and the rare case correct.”



Tutorial: Assignment 3, Optimization

Performance Optimization

Profiling

Profilers

Time based sampling method:
usually easiest to execute and understand
small overhead to collect statistical data about work performed
by application
“where” in the code is executing at each sampling interval

Try gprof on Linux or Instruments on OS X (comes packaged with
Xcode).



Tutorial: Assignment 3, Optimization

Performance Optimization

Experiments

Experiment

Make small changes, then test.
Tests should be a minimum of 10 seconds, though preferably
longer, to ensure your change made an improvement. Repeat
control and test at least twice.



Tutorial: Assignment 3, Optimization

Performance Optimization

Techniques

Conditionals

Branching is expensive.
Consider: x = 0;

Can we save time by not setting x if it’s already zero?
if (x != 0)x = 0;

No, the conditional testing whether x == 0 takes as much time as
just setting it would have.



Tutorial: Assignment 3, Optimization

Performance Optimization

Techniques

Conditionals

Branching is expensive.
Consider: x = 0;

Can we save time by not setting x if it’s already zero?
if (x != 0)x = 0;

No, the conditional testing whether x == 0 takes as much time as
just setting it would have.



Tutorial: Assignment 3, Optimization

Performance Optimization

Techniques

Conditionals

Branching is expensive.
Consider: x = 0;

Can we save time by not setting x if it’s already zero?
if (x != 0)x = 0;

No, the conditional testing whether x == 0 takes as much time as
just setting it would have.



Tutorial: Assignment 3, Optimization

Performance Optimization

Techniques

Function inlining

Function calls are pretty cheap, but if small functions are called
frequently, macros/inlining can reduce overhead.
Warning: Inlining “everything” with increase memory usage and can
do more harm than good. Inline according to the results of your
profiler, and always test.



Tutorial: Assignment 3, Optimization

Performance Optimization

Techniques

Function inlining

Reduce the amount of branching and number of conditional checks.

// OLD
for (i = 0; i < 100; i++)
{

do_stuff(i);
}

// NEW
for (i = 0; i < 100; )
{

do_stuff(i); i++;
do_stuff(i); i++;
do_stuff(i); i++;
...

}

Again, unroll where there are bottlenecks, not everywhere. Always
test.



Tutorial: Assignment 3, Optimization

Performance Optimization

Techniques

Function inlining

Reduce the amount of branching and number of conditional checks.

// OLD
for (i = 0; i < 100; i++)
{

do_stuff(i);
}

// NEW
for (i = 0; i < 100; )
{

do_stuff(i); i++;
do_stuff(i); i++;
do_stuff(i); i++;
...

}

Again, unroll where there are bottlenecks, not everywhere. Always
test.



Tutorial: Assignment 3, Optimization

Performance Optimization

Techniques

Loop Jamming

Be on the lookout for these types of opportunities.
// Initialize 2D array to 0’s with 1’s along diagonal
// OLD
for (i = 0; i < MAX; i++)

for (j = 0; j < MAX; j++)
a[i][j] = 0.0;

for (i = 0; i < MAX; i++)
a[i][i] = 1.0;

// NEW
for (i = 0; i < MAX; i++)
{

for (j = 0; j < MAX; j++)
a[i][j] = 0.0;

a[i][i] = 1.0;
}

Again, unroll where there are bottlenecks, not everywhere. Always
test.



Tutorial: Assignment 3, Optimization

Performance Optimization

Techniques

Loop Inversion

With some loops, direction doesn’t matter, and comparisons to 0
are often extra-cheap thanks to special machine instructions.

// OLD
for (i = 1; i <= MAX; i++)
{

...
}

// NEW
i = MAX +1;
while (--i)
{

...
}

Be careful that you don’t do this at the cost of caching benefits!
Test.



Tutorial: Assignment 3, Optimization

Performance Optimization

Techniques

Variable Scope

Minimize variable scope wherever you can!* Not only is it good
coding practice, it leaves room for the compiler to make smarter
optimizations for you.
Global and static variables can be surprisingly costly, especially
when referred to in bottleneck loops.
*Exception: Pointers for which memory is allocated often benefit
from scope just large enough that they need not be deallocated and
reallocated with each loop iteration.



Tutorial: Assignment 3, Optimization

Performance Optimization

Reference

For more detail...

http://leto.net/docs/C-optimization.php
This is a brief overview, there are many ways to improve
performance of C code. Research!

Reduce the need stack usage for variables and function
parameters (favouring register usage).
Pass by reference, not value
Does your function need a return value?
Shift operations over integer arithmetic!
In which contexts is + or += better?

http://leto.net/docs/C-optimization.php

	Assignment
	Compiler
	Makefiles
	Performance Optimization
	Profiling
	Experiments
	Techniques
	Reference


