
Parallel Program Design:
Decomposition Techniques

Ned Nedialkov

McMaster University
Canada

CS/SE 4F03
February 2014



Data Decomposition Partitioning intermediate results Recursive decomposition Exploratory decomposition

Outline

Data Decomposition

Partitioning intermediate results

Recursive decomposition

Exploratory decomposition

c© 2013–14 Ned Nedialkov 2/8



Data Decomposition Partitioning intermediate results Recursive decomposition Exploratory decomposition

Data Decomposition

1. Decompose the data
2. The decomposition is used to induce computational tasks

I Partitioning output data: each part of the output can be
computed independently of the rest

I Each task computes parts of the output

I Partitioning input data: each tasks works on part of the
input data

I may not be possible to partition based on the output; e.g
sorting a sequence, finding largest number

c© 2013–14 Ned Nedialkov 3/8



Data Decomposition Partitioning intermediate results Recursive decomposition Exploratory decomposition

Example: partitioning output data
Multiplying two matrices

[
A11 A12
A21 A22

]
·
[
B11 B12
B21 B22

]
=

[
C11 C12
C21 C22

]

C11 = A11B11 + A12B21 (1)
C12 = A11B12 + A12B22 (2)
C21 = A21B11 + A22B21 (3)
C22 = A21B12 + A22B22 (4)

I The numbers on the right denote task numbers
I We can compute the result with 4 tasks
I Each tasks does two multiplications in

O(2n3/8) = O(n3/4) and one addition in O(n2/4)
I Total in parallel is O(n3/4 + n2/4) = O(n3/4)

c© 2013–14 Ned Nedialkov 4/8



Data Decomposition Partitioning intermediate results Recursive decomposition Exploratory decomposition

Partitioning intermediate results
Consider[

A11 A12
A21 A22

]
·
[
B11 B12
B21 B22

]
=

[
C11 C12
C21 C22

]
We can compute[

A11
A21

]
·
[
B11 B12

]
=

D(1)
11 D(1)

12

D(1)
21 D(1)

22


[
A12
A22

]
·
[
B21 B22

]
=

D(2)
11 D(2)

12

D(2)
21 D(2)

22


and then[

C11 C12
C21 C22

]
=

D(1)
11 D(1)

12

D(1)
21 D(1)

22

+

D(2)
11 D(2)

12

D(2)
21 D(2)

22


c© 2013–14 Ned Nedialkov 5/8



Data Decomposition Partitioning intermediate results Recursive decomposition Exploratory decomposition

I 8 tasks can run in parallel to multiply n/2 × n/2 matrices
I Each tasks does O(n3/8) work

I 4 tasks can add them in parallel
I Each task does n2/4 work

I Total in parallel is O(n3/8 + n2/4) = O(n3/8)
I About 2 times faster than if partitioning the output

c© 2013–14 Ned Nedialkov 6/8



Data Decomposition Partitioning intermediate results Recursive decomposition Exploratory decomposition

Recursive decomposition

I Recursively subdivide the problem
I Solve subproblems in parallel
I Combine the results
I E.g. parallel quicksort

c© 2013–14 Ned Nedialkov 7/8



Data Decomposition Partitioning intermediate results Recursive decomposition Exploratory decomposition

Exploratory decomposition

I Assume we have a large solution space, and we need to
search for a solution in it

I Decompose this space into smaller parts
I Search in parallel in these smaller parts to find a solution
I E.g. solving the 15-puzzle problem

c© 2013–14 Ned Nedialkov 8/8


	Data Decomposition
	Partitioning intermediate results
	Recursive decomposition
	Exploratory decomposition

