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Parallel matrix-vector product

I Consider parallel matrix-vector multiplication
I Let A ∈ Rn×n and x ∈ Rn

I We wish to compute y = Ax in parallel and analyze scalability
I We consider 1D and 2D distribution schemes
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1D distribution

I Assume that process i stores ni rows of A and ni rows of x
I Then i computes yi = Aixi

y0
y1
...

yp−1

 =


A0
A1
...

Ap−1




x0
x1
...

xp−1


Ai ∈ Rni×n, x , y ∈ Rni

I Algorithm
1. Process i gathers x
2. Process i computes yi = Aixi
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Analysis
I Step 1 can be done using all-to-all broadcast

I Assume that all-to-all broadcast of m words takes time

ts log2 p + tw m(p − 1) (1)

ts is start-up time, tw is pre-word transfer time
I Assume ni = n/p. Then m = n/p, and (1) becomes

ts log2 p + tw m(p − 1) = ts log2 p + tw
n
p
(p − 1)

≈ ts log2 p + tw n (2)

I Step 2 can be done in ≈ (n/p)n operations:

n2

p
(3)

For simplicity, we omit constants. For example, this computation
is more like 2n2/pγ, where γ is the time per arithmetic operation

c© 2013–16 Ned Nedialkov 5/15



Parallel matrix-vector product 1D distribution Analysis 2D distribution

From (2, 3), the parallel time is

Tp =
n2

p
+ ts log2 p + tw n

Since the serial time is Ts = n2, the speed up is

S =
Ts

Tp
=

n2

n2

p + ts log2 p + tw n
=

1
1
p + ts

log2 p
n2 + tw 1

n

The efficiency is

E1D :=
S
p

=
1

1 + ts
p log2 p

n2 + tw p
n

(4)
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Scalability
I For fixed n, E1D decreases as p increases

Not strongly scalable
I Denote the work for problem of size n by W (n) = n2

Assume we double n. Then

W (2n) = 4n2 = 4W (n)

I Since the work quadruples, we increase the number of
processes to 4p
Then

E ′1D =
1

1 + ts
4p log2(4p)

(2n)2 + tw 4p
2n

=
1

1 + ts
p(2+log2 p)

n2 + tw 2p
n

=
1

(1 + ts
p log2 p

n2 + tw
p
n
)︸ ︷︷ ︸

same as in E1D

+(ts 2p
n2 + tw p

n )
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I Obviously E ′1D < E1D due to

ts
2p
n2 + tw

p
n
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I Let M be the number of words that can be stored per node
I On p nodes, we can store pM words
I Let N be the size of the largest problem we can store on p nodes
I Assume we store N2 items, that is A. Then N2 = pM and

N =
√

pM
We ignore the storage for the xi

I Using n = N in (4), we obtain

E ′′1D =
1

1 + ts
log2 p

M + tw
√

p√
M

(5)

I limp→∞ E ′′1D = 0
I This algorithm does not scale well
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2D distribution

I Consider a 2D grid of processs
I For simplicity, assume q × q = p processs
I Process (i , j) stores submatrix Aij ∈ Rni×mi

I Process (j , j) stores subvector xj ∈ Rnj

I This distribution can be visualized as
A0,0, x0 A0,1 . . . A0,q−1
A1,0 A1,1, x1 . . . A1,q−1

...
... . . .

...
Aq−1,0 Aq−1,1 . . . Aq−1,q−1, xq−1
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Algorithm

1. Process (j , j) broadcasts xj along column j

A0,0, x0 A0,1, x1 . . . A0,q−1, xq−1
A1,0, x0 A1,1, x1 . . . A1,q−1, xq−1

...
...

Aq−1,0, x0 Aq−1,1, x1 . . . Aq−1,q−1, xq−1

2. Process (i , j) computes Aijxj

3. Process (i , i) does “sum" reduction across row i . Then (i , i)
contains yi :

yi = Ai,0x0 + Ai,1x1 + · · ·+ Ai,q−1xq−1
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Analysis
Assume ni ,mi = n/q

I Assume one-to-all broadcast of m words takes

(ts + tw m) log2 p (6)

Here m = n/q = n/
√

p and we broadcast along q =
√

p nodes
Then (6) becomes

(ts + tw m) log2 p =

(
ts + tw

n
q

)
log2 q

=

(
ts + tw

n
√

p

)
log2
√

p

=
1
2

(
ts + tw

n
√

p

)
log2 p

(7)
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I Aijxj takes(
n
q

)2

=
n2

p
(8)

I All-to-one reduction is like one-to-all broadcast:

1
2

(
ts + tw

n
√

p

)
log2 p (9)

We ignore the time for sumations

The parallel time is (7) + (8) + (9):

Tp =
n2

p
+

(
ts + tw

n
√

p

)
log2 p
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Speedup is

S =
Ts

Tp
=

n2

n2

p +
(

ts + tw n√
p

)
log2 p

=
1

1
p +

(
ts + tw n√

p

)
log2 p

n2

Efficiency is

E2D =
1

1 + ts
p log2 p

n2 + tw
√

p log2 p
n

(10)

What happens if we increase n to 2n and p to 4p compared to
increasing in

E1D =
1

1 + ts
p log2 p

n2 + tw p
n

?
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I As before, assume n =
√

pM
Then

E ′′2D =
1

1 + ts
p log2 p

pM + tw
√

p log2 p√
pM

=
1

1 + ts
log2 p

M + tw
log2 p√

M

I log2 is a very slowly growing function, and can be considered as
a constant here

I As p increases, the efficiency decreases very slowly and much
slower than E ′1D in (5)

I For practical purposes, this algorithm scales well
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