
Caching

Ned Nedialkov

McMaster University
Canada

CS/SE 4F03
January 2016

Caches Cache mappings Impact on performance Latency and bandwidth Examples

Outline

Caches

Cache mappings

Impact on performance

Latency and bandwidth

Examples

c© 2013–16 Ned Nedialkov 2/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

Caches

I Cache is memory that can be accessed faster than main
memory

I Can be located on the same chip as the CPU or on a
separate chip

I Locality: access to one location is followed by an access to
a nearby location

I Spatial locality: if a memory location is accessed, then a
nearby location is likely to be accessed in the near future

I Temporal locality: data are referenced repeatedly in a
small time window
Special case of spatial locality: accessing the same data

c© 2013–16 Ned Nedialkov 3/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

I Memory access operates on blocks of data and
instructions

I Called cache blocks or cache lines
I Typically 8 to 16 times as much informations as a single

memory location
I Example

I Cache lines stores 16 floats, say a[0], a[1], . . . , a[15]
I Each can be accessed fast
I If a[16] is accessed, cache miss. Another cache line is

brought into memory

c© 2013–16 Ned Nedialkov 4/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

I The cache is usually divided into levels, e.g. L1, L2, L3
I L1 is smaller and faster than L2, L2 is smaller and faster

than L3, and L3 is smaller and faster than main memory
I Data in L1 is usually (but not always) stored in L2 and so

on
I When accessing an instruction or data, the CPU works its

way down the cache hierarchy
I checks L1, if not in L1 checks L2 . . .
I if the data is available: cache hit; otherwise cache miss
I it can happen e.g. a cache miss in L1 and a cache hit in L2

I If a cache miss occurs, the CPU may stall waiting for the
data

c© 2013–16 Ned Nedialkov 5/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

I When writing into a cache, the data in the cache and in the
main memory are inconsistent

I Write-through cache: a line is written into main memory as
soon as the data in the cache is updated

I Write-back cache: a line is written into main memory when
it is replaced in the cache

c© 2013–16 Ned Nedialkov 6/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

Cache mappings

I Fully associative cache: a new line can be placed at any
location in the cache

I Direct mapped cache: each line has a unique location in
the cache

I n-way set associative cache: each cache line is placed in
one of n-different locations

c© 2013–16 Ned Nedialkov 7/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

Example: cache mappings

I Main memory: 16 lines, 0, 1, . . . 15
I Cache: 4 lines, 0, 1, 2, 3
I Fully associative: each line from memory can go into any

of the cache lines
I Direct mapped: we can map using division by 4 and taking

the remainder
I 2-way set associative

I we have two sets of cache lines
I set 0 contains lines 0 and 1
I set 1 contains lines 2 and 3

c© 2013–16 Ned Nedialkov 8/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

We can map

memory line cache line
0 0 or 1
1 2 or 3
2 0 or 1
3 2 or 3
4 0 or 1
...

...

I When more than one line can be mapped into a cache, which
one to replace?

I E.g. assume line 0 is in location 0 and line 2 is in location 1

I Where to store line 4? It can be in 0 or 1

I Most common: evict the least recently used

c© 2013–16 Ned Nedialkov 9/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

Example: impact on performance

Which loop would execute faster?

for (i=0; i<n; i++)
for (j=0; j<n; j++)

y[j] += A[i][j]*x[j]

for (j=0; j<n; j++)
for (i=0; i<n; i++)

y[j] += A[i][j]*x[j]

Consider the following C program

c© 2013–16 Ned Nedialkov 10/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

#include<stdio.h>
#include<sys/resource.h>
#include<unistd.h>
#include<math.h>

double getTime() {
struct rusage usage;
getrusage(RUSAGE_SELF, &usage);
struct timeval time;
time = usage.ru_utime;
return time.tv_sec+time.tv_usec/1e6;

}

#define N 10000
double A[N][N], x[N], y[N];
i n t Y[N];

i n t main()
{

i n t i,j;

c© 2013–16 Ned Nedialkov 10/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

double time;

/ / generate random e n t r i e s
for (i=0; i<N; i++){
x[i]=drand48();
for (j=0; j<N; j++) A[i][j]=drand48();

}

/ / process by rows
for (i=0; i<N; i++) y[i]=0;
time = getTime();
for (i=0; i<N; i++) {

for (j=0; j<N; j++)
y[i] += A[i][j]*x[j];

}
printf("Accessing by rows. Time is % .2e\n",

getTime()-time);

c© 2013–16 Ned Nedialkov 10/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

/ / process by columns
for (i=0; i<N; i++) Y[i] = 0;
time = getTime();
for (j=0; j<N; j++)

for (i=0; i<N; i++)
Y[i] += A[i][j]*x[j];

printf("Accessing by cols. Time is % .2e\n",
getTime()-time);

return 0;
}

c© 2013–16 Ned Nedialkov 11/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

On Mac OSX system
I 1.7GHz Intel Core i5
I Two cores
I L2 Cache (per Core): 256 KB
I L3 Cache: 3 MB
I 4GB 1333MHz DDR3

Compiled with gcc version 4.2.1 with -O3, this program outputs

Accessing by rows. Time is 1.32e-01
Accessing by cols. Time is 2.20e+00

About 16.7 times faster if processed by rows!

c© 2013–16 Ned Nedialkov 11/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

Latency and bandwidth

I Latency: the delay between the CPU issuing a request for
a memory item and the arrival of the item

I measured in nanosecond or clock cycles
1 ns = 10−9 seconds

I Bandwidth the rate at which data is obtained from memory
I measured in bytes (kilo, mega, giga) per second

c© 2013–16 Ned Nedialkov 12/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

Example: effect of memory latency on performance

Assume a processor
I operating at 1 GHz

1 ns clock, 1 ns = 10−9 seconds
I with two multiply-add units
I can execute 4 instructions per cycle

i.e. 4 instructions every 1 ns
I Peak performance

I 4 instructions every 1 ns or 4 instructions every 10−9

seconds
I in 1 second, 4/10−9 = 4 × 109 operations
I 4 GFLOPS

I FLOPS: Floating-Point Operations per Second

c© 2013–16 Ned Nedialkov 13/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

Now assume

I The processor is connected to a DRAM with 100 ns
latency and no caches

I Every time a memory request is made, the processor waits
100 cycles

Consider computing a dot product
I One multiply and one add on each two elements

I 2 floating-point operations and 2 data fetches
I 1 FLOP per data fetch
I 1 FLOP every 100 cycles or 100 ns
I In 109 cycles we have 109/100 = 10 × 106 FLOPS

I 10 MFLOPS

c© 2013–16 Ned Nedialkov 14/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

Example: impact of caches

I Consider 1GHz processor with a 100 ns latency DRAM
I Assume a 32 KB cache with 1 ns latency
I Consider multiplying two 32 × 32 matrices A and B

I the cache can store A and B and the result C = AB
I To fetch the matrices into cache we fetch 2 matrices each

of 32 × 32 = 1024 or 1K words
Total is 2K words

I one word every 100 ns = 10−7 seconds
I 2K words in ≈ 2000 × 10−7s = 200 × 10−6 s = 200 µs

1 µs = 10−6 seconds

c© 2013–16 Ned Nedialkov 15/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

I Multiplying 2 matrices takes ≈ 2n3 operations
I 2 × 323 = 216 = 64K operations
I The processor can do 4 operations per cycle
I We can multiply them in 64/4 = 16K cycles
I 16K cycles × 10−9s = 16 µs
I Total time is 200 + 16 = 216 µs
I That is, we do 64K FLOPS in 216 × 10−6 s
I In one second 64K/(216 × 10−6) ≈ 303 × 106 FLOPS
I 303 MFLOPS

c© 2013–16 Ned Nedialkov 16/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

Example: impact of memory bandwidth

I Memory bandwidth (MB): the rate at which data is moved
between the processor and memory

I Depends on the bandwidth of the memory bus and the
memory units

I A common technique to increase MB is to increase the
size of a memory block

c© 2013–16 Ned Nedialkov 17/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

I In the dot product example, we fetch one word every 100
cycles: peak performance is 10 MFLOPS

I Assume that a request for a word returns 4 words, cache
line

I That is, we obtain 4 words every 100 ns, 8 words every
200 ns

I We have 8 FLOPS every 200 ns, or 1 FLOP every 25 ns
I 1 FLOP every 25 × 10−9 s
I In one second, 1/(25 × 10−9) = 0.04 × 109 = 40 × 106

I 40 MFLOPS

c© 2013–16 Ned Nedialkov 18/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

I In this example, we assumed 4 bytes are obtained at once
I In practice, first word is retrieved in 100 ns and each next

word is obtained on a subsequent bus cycle
I 4 words are available after 100 + 3 × (memory bus cycle)
I Assume a data bus at 200MHz

Bus cycle 1/(200 × 106) = 0.005 × 10−6 = 5 ns for each
next word

I 4 words are obtained in 100 + 3 × 5 = 115 ns
I 8 FLOPS each 230 ns
I 1 FLOP each 230/8 ns = 230/(8 × 10−9) s
I In one second, 8/230 × 109 ≈ 34.8 × 106

I 34.8 MFLOPS
I Not the latency did not change, only the block size changed

c© 2013–16 Ned Nedialkov 19/19

	Caches
	Cache mappings
	Impact on performance
	Latency and bandwidth
	Examples

