Caching

Ned Nedialkov

McMaster University
Canada

CS/SE 4F03
January 2016

Caches Cache mappings Impact on performance Latency and bandwidth Examples

Outline

Caches

Cache mappings
Impact on performance
Latency and bandwidth

Examples

© 2013-16 Ned Nedialkov 2/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

Caches

» Cache is memory that can be accessed faster than main
memory

» Can be located on the same chip as the CPU or on a
separate chip

» Locality: access to one location is followed by an access to
a nearby location

» Spatial locality: if a memory location is accessed, then a
nearby location is likely to be accessed in the near future

» Temporal locality: data are referenced repeatedly in a
small time window
Special case of spatial locality: accessing the same data

© 2013-16 Ned Nedialkov 3/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

» Memory access operates on blocks of data and
instructions

» Called cache blocks or cache lines
» Typically 8 to 16 times as much informations as a single
memory location
» Example
» Cache lines stores 16 floats, say a[0], a[1], ..., a[15]

» Each can be accessed fast
» If a[16] is accessed, cache miss. Another cache line is
brought into memory

© 2013-16 Ned Nedialkov 4/19

Caches

Cache mappings Impact on performance Latency and bandwidth Examples

The cache is usually divided into levels, e.g. L1, L2, L3

L1 is smaller and faster than L2, L2 is smaller and faster
than L3, and L3 is smaller and faster than main memory

Data in L1 is usually (but not always) stored in L2 and so
on
When accessing an instruction or data, the CPU works its
way down the cache hierarchy

» checks L1, if notin L1 checks L2 ...

» if the data is available: cache hit; otherwise cache miss

» it can happen e.g. a cache miss in L1 and a cache hit in L2
If a cache miss occurs, the CPU may stall waiting for the
data

© 2013-16 Ned Nedialkov 5/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

» When writing into a cache, the data in the cache and in the
main memory are inconsistent

» Write-through cache: a line is written into main memory as
soon as the data in the cache is updated

» Write-back cache: a line is written into main memory when
it is replaced in the cache

© 2013-16 Ned Nedialkov 6/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

Cache mappings

» Fully associative cache: a new line can be placed at any
location in the cache

» Direct mapped cache: each line has a unique location in
the cache

» n-way set associative cache: each cache line is placed in
one of n-different locations

© 2013-16 Ned Nedialkov 719

Caches Cache mappings Impact on performance Latency and bandwidth Examples

Example: cache mappings

v

Main memory: 16 lines, 0, 1, ...15

Cache: 4lines, 0, 1,2, 3

Fully associative: each line from memory can go into any
of the cache lines

Direct mapped: we can map using division by 4 and taking
the remainder

2-way set associative

» we have two sets of cache lines
» set 0 contains lines 0 and 1
» set 1 contains lines 2 and 3

v

v

v

v

© 2013-16 Ned Nedialkov 8/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

We can map
memory line cache line
0 Oor1
1 20r3
2 Oort
3 2o0r3
4 Oor1

v

When more than one line can be mapped into a cache, which
one to replace?

» E.g. assume line 0 is in location 0 and line 2 is in location 1

v

Where to store line 4? It can be in 0 or 1

v

Most common: evict the least recently used

© 2013-16 Ned Nedialkov 9/19

Caches Cache mappings Impact on performance

Example: impact on performance

Which loop would execute faster?

for (i=0; i<n; i++)
for (35=0; j<n; J++)
y[3] += A[i][J]l+x[]]

for (3=0; J<n; J++)
for (i=0; i<n; i++)
y[3] += A[i][Jl»x[]]

Consider the following C program

© 2013-16 Ned Nedialkov

Latency and bandwidth

Examples

10/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

#include<stdio.h>
#include <sys/resource.h>
#include <unistd.h>
#include <math.h>

double getTime () {
struct rusage usage;
getrusage (RUSAGE_SELF, &usage);
struct timeval time;
time = usage.ru_utime;
return time.tv_sec+time.tv_usec/le6;

#define N 10000
double A[N][N], x[N], yI[N];
int Y[N];

int main ()
{
int i,5;

© 2013-16 Ned Nedialkov 1019

Caches

Cache mappings Impact on performance Latency and bandwidth

double time;

// generate random entries
for (i=0; i<N; i++){
x[1]=drand48 () ;
for (3=0; Jj<N; J++) A[i][j]l=drand4s8();

// process by rows

for (i=0; i<N; i++) y[1]1=0;

time = getTime();

for (i=0; i<N; i++) {

for (3=0; J<N; J++)

y[i] += A[1][3]1*x[3];

}

printf ("Accessing by, rows._Time_is_ % .2e\n",
getTime () -time) ;

© 2013-16 Ned Nedialkov

Examples

10/19

Caches

Cache mappings Impact on performance

// process by columns
for (i=0; i<N; i++) Y[i] = 0;
time = getTime();
for (3=0; j<N; j++)
for (i=0; i<N; i++)
Y[i] += A[i][J)*x[3]);

printf ("Accessing, by, cols._Time_is_,

getTime () -time) ;

return 0;

© 2013-16 Ned Nedialkov

Latency and bandwidth

%$..2e\n",

Examples

1119

Caches Cache mappings Impact on performance Latency and bandwidth Examples

On Mac OSX system
» 1.7GHz Intel Core i5
» Two cores
» L2 Cache (per Core): 256 KB
» L3 Cache: 3 MB
» 4GB 1333MHz DDR3
Compiled with gcc version 4.2.1 with -O3, this program outputs

Accessing by rows. Time is 1.32e-01
Accessing by cols. Time is 2.20e+00

About 16.7 times faster if processed by rows!

© 2013-16 Ned Nedialkov 1119

Caches Cache mappings Impact on performance Latency and bandwidth Examples

Latency and bandwidth

» Latency: the delay between the CPU issuing a request for
a memory item and the arrival of the item

» measured in hanosecond or clock cycles
1 ns = 1072 seconds

» Bandwidth the rate at which data is obtained from memory
» measured in bytes (kilo, mega, giga) per second

© 2013-16 Ned Nedialkov 1219

Caches Cache mappings Impact on performance Latency and bandwidth Examples

Example: effect of memory latency on performance

Assume a processor

» operating at 1 GHz
1 ns clock, 1 ns = 109 seconds

with two multiply-add units

v

v

can execute 4 instructions per cycle
i.e. 4 instructions every 1 ns
Peak performance

» 4 instructions every 1 ns or 4 instructions every 10~°
seconds

» in 1 second, 4/10~° = 4 x 10° operations

» 4 GFLOPS

FLOPS: Floating-Point Operations per Second

v

v

© 2013-16 Ned Nedialkov 13/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

Now assume

» The processor is connected to a DRAM with 100 ns
latency and no caches

» Every time a memory request is made, the processor waits
100 cycles

Consider computing a dot product

» One multiply and one add on each two elements

2 floating-point operations and 2 data fetches

1 FLOP per data fetch

1 FLOP every 100 cycles or 100 ns

In 10° cycles we have 10°/100 = 10 x 10® FLOPS

» 10 MFLOPS

vV vy VvVvyy

© 2013-16 Ned Nedialkov 1419

Caches Cache mappings Impact on performance Latency and bandwidth Examples

Example: impact of caches

v

Consider 1GHz processor with a 100 ns latency DRAM

Assume a 32 KB cache with 1 ns latency
Consider multiplying two 32 x 32 matrices A and B
» the cache can store A and B and the result C = AB

To fetch the matrices into cache we fetch 2 matrices each
of 32 x 32 = 1024 or 1K words
Total is 2K words

» one word every 100 ns = 10~/ seconds
» 2K words in =~ 2000 x 10~"s = 200 x 10~® s = 200 us
1 us = 10-% seconds

v

v

v

© 2013-16 Ned Nedialkov 1519

Caches Cache mappings Impact on performance Latency and bandwidth Examples

» Multiplying 2 matrices takes ~ 2n° operations

» 2 x 323 = 216 — 64K operations

» The processor can do 4 operations per cycle

» We can multiply them in 64/4 = 16K cycles

» 16K cycles x 10795 = 16 us

» Total time is 200 + 16 = 216 us

» That is, we do 64K FLOPS in 216 x 108 s

» In one second 64K /(216 x 1076) ~ 303 x 108 FLOPS
» 303 MFLOPS

© 2013-16 Ned Nedialkov 16/19

Caches Cache mappings Impact on performance Latency and bandwidth Examples

Example: impact of memory bandwidth

» Memory bandwidth (MB): the rate at which data is moved
between the processor and memory

» Depends on the bandwidth of the memory bus and the
memory units

» A common technique to increase MB is to increase the
size of a memory block

© 2013-16 Ned Nedialkov 17119

Caches

v

Cache mappings Impact on performance Latency and bandwidth Examples

In the dot product example, we fetch one word every 100
cycles: peak performance is 10 MFLOPS

Assume that a request for a word returns 4 words, cache
line

That is, we obtain 4 words every 100 ns, 8 words every
200 ns

We have 8 FLOPS every 200 ns, or 1 FLOP every 25 ns
1 FLOP every 25 x 1079 s

In one second, 1/(25 x 107°) = 0.04 x 10% = 40 x 10°
40 MFLOPS

© 2013-16 Ned Nedialkov 18/19

Caches

Cache mappings Impact on performance Latency and bandwidth Examples

In this example, we assumed 4 bytes are obtained at once

In practice, first word is retrieved in 100 ns and each next
word is obtained on a subsequent bus cycle

4 words are available after 100 4+ 3 x (memory bus cycle)

Assume a data bus at 200MHz
Bus cycle 1/(200 x 108) = 0.005 x 10~ = 5ns for each
next word

4 words are obtained in 100 + 3 x 5=115ns

8 FLOPS each 230 ns

1 FLOP each 230/8 ns = 230/(8 x 107%) s

In one second, 8/230 x 10° ~ 34.8 x 108

34.8 MFLOPS

Not the latency did not change, only the block size changed

© 2013-16 Ned Nedialkov 1919

	Caches
	Cache mappings
	Impact on performance
	Latency and bandwidth
	Examples

