Array Distribution Schemes

Ned Nedialkov

McMaster University Canada

> SE 3F03 February 2014

Outline

Block distributions

2D distribution

Cyclic and block-cyclic distributions

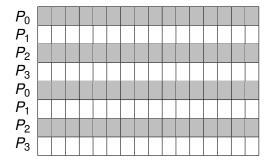
Block distributions

- Each process receives a contiguous part of the data
- Suitable when there is a locality in the interactions
- ▶ E.g. distributing an $n \times n$ matrix
 - ► row-wise distribution: each process receives ≈ n/p rows of the matrix
 - ▶ column-wise distribution: each process receives ≈ n/p columns of the matrix
 - suitable e.g. for matrix-vector multiplication

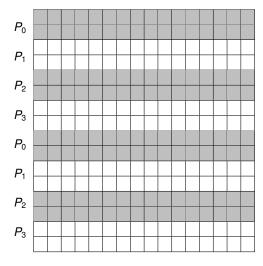
2D distribution

- Assume a process grid of size p₁ × p₂ Number of processes is p = p₁p₂
- ▶ Consider distributing an $n \times n$ matrix
 - We can split it into $n/p_1 \times n/p_2$ sub matrices
 - 4 × 4 process grid

	P_0	P_1	P_2	P_3
	P_4	P_5	P_6	P_7
	<i>P</i> ₈	<i>P</i> ₉	P ₁₀	P ₁₁
Ì	P ₁₂	P ₁₃	P ₁₄	P ₁₅


2 × 4 process grid

P_0	P_1	P_2	P_3
P_4	<i>P</i> ₅	P_6	P_7


Cyclic and block-cyclic distributions

- If the amount of work is different for different parts of a matrix, this could lead to load imbalances
- One way to avoid this is to use cyclic or block-cyclic distributions

1D cyclic distribution on 4 processes

1D block-cyclic distribution of 4 processes

2D distribution on 4 processes

P_0	P_1	P_0	P_1
P_2	P_3	P_2	P_3
P_0	P_1	P_0	P_1
P_2	P_3	P_2	P_3