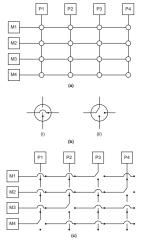
Interconnection Networks

Ned Nedialkov

McMaster University Canada

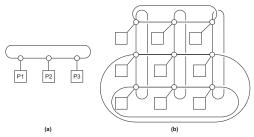
> CS/SE 4F03 January 2016


Outline

- Shared-memory interconnects
- Distributed-memory interconnects
- **Bisection width**
- Bandwidth
- Hypercube
- Indirect interconnects
- From TOP 500

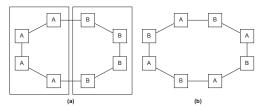
Shared-memory interconnects

- Most widely used are buses and crossbars
- Bus
 - Devices are connected to a common bus
 - Low cost and flexibility
 - Increasing the number of processes decreases performance, as wires are shared
 - As the number of processors increases, buses are replaced by switched interconnects
- Switched interconnects use switches to control the routing

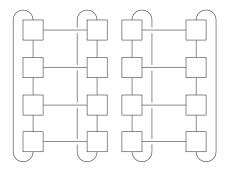

Crossbar

- Lines: bidirectional links, squares: cores or memory, circles: switches
- Allows simultaneous communication between nodes
- Faster than buses
- Cost of switches and links is relatively high

Distributed-memory interconnects

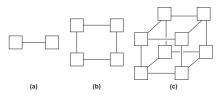

- Direct interconnects: each switch is connected to processor-memory
- (a) Ring: each switch has 3 links; p processors 2p links
- (b) Toroidal mesh: each switch has 5 links p processors: 2p links

- IBM's Blue Gene/L and Blue Gene/P, Cray XT3: three dimensional torus
- IBM's Blue Gene/Q: five dimensional torus
- Fujitsu K: six dimensional torus interconnect called Tofu


Bisection width

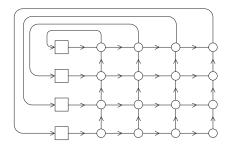
- The minimum number of links that can be removed to split the nodes into two halves
- The bisection width is a measure of how many communications can be done simultaneously
- (a) 2, (b) 2

Example

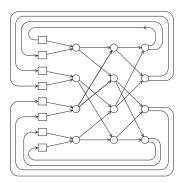

- Two-dimensional toroidal mesh with $p = q^2$ nodes
- Remove middle horizontal and middle wrap around links
- $2q = 2\sqrt{p}$ bisection width

Bandwidth

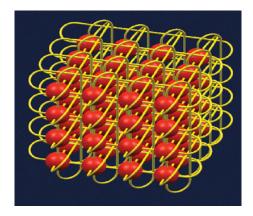
- Bandwidth is the rate at which data is transmitted
- Bisection bandwidth: (bisection width)× (bandwidth of a link)


Hypercube

- Hypercubes of dimension (a) 1, (b) 2, (c) 3
- Hypercube of dimension d has $p = 2^d$ nodes
- Bisection width is p/2


Indirect interconnects

- The switches may not be connected directly to processors
- Crossbar with unidirectional links:



Omega network

- The switches are 2 × 2 crossbars
- 2p log₂ p switches versus p² switches in a crossbar

Blue Gene: 3D Torus

From TOP 500

- http://www.top500.org/list/2013/11/, November 2013
- Performance is measured on the Linpack Benchmark
- Petaflops (Pflops), 10¹⁵ flops per second

no.	super computer	Pflops	cores
1	Tianhe-2, National University of	33.86	3,120,000
	Defense Technology, China		
2	Titan, Cray XK7, Department of	17.59	560,640
	Energy (DOE) Oak Ridge National		
	Laboratory, USA		
3	Sequoia, IBM BlueGene/Q,	17.17	1,572,864
	Lawrence Livermore National		
	Laboratory, USA		
4	Fujitsu K, RIKEN Advanced In-	10.51	705,024
	stitute for Computational Science		
	(AICS), Japan		
5	Mira, BlueGene/Q, Argonne Na-	8.59	786,432
	tional Laboratory, USA		

no.	super computer	Pflops	cores
6	Piz Daint, Cray XC30, Swiss	6.27	115,984
	National Supercomputing Centre (CSCS), Switzerland		
89	BGQ - BlueGene/Q , Southern On- tario Smart Computing Innovation Consortium/University of Toronto	0.36	32,768

Highlights

- Tianhe-2 uses Intel Xeon Phi processors to speed up computational rate
- No. 2 Titan and No. 6 Piz Daint use NVIDIA GPUs to accelerate computation
- Total of 53 systems on the list use accelerator/co-processor technology
 - 38 use NVIDIA chips
 - 3 use ATI Radeon
 - 13 use use Intel MIC technology (Xeon Phi)

- Intel provides 82.4% of TOP500 systems processors
- 94% use processors with 6 or more cores
- 75% use processors with 8 or more cores
- Biggest users of HPC
 - 1. USA
 - 2. China
 - 3. Japan

	out of 500
USA	265
Asia	115
Europe	102
UK	23
France	22
Germany	20

TOP500 started in June 1993

Number 1:

year	super computer	Gflops	cores		
Nov/1993	CM-5/1024, Thinking Ma-	59.7	1,024		
	chines Corp. Los Alamos,				
	USA				
Nov/2003	Earth-Simulator NEC, Japan	35,860.0	5,120		
Agency for Marine-Earth Sci-					
	ence and Technology				