Parallel N Body

Ned Nedialkov

McMaster University Canada

> CS/SE 4F03 March 2016

Outline

N-body

Equations of motion

Method

Euler's method

Computing forces

Parallelization

Ring pass communications

N-body problem

- Given initial positions and velocities of *n* bodies, compute their positions and velocities at given points in time
- n can be very large
- We want to compute in parallel

Equations of motion

Assume *n* particles, 0, 1, ..., n-1Particle *q* has position $\mathbf{s}_q(t)$, velocity $\mathbf{v}_q(t) = \mathbf{s}'_q(t)$ and acceleration $\mathbf{a}_q(t) = \mathbf{s}''_q(t)$ Bold denotes vectors; these are 3D (or 2D) vectors Particle *k* exerts force on *q*

$$\mathbf{f}_{qk}(t) = -G \frac{m_q m_k}{\|\mathbf{s}_q(t) - \mathbf{s}_k(t)\|_2^3} [\mathbf{s}_q(t) - \mathbf{s}_k(t)],$$

where $G = 6.673 \times 10^{-11} m^3 / (\text{kg} \cdot s^2)$ is the gravitational constant, and $\|\mathbf{s}_q(t) - \mathbf{s}_k(t)\|_2$ is the distance between particles q and k

Total force on q is

$$\mathbf{F}_{q}(t) = \sum_{\substack{k=0\\k\neq q}}^{n-1} \mathbf{f}_{qk}(t) = -Gm_{q} \sum_{\substack{k=0\\k\neq q}}^{n-1} \frac{m_{k}}{\|\mathbf{s}_{q}(t) - \mathbf{s}_{k}(t)\|_{2}^{3}} [\mathbf{s}_{q}(t) - \mathbf{s}_{k}(t)],$$

 $q = 0, 1, \dots n - 1$ From Newton's second law of motion

$$\mathbf{F}_q(t) = m_q \mathbf{a}_q(t) = m_q \mathbf{s}_q''(t),$$

k≠q

$$\mathbf{s}_{q}''(t) = \mathbf{F}_{q}(t) / m_{q} = \frac{1}{m_{q}} \sum_{\substack{k=0\\k \neq q}}^{n-1} \mathbf{f}_{qk}(t)$$
$$= -G \sum_{k=0}^{n-1} \frac{m_{k}}{\|\mathbf{s}_{q}(t) - \mathbf{s}_{k}(t)\|_{2}^{3}} [\mathbf{s}_{q}(t) - \mathbf{s}_{k}(t)]$$

We have a system of second-order ordinary differential equations We can write it as first order system

$$\begin{cases} \mathbf{s}'_{q}(t) &= \mathbf{v}_{q}(t) \\ \mathbf{v}'_{q}(t) &= \mathbf{F}_{q}(t)/m_{q} = -G\sum_{\substack{k=0\\k\neq q}}^{n-1} \frac{m_{k}}{\|\mathbf{s}_{q}(t) - \mathbf{s}_{k}(t)\|_{2}^{3}} [\mathbf{s}_{q}(t) - \mathbf{s}_{k}(t)], \\ q = 0, 1, \dots, n-1 \end{cases}$$

Overall method

Given initial values for $\mathbf{s}_q(t)$ and $\mathbf{v}_q(t)$ for all q at initial time, e.g. $t_0 = 0$, we have an initial value problem We advance in time from t_0 and compute at points t_i , i > 0Assume $\mathbf{s}_{q,i}$ and $\mathbf{v}_{q,i}$ are computed up to t_i

On a time step from t_i to t_{i+1}

- (1) compute total forces $\mathbf{F}_{q,i}$
- (2) compute $\mathbf{v}_{q,i+1}$ and $\mathbf{s}_{q,i+1}$

We can do (2) using Runge-Kutta or a multistep method Here we Euler's method, to keep the explanations simpler and focus on (1)

Euler's method

For simplicity, we use Euler's method Assume $\mathbf{s}_{q,i}$ and $\mathbf{v}_{q,i}$ are given at t_i We compute at t_{i+1} by

$$\mathbf{v}_{q,i+1} = \mathbf{v}_{q,i} + h\mathbf{F}_{q,i}/m_q$$

 $\mathbf{s}_{q,i+1} = \mathbf{s}_{q,i} + h\mathbf{v}_{q,i},$

where $h = t_{i+1} - t_i$ is stepsize; we use constant stepsize *h*

Computing forces

The total force for particle *q* is computed by

$$\mathbf{F}_{q,i} = \sum_{\substack{k=0\\k\neq q}}^{n-1} \mathbf{f}_{qk,i} = -Gm_q \sum_{\substack{k=0\\k\neq q}}^{n-1} \frac{m_k}{\|\mathbf{s}_{q,i} - \mathbf{s}_{k,i}\|^3} [\mathbf{s}_{q,i} - \mathbf{s}_{q,i}]$$

Hence, on time step from t_i to t_{i+1} we need $\mathbf{v}_{q,i}$ and $\mathbf{s}_{q,i}$ for all q How to compute these forces?

Serial algorithms Basic algorithm

for
$$q = 0, 1, \dots, n-1$$

 $\mathbf{F}_{q,i} = 0$
for $k = 0, 1, \dots, n-1$
if $k \neq q$
compute $\mathbf{f}_{qk,i}$
 $\mathbf{F}_{q,i} = \mathbf{F}_{q,i} + \mathbf{f}_{qk,i}$

Reduced algorithm

for
$$q = 0, 1, ..., n - 1$$

 $F_{q,i} = 0$
for $q = 0, 1, ..., n - 1$
for $k > q$
compute $f_{qk,i}$
 $F_{q,i} = F_{q,i} + f_{qk,i}$
 $F_{k,i} = F_{k,i} - f_{qk,i}$

From Newton's third law, $\mathbf{f}_{qk} = -\mathbf{f}_{kq}$ **Example** Consider four particles and the related forces

particles	0	1	2	3
0	—	f 01	f ₀₂	f 03
1	- f ₀₁	—	f ₁₂	f ₁₃
2	- f ₀₂	$-f_{12}$	—	f 23
3	- f ₀₃	$-f_{13}$	$-f_{23}$	_

Reduced algorithm computes

 $\begin{array}{lll} & \text{iteration } 1,q=0 & \text{iteration } 2,q=1 & \text{iteration } 3,q=2 \\ \hline F_0 = f_{01} + f_{02} + f_{03} & \\ F_1 = -f_{01} & F_1 = F_1 + f_{12} + f_{13} & \\ F_2 = -f_{02} & F_2 = F_2 - f_{12} & F_2 = F_2 + f_{23} \\ F_3 = -f_{03} & F_3 = F_3 - f_{13} & F_3 = F_3 - f_{23} \end{array}$

As the iteration number increases, the work decreases

Parallelization: block distribution

How to parallelize? Assume block distribution, each process takes n/p particles Basic algorithm: the work is the same per process Reduced? Process 0 will do most of the work, then process 1, then process 2, and so on **Example:** Consider n = 6 distributed on p = 3 processes:

PE	owns particles	stores
0	0,1	$\mathbf{S}_0, \mathbf{S}_1$
1	2,3	$\mathbf{S}_2, \mathbf{S}_3$
2	4,5	$\mathbf{S}_4, \mathbf{S}_5$

	0	1	2	3	4	5
0	_	f ₀₁	f ₀₂	f 03	f ₀₄	f 05
1	- f ₀₁	_	f ₁₂	f ₁₃	f ₁₄	f ₁₅
2	- f ₀₂	- f ₁₂	_	f ₂₃	f ₂₄	f ₂₅
3	- f ₀₃	- f ₁₃	$-f_{23}$	_	f ₃₄	f 35
4	- f ₀₄	- f ₁₄	- f ₂₄	- f ₃₄	_	f 45
5	- f ₀₅	— f ₁₅	- f ₂₅	- f ₃₅	$-f_{45}$	_

	PE 0	PE 1	PE 2
owns	S ₀ , S ₁	S ₂ , S ₃	S ₄ , S ₅
receives	s ₂ , s ₃ from PE 1	s ₄ , s ₅ from PE 2	
	s ₄ , s ₅ from PE 2		
computes	$f_{01}, f_{02}, f_{03}, f_{04}, f_{05}, f_{12}, f_{13}, f_{14}, f_{15}$	$f_{23}, f_{24}, f_{25}, f_{34}, f_{35}$	f 45
sends	f ₀₂ , f ₀₃ , f ₁₂ , f ₁₃ to PE 1	f ₂₄ , f ₂₅ , f ₃₄ , f ₃₅ to PE 2	
	f ₀₄ , f ₀₅ , f ₁₄ , f ₁₅ to PE 2		

The work is not distributed evenly

Parallelization: ring pass communication Process i

- sends to $(i 1 + p) \mod p$
- receives from (i + 1) mod p

Consider n = 8, p = 4 and cycling distribution¹

ΡE	initial	receives				
		pass 1	pass 2	pass 3		
0	\bm{S}_0, \bm{S}_4	$\mathbf{S}_1, \mathbf{S}_5$	$\mathbf{S}_2, \mathbf{S}_6$	S_3, S_7		
1	${\bm S}_1, {\bm S}_5$	$\textbf{S}_2, \textbf{S}_6$	${\boldsymbol{S}}_3, {\boldsymbol{S}}_7$	${\boldsymbol{S}}_0, {\boldsymbol{S}}_4$		
2	${\boldsymbol{S}}_2, {\boldsymbol{S}}_6$	${\boldsymbol{S}}_3, {\boldsymbol{S}}_7$	\bm{S}_0, \bm{S}_4	$\mathbf{S}_1, \mathbf{S}_5$		
3	${\boldsymbol{S}}_3, {\boldsymbol{S}}_7$	\bm{S}_0, \bm{S}_4	${\bm S}_1, {\bm S}_5$	$\mathbf{S}_2, \mathbf{S}_6$		

¹Figure is from P. Pacheco, An Introduction to Parallel Programming

Consider particles q and k

- If q is assigned to process P then P computes f_{qk} if
 - k is assigned to P or
 - positions of k are received on P

Example: Consider n = 6, p = 3, ring pass communication, and cycling distribution After initial assignment

ΡE	initial	computes
0	\bm{S}_0, \bm{S}_3	f ₀₃
1	${f S}_1, {f S}_4$	f ₁₄
2	$\mathbf{S}_2, \mathbf{S}_5$	f ₂₅

N-body	Equations of motion	Method	Euler's method	Computing forces	Parallelization	Ring pass communications
--------	---------------------	--------	----------------	------------------	-----------------	--------------------------

Then

PE	initial	pass 1	pass 2
0	$\textbf{S}_0, \textbf{S}_3$	$\mathbf{S}_1, \mathbf{S}_4$	S_2, S_5
computes	f 03	$\bm{f_{01}}, \bm{f_{04}}, \bm{f_{34}}$	${\bf f}_{02}, {\bf f}_{05}, {\bf f}_{35}$
1	${\boldsymbol{S}}_1,{\boldsymbol{S}}_4$	S_2, S_5	$\mathbf{S}_0, \mathbf{S}_3$
computes	f ₁₄	$\bm{f}_{12}, \bm{f}_{15}, \bm{f}_{45}$	f ₁₃
2	$\mathbf{S}_2, \mathbf{S}_5$	S_0, S_3	S_1, S_4
computes	f ₂₅	f ₂₃	f ₂₄

Example

p = 3, *n* = 9

PE	initial	pass 1	pass 2
0	$\textbf{S}_0, \textbf{S}_3, \textbf{S}_6$	S_1, S_4, S_7	S_2, S_5, S_8
computes	${\bf f}_{03}, {\bf f}_{06}, {\bf f}_{36}$	$\textbf{f}_{01}, \textbf{f}_{04}, \textbf{f}_{07}, \textbf{f}_{34}, \textbf{f}_{37}, \textbf{f}_{67}$	$\textbf{f}_{02}, \textbf{f}_{05}, \textbf{f}_{08}, \textbf{f}_{35}, \textbf{f}_{38}, \textbf{f}_{68}$
1	$\textbf{S}_1, \textbf{S}_4, \textbf{S}_7$	${f S}_2, {f S}_5, {f S}_8$	$\textbf{S}_0, \textbf{S}_3, \textbf{S}_6$
computes	${\bm f}_{14}, {\bm f}_{17}, {\bm f}_{47}$	$\bm{f}_{12}, \bm{f}_{15}, \bm{f}_{18}, \bm{f}_{45}, \bm{f}_{48}, \bm{f}_{78}$	${f f}_{13}, {f f}_{16}, {f f}_{46}$
2	$\textbf{S}_2, \textbf{S}_5, \textbf{S}_8$	${f S}_0, {f S}_3, {f S}_6$	S_1, S_4, S_7
computes	${\bf f}_{25}, {\bf f}_{28}, {\bf f}_{58}$	f_{23}, f_{26}, f_{56}	f_{24}, f_{27}, f_{57}

N-body Equations of motion Method Euler's method Computing forces Parallelization Ring pass commun	cations
--	---------

particle	ΡE								
0	0	f ₀₁	f ₀₂	f 03	f ₀₄	f 05	f 06	f 07	f ₀₈
1	1		f ₁₂	f ₁₃	f ₁₄	f ₁₅	f ₁₆	f ₁₇	f ₁₈
2	2			f ₂₃	f ₂₄	f ₂₅	f ₂₆	f ₂₇	f ₂₈
3	0				f ₃₄	f 35	f ₃₆	f ₃₇	f ₃₈
4	1					f 45	f 46	f 47	f 48
5	2						f 56	f 57	f 58
6	0							f 67	f 68
7	1								f ₇₈
8	2								

red: initial; blue: pass 1; green: pass 2

N-body	Equations of motion	Method	Euler's method	Computing forces	Parallelization	Ring pass communications
--------	---------------------	--------	----------------	------------------	-----------------	--------------------------

particle	ΡE	computes								
0	0	f ₀₁	f ₀₂	f 03	f ₀₄	f 05	f 06	f 07	f 08	_
3	0				f ₃₄	f 35	f ₃₆	f 37	f ₃₈	
6	0							f 67	f 68	
1	1		f ₁₂	f ₁₃	f ₁₄	f ₁₅	f ₁₆	f ₁₇	f ₁₈	_
4	1					f 45	f 46	f 47	f 48	
7	1								f ₇₈	
2	2			f ₂₃	f ₂₄	f ₂₅	f ₂₆	f ₂₇	f ₂₈	
5	2						f 56	f 57	f 58	
8	2									

red: initial; blue: pass 1; green: pass 2