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N-body problem

I Given initial positions and velocities of n bodies, compute their
positions and velocities at given points in time

I n can be very large
I We want to compute in parallel
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Equations of motion

Assume n particles, 0,1, . . . ,n − 1
Particle q has position sq(t), velocity vq(t) = s′q(t) and acceleration
aq(t) = s′′q (t)
Bold denotes vectors; these are 3D (or 2D) vectors
Particle k exerts force on q

fqk (t) = −G
mqmk

‖sq(t)− sk (t)‖3
2
[sq(t)− sk (t)],

where G = 6.673× 10−11m3/(kg · s2) is the gravitational constant,
and ‖sq(t)− sk (t)‖2 is the distance between particles q and k
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Total force on q is

Fq(t) =
n−1∑
k=0

k 6=q

fqk (t) = −Gmq

n−1∑
k=0

k 6=q

mk

‖sq(t)− sk (t)‖3
2
[sq(t)− sk (t)],

q = 0,1, . . .n − 1
From Newton’s second law of motion

Fq(t) = mqaq(t) = mqs′′q (t),

s′′q (t) = Fq(t)/mq =
1

mq

n−1∑
k=0

k 6=q

fqk (t)

= −G
n−1∑
k=0

k 6=q

mk

‖sq(t)− sk (t)‖3
2
[sq(t)− sk (t)]
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We have a system of second-order ordinary differential equations
We can write it as first order systems′q(t) = vq(t)

v′q(t) = Fq(t)/mq = −G
∑n−1

k=0
k 6=q

mk
‖sq(t)−sk (t)‖3

2
[sq(t)− sk (t)],

q = 0,1, . . . ,n − 1
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Overall method

Given initial values for sq(t) and vq(t) for all q at initial time, e.g.
t0 = 0, we have an initial value problem
We advance in time from t0 and compute at points ti , i > 0
Assume sq,i and vq,i are computed up to ti

On a time step from ti to ti+1
(1) compute total forces Fq,i
(2) compute vq,i+1 and sq,i+1

We can do (2) using Runge-Kutta or a multistep method
Here we Euler’s method, to keep the explanations simpler and focus
on (1)
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Euler’s method

For simplicity, we use Euler’s method
Assume sq,i and vq,i are given at ti We compute at ti+1 by

vq,i+1 = vq,i + hFq,i/mq

sq,i+1 = sq,i + hvq,i ,

where h = ti+1 − ti is stepsize; we use constant stepsize h
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Computing forces

The total force for particle q is computed by

Fq,i =
n−1∑
k=0

k 6=q

fqk,i = −Gmq

n−1∑
k=0

k 6=q

mk

‖sq,i − sk,i‖3 [sq,i − sq,i ]

Hence, on time step from ti to ti+1 we need vq,i and sq,i for all q
How to compute these forces?
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Serial algorithms
Basic algorithm

for q = 0, 1, . . . , n − 1
Fq,i = 0
for k = 0, 1, . . . , n − 1

if k 6= q
compute fqk,i

Fq,i = Fq,i + fqk,i

Reduced algorithm

for q = 0, 1, . . . , n − 1
Fq,i = 0

for q = 0, 1, . . . , n − 1
for k > q

compute fqk,i

Fq,i = Fq,i + fqk,i

Fk,i = Fk,i − fqk,i
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From Newton’s third law, fqk = −fkq
Example Consider four particles and the related forces

particles 0 1 2 3
0 − f01 f02 f03
1 −f01 − f12 f13
2 −f02 −f12 − f23
3 −f03 −f13 −f23 −

Reduced algorithm computes

iteration 1, q = 0 iteration 2, q = 1 iteration 3, q = 2
F0 = f01 + f02 + f03

F1 = −f01 F1 = F1 + f12 + f13

F2 = −f02 F2 = F2 − f12 F2 = F2 + f23

F3 = −f03 F3 = F3 − f13 F3 = F3 − f23

As the iteration number increases, the work decreases
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Parallelization: block distribution

How to parallelize?
Assume block distribution, each process takes n/p particles
Basic algorithm: the work is the same per process
Reduced? Process 0 will do most of the work, then process 1, then
process 2, and so on
Example: Consider n = 6 distributed on p = 3 processes:

PE owns particles stores
0 0,1 s0,s1
1 2,3 s2,s3
2 4,5 s4,s5
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0 1 2 3 4 5
0 − f01 f02 f03 f04 f05
1 −f01 − f12 f13 f14 f15

2 −f02 −f12 − f23 f24 f25
3 −f03 −f13 −f23 − f34 f35

4 −f04 −f14 −f24 −f34 − f45
5 −f05 −f15 −f25 −f35 −f45 −

PE 0 PE 1 PE 2
owns s0, s1 s2, s3 s4, s5

receives s2, s3 from PE 1 s4, s5 from PE 2
s4, s5 from PE 2

computes f01, f02, f03, f04, f05, f12, f13, f14, f15 f23, f24, f25, f34, f35 f45

sends f02, f03, f12, f13 to PE 1 f24, f25, f34, f35 to PE 2
f04, f05, f14, f15 to PE 2

The work is not distributed evenly
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Parallelization: ring pass communication
Process i

I sends to (i − 1 + p) mod p
I receives from (i + 1) mod p

Consider n = 8, p = 4 and cycling distribution1

0 1

3 2

s1,s5

Phase 1

s3,s7

s2,s6s0,s4

0 1

3 2

s2,s6

Phase 2

s0,s4

s3, s7s1, s5

0 1

3 2

s3,s7

Phase 3

s1,s5

s0, s4s2, s6

PE initial receives
pass 1 pass 2 pass 3

0 s0, s4 s1, s5 s2, s6 s3, s7

1 s1, s5 s2, s6 s3, s7 s0, s4

2 s2, s6 s3, s7 s0, s4 s1, s5

3 s3, s7 s0, s4 s1, s5 s2, s6

1Figure is from P. Pacheco, An Introduction to Parallel Programming
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Consider particles q and k
I If q is assigned to process P then P computes fqk if

I k is assigned to P or
I positions of k are received on P

Example: Consider n = 6, p = 3, ring pass communication, and
cycling distribution
After initial assignment

PE initial computes
0 s0, s3 f03

1 s1, s4 f14

2 s2, s5 f25
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Then

PE initial pass 1 pass 2
0 s0,s3 s1,s4 s2,s5

computes f03 f01, f04, f34 f02, f05, f35

1 s1,s4 s2,s5 s0,s3
computes f14 f12, f15, f45 f13

2 s2,s5 s0,s3 s1,s4
computes f25 f23 f24
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Example

p = 3, n = 9

PE initial pass 1 pass 2
0 s0, s3, s6 s1, s4, s7 s2, s5, s8

computes f03, f06, f36 f01, f04, f07, f34, f37, f67 f02, f05, f08, f35, f38, f68

1 s1, s4, s7 s2, s5, s8 s0, s3, s6

computes f14, f17, f47 f12, f15, f18, f45, f48, f78 f13, f16, f46

2 s2, s5, s8 s0, s3, s6 s1, s4, s7

computes f25, f28, f58 f23, f26, f56 f24, f27, f57
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particle PE
0 0 f01 f02 f03 f04 f05 f06 f07 f08
1 1 f12 f13 f14 f15 f16 f17 f18
2 2 f23 f24 f25 f26 f27 f28
3 0 f34 f35 f36 f37 f38
4 1 f45 f46 f47 f48
5 2 f56 f57 f58
6 0 f67 f68
7 1 f78
8 2

red: initial; blue: pass 1; green: pass 2
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particle PE computes
0 0 f01 f02 f03 f04 f05 f06 f07 f08
3 0 f34 f35 f36 f37 f38
6 0 f67 f68

1 1 f12 f13 f14 f15 f16 f17 f18
4 1 f45 f46 f47 f48
7 1 f78

2 2 f23 f24 f25 f26 f27 f28
5 2 f56 f57 f58
8 2

red: initial; blue: pass 1; green: pass 2
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