
Parallel Quicksort

Ned Nedialkov

McMaster University
Canada

CS/SE 4F03
March 2016

Quick sort Performance Parallel formulation Example Pivot selection Combining blocks MPI version

Outline

Quick sort

Performance

Parallel formulation

Example

Pivot selection

Combining blocks

MPI version

c© 2013–16 Ned Nedialkov 2/13

Quick sort Performance Parallel formulation Example Pivot selection Combining blocks MPI version

Quick sort

Algorithm
Quicksort(A,p, r)
if p ≥ r

x = A[r], i = p − 1
for j = p to r − 1

if A[j] ≤ x
i = i + 1
swap(A[i],A[j])

swap(A[i + 1],A[r])
Quicksort(A,p, i)
Quicksort(A, i + 2, r)

After first partitioning

10 2j 1 3 7 6 4 5
2i 10j 1 3 7 6 4 5
2i 10 1j 3 7 6 4 5
2 1i 10j 3 7 6 4 5
2 1i 10 3j 7 6 4 5
2 1 3i 10j 7 6 4 5
2 1 3i 10 7 6 4j 5
2 1 3 4i 7 6 10j 5
2 1 3 4 5 6 10 7

c© 2013–16 Ned Nedialkov 3/13

Quick sort Performance Parallel formulation Example Pivot selection Combining blocks MPI version

I Initial array A

10 2 1 3 7 6 4 5

I Quicksort(A,1,8)
I pivot 5, after partition, i = 4

2 1 3 4 5 6 10 7

I Quicksort(A,1,4)
I Quicksort(A,6,8)

I Quicksort(A,1,4)
I pivot 4, after partition, i = 3

2 1 3 4 5 6 10 7

I Quicksort(A,1,3)
I Quicksort(A, 5, 4) : return

c© 2013–16 Ned Nedialkov 4/13

Quick sort Performance Parallel formulation Example Pivot selection Combining blocks MPI version

I Qicksort(A,1,3)
I pivot 3, after partition, i = 2

2 1 3 4 5 6 10 7

I Quicksort(A,1,2)
I Quicksort(A,4,3) : return

I Quicksort(A,1,2)
I pivot 1, after partition, i = 0

1 2 3 4 5 6 10 7

I Quicksort(A,1,0) : return
I Quicksort(A,2,2) : return

I Quicksort(A,6,8)
I pivot 7, after partition, i = 6

1 2 3 4 5 6 7 10

I Quicksort(A,6,6) : return
I Quicksort(A,8,8) : return

c© 2013–16 Ned Nedialkov 5/13

Quick sort Performance Parallel formulation Example Pivot selection Combining blocks MPI version

Performance

I Worst case O(n2)

I Average case O(n log n)
I Crucial for the performance is how to select pivots
I One can select at random

c© 2013–16 Ned Nedialkov 6/13

Quick sort Performance Parallel formulation Example Pivot selection Combining blocks MPI version

Parallel formulation
I Assume n numbers and p processes
I Each process gets n/p consecutive elements
I Select a pivot
I Broadcast it to all processes
I Process i computes block of elements Si and Li such that

Si ≤ pivot < Li

I Rearrange the elements of the original array such that
it is partitioned as

S = ∪iSi ≤ pivot < L = ∪iLi

I Assign p1 processes to work on S and p2 processes to
work on L, p1 + p2 = p

c© 2013–16 Ned Nedialkov 7/13

Quick sort Performance Parallel formulation Example Pivot selection Combining blocks MPI version

I Apply the same scheme on S with p1 processes and L with
p2 processes

I p1 = b|S|p/n + 0.5c, p2 = p − p1

I Partition until a block is assigned to a single process and
then sort serially

c© 2013–16 Ned Nedialkov 8/13

Quick sort Performance Parallel formulation Example Pivot selection Combining blocks MPI version

Example

| P0 | P1 | P2 | P3 |
| 86 | 79 | 52 | 18 | 40 | 14 | 4 | 94 | 31 | 30 | 34 | 47 | 65 | 3 | 85 | 56 | 86 | 35 | 6 | 45 |

After first partition with pivot 45

| P0 | P1 | P2 | P3 |
| 18 | 40 | 52 | 86 | 79 | 14 | 4 | 31 | 30 | 94 | 34 | 3 | 85 | 47 | 65 | 35 | 6 | 45 | 86 | 56 |

After combining the lower and upper parts

| P0 | P1 | | P2 | P3 |
| 18 | 40 | 14 | 4 | 31 | 30 | 34 | 3 | 35 | 6 | 45 | 52 | 86 | 79 | 94 | 85 | 47 | 65 | 86 | 56 |

After second partition P0,P1 with pivot 6, P2,P3 with pivot 56

| P0 | P1 | | P2 | P3 |
| 4 | 31 | 14 | 18 | 40 | 3 | 6 | 30 | 35 | 34 | 45 | 52 | 94 | 79 | 86 | 47 | 56 | 65 | 86 | 85 |

After combining the lower and upper parts

| P0 | | P1 | | P2 | | P3 |
| 4 | 3 | 6 | 31 | 14 | 18 | 40 | 30 | 35 | 34 | 45 | 52 | 47 | 56 | 94 | 79 | 86 | 65 | 86 | 85 |

c© 2013–16 Ned Nedialkov 9/13

Quick sort Performance Parallel formulation Example Pivot selection Combining blocks MPI version

| P0 | | P1 | | P2 | | P3 |
| 4 | 3 | 6 | 31 | 14 | 18 | 40 | 30 | 35 | 34 | 45 | 52 | 47 | 56 | 94 | 79 | 86 | 65 | 86 | 85 |

Now each process sorts sequentially

| P0 | | P1 | | P2 | | P3 |
| 3 | 4 | 6 | 14 | 18 | 30 | 31 | 34 | 35 | 40 | 45 | 47 | 53 | 56 | 65 | 79 | 85 | 86 | 86 | 94 |

c© 2013–16 Ned Nedialkov 10/13

Quick sort Performance Parallel formulation Example Pivot selection Combining blocks MPI version

Pivot selection

I Selecting a pivot at random works well in the sequential
quick sort

I A process from a process group can select a pivot at
random

I If a “bad” partition occurs, we may have load imbalance
I Assume uniform distribution of the elements
I If we assume uniform distribution of elements, n/p can be

considered as a representative sample
I A process can pick the median of these n/p elements and

round to the closest element
I The partitions are roughly in half

c© 2013–16 Ned Nedialkov 11/13

Quick sort Performance Parallel formulation Example Pivot selection Combining blocks MPI version

Combining blocks
I How to arrange the Si and Li?
I We can concatenate them in process order
I Need to find where each block starts
I S0 is at the beginning of the array
I S1 starts at location |S0|
I S2 starts at location |S0|+ |S1|
I j th element of Si is at location

∑i−1
k=0 |Sk |+ j

I j th element of Li is at location
∑p−1

k=i |Lk |+ j
I We can maintain arrays

Qi =
i−1∑
k=0

Sk , Ri =
i−1∑
k=0

Lk

I Qi is the start of Si
I Ri is the start of Li , where numbering is from the last

element of the last Si
c© 2013–16 Ned Nedialkov 12/13

Quick sort Performance Parallel formulation Example Pivot selection Combining blocks MPI version

MPI version

The algorithm so far is suitable for a shared memory
implementation. How to do a distributed implementation?

I Distribute the array to be sorted
I Broadcast a pivot among p processes
I Each partitions n/p elements in O(n/p)
I The re-arrangement of lower and upper parts involves

communication
I Need to know where a process should send its Si and Li

parts
I Once determined, data gets exchanged

c© 2013–16 Ned Nedialkov 13/13

	Quick sort
	Performance
	Parallel formulation
	Example
	Pivot selection
	Combining blocks
	MPI version

