Parallel Quicksort

Ned Nedialkov

McMaster University
Canada

CS/SE 4F03
March 2016
Outline

Quick sort

Performance

Parallel formulation

Example

Pivot selection

Combining blocks

MPI version
Quick sort

Algorithm

Quicksort(A, p, r)
if $p \geq r$

\[x = A[r], \quad i = p - 1 \]

for $j = p$ to $r - 1$

\[\text{if } A[j] \leq x \]

\[i = i + 1 \]

swap$(A[i], A[j])$

swap$(A[i + 1], A[r])$

Quicksort(A, p, i)

Quicksort$(A, i + 2, r)$

After first partitioning

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>2j</th>
<th>1</th>
<th>3</th>
<th>7</th>
<th>6</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2i</td>
<td>2i</td>
<td>10j</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>10j</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>10j</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10j</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10j</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Quick sort
Performance
Parallel formulation
Example
Pivot selection
Combining blocks
MPI version

- Initial array A

 \[
 \begin{array}{ccccccccc}
 10 & 2 & 1 & 3 & 7 & 6 & 4 & 5 \\
 \end{array}
 \]

- Quicksort($A,1,8$)
 - pivot 5, after partition, $i = 4$

 \[
 \begin{array}{cccccccc}
 2 & 1 & 3 & 4 & 5 & 6 & 10 & 7 \\
 \end{array}
 \]

 - Quicksort($A,1,4$)
 - Quicksort($A,6,8$)

- Quicksort($A,1,4$)
 - pivot 4, after partition, $i = 3$

 \[
 \begin{array}{cccccccc}
 2 & 1 & 3 & 4 & 5 & 6 & 10 & 7 \\
 \end{array}
 \]

 - Quicksort($A,1,3$)
 - Quicksort($A,5,4$) : return
Quick sort

- Quick sort(A, 1, 3)
 - pivot 3, after partition, \(i = 2 \)
 \[
 \begin{array}{cccccccc}
 2 & 1 & 3 & 4 & 5 & 6 & 10 & 7 \\
 \end{array}
 \]
 - Quick sort(A, 1, 2)
 - Quick sort(A, 4, 3) : return

- Quick sort(A, 1, 2)
 - pivot 1, after partition, \(i = 0 \)
 \[
 \begin{array}{cccccccc}
 1 & 2 & 3 & 4 & 5 & 6 & 10 & 7 \\
 \end{array}
 \]
 - Quick sort(A, 1, 0) : return
 - Quick sort(A, 2, 2) : return

- Quick sort(A, 6, 8)
 - pivot 7, after partition, \(i = 6 \)
 \[
 \begin{array}{cccccccc}
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 10 \\
 \end{array}
 \]
 - Quick sort(A, 6, 6) : return
 - Quick sort(A, 8, 8) : return
Performance

- Worst case $O(n^2)$
- Average case $O(n \log n)$
- Crucial for the performance is how to select pivots
- One can select at random
Parallel formulation

- Assume \(n \) numbers and \(p \) processes
- Each process gets \(n/p \) consecutive elements
- Select a pivot
- Broadcast it to all processes
- Process \(i \) computes block of elements \(S_i \) and \(L_i \) such that
 \[
 S_i \leq \text{pivot} < L_i
 \]
- Rearrange the elements of the original array such that it is partitioned as
 \[
 S = \bigcup_i S_i \leq \text{pivot} < L = \bigcup_i L_i
 \]
- Assign \(p_1 \) processes to work on \(S \) and \(p_2 \) processes to work on \(L \), \(p_1 + p_2 = p \)
Apply the same scheme on S with p_1 processes and L with p_2 processes

$p_1 = \lfloor |S|p/n + 0.5 \rfloor$, $p_2 = p - p_1$

Partition until a block is assigned to a single process and then sort serially
Example

<table>
<thead>
<tr>
<th></th>
<th>P_0</th>
<th></th>
<th>P_1</th>
<th></th>
<th>P_2</th>
<th></th>
<th>P_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>79</td>
<td>52</td>
<td>18</td>
<td>40</td>
<td>14</td>
<td>4</td>
<td>94</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>34</td>
<td>47</td>
<td>65</td>
<td>3</td>
<td>85</td>
<td>56</td>
</tr>
<tr>
<td>65</td>
<td>3</td>
<td>86</td>
<td>35</td>
<td>6</td>
<td>45</td>
<td>86</td>
<td>56</td>
</tr>
</tbody>
</table>

After first partition with pivot 45

<table>
<thead>
<tr>
<th></th>
<th>P_0</th>
<th></th>
<th>P_1</th>
<th></th>
<th>P_2</th>
<th></th>
<th>P_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>40</td>
<td>52</td>
<td>86</td>
<td>79</td>
<td>14</td>
<td>4</td>
<td>31</td>
</tr>
<tr>
<td>30</td>
<td>34</td>
<td>3</td>
<td>85</td>
<td>47</td>
<td>65</td>
<td>35</td>
<td>6</td>
</tr>
<tr>
<td>45</td>
<td>86</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After combining the lower and upper parts

<table>
<thead>
<tr>
<th></th>
<th>P_0</th>
<th></th>
<th>P_1</th>
<th></th>
<th>P_2</th>
<th></th>
<th>P_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>40</td>
<td>14</td>
<td>4</td>
<td>31</td>
<td>30</td>
<td>34</td>
<td>3</td>
</tr>
<tr>
<td>35</td>
<td>6</td>
<td>45</td>
<td>52</td>
<td>86</td>
<td>79</td>
<td>94</td>
<td>85</td>
</tr>
<tr>
<td>47</td>
<td>65</td>
<td>86</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After second partition P_0, P_1 with pivot 6, P_2, P_3 with pivot 56

<table>
<thead>
<tr>
<th></th>
<th>P_0</th>
<th></th>
<th>P_1</th>
<th></th>
<th>P_2</th>
<th></th>
<th>P_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>31</td>
<td>14</td>
<td>18</td>
<td>40</td>
<td>3</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>35</td>
<td>34</td>
<td>45</td>
<td>52</td>
<td>94</td>
<td>79</td>
<td>86</td>
<td>47</td>
</tr>
<tr>
<td>56</td>
<td>65</td>
<td>86</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After combining the lower and upper parts
Now each process sorts sequentially

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>P_1</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P_0</td>
<td></td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>31</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>P_2</th>
<th></th>
<th>P_3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>6</td>
<td>14</td>
<td>18</td>
<td>30</td>
<td>31</td>
<td>34</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>47</td>
<td>53</td>
<td>56</td>
<td>65</td>
<td>79</td>
<td>85</td>
<td>86</td>
<td>86</td>
<td>94</td>
</tr>
</tbody>
</table>
Pivot selection

- Selecting a pivot at random works well in the sequential quick sort
- A process from a process group can select a pivot at random
- If a “bad” partition occurs, we may have load imbalance
- Assume uniform distribution of the elements
- If we assume uniform distribution of elements, n/p can be considered as a representative sample
- A process can pick the median of these n/p elements and round to the closest element
- The partitions are roughly in half
Combining blocks

- How to arrange the S_i and L_i?
- We can concatenate them in process order
- Need to find where each block starts
- S_0 is at the beginning of the array
- S_1 starts at location $|S_0|$
- S_2 starts at location $|S_0| + |S_1|$
- jth element of S_i is at location $\sum_{k=0}^{i-1} |S_k| + j$
- jth element of L_i is at location $\sum_{k=i}^{p-1} |L_k| + j$
- We can maintain arrays

$$Q_i = \sum_{k=0}^{i-1} S_k, \quad R_i = \sum_{k=0}^{i-1} L_k$$

- Q_i is the start of S_i
- R_i is the start of L_i, where numbering is from the last element of the last S_i
The algorithm so far is suitable for a shared memory implementation. How to do a distributed implementation?

- Distribute the array to be sorted
- Broadcast a pivot among p processes
- Each partitions n/p elements in $O(n/p)$
- The re-arrangement of lower and upper parts involves communication
 - Need to know where a process should send its S_i and L_i parts
 - Once determined, data gets exchanged