Parallel Distributed Shortest Paths

Ned Nedialkov

McMaster University
Canada

SE 3F03
March 2013

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

Outline

Shortest paths

Dijkstra’s algoritm

Dense Graphs

Sparse graphs: Johnson’s algoritm
Distributed implementation

For more details see A. Grama, G. Karypis, V. Kumar, A. Gupta,
Introduction to Parallel Computing

2/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

Shortest paths

» G=(V, E,w) weighted graph
G can be directed or undirected
V is a set of vertices

E is a set of edges

» w: E — R' is a weight function

Given s € V, find the shortest paths from s to all vertices in
|4

Dijkstra’s algoritm

Finds all shortest distances from s

Greedy algorithm: always choses the closest vertex
Original algorithm O(|V/|?)

Using a min-priority queue implemented by a Fibonacci
heap O(|E| + |V|log |V]), Fredman & Tarjan 1984

v Vv

v

v

v

v

v vy

3/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

Dijkstra’s algoritm

Algorithm (Dijkstra)
Input: G = (V, E, w), source S
Output: d an array of shortest distances
Compute:
% initialization
Vr ={s},d[s] =0
forallv e (V- Vr)do
if (s, v) € E then d[v] = w(s, V)
else d[v] = o0
% find distances
while Vr #£ V do
find u such that d[u] = min{d[v] | v € V — V7}
Vr=Vru {U}
forallv e V — Vrdo
d[v] = min{d[v], d[u] + w(u, v)}

4/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm

Example

s=vi, Vr={v} 4

After the for loop
d = (0,5, 00,00, 00,00,00,1)

Iterations of the while loop
1.

u= Vs, VT = {V17 V8}
V— VT = {V27 V3, V4, Vs, Ve, V7}
d:(0,2,oo,00,00,00,471)

u=vo, Vr ={vy,vg, v}
VvV — VT = {V37 Vg, Vs, Ve, V7}
d:(072,4,oo,0070074,1)

u=vs, Vr ={vq, g, V2, 3}
V —Vr ={v, s, s, 7}
d=(0,2,4,5,500,4,1)

S u=vy, Vr={v,vg, Vo, v3, 7}

V—Vr={v, s, 6}
d=1(0,2,4,5,5,8,4,1)

The remaining iterations do not
change d

Distributed implementation

5118

Shortest paths Dijkstra’s algoritm

Dense Graphs

Sparse graphs: Johnson’s algoritm

Distribute the adjacency matrix using 1D block distribution, e.g.,

Distributed implementation

72
Po V4 1
Vo 1
Py v
Va4 2
P vs 6
Ve 4
P vs 3
Vg 3

Process P; “owns" a subset V; of V

P; computes in the while loop
forallve (V- Vy)nVdo

d[v] = min{d|v], d[u] + w(u, v)}

6/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

v

Each P; needs to know V7t

P; finds u such that d[u] = min{d[v] | v € (V — V)N V;}
That is, a minimum among the vertices it owns

Py can do global reduction to find u such that

dlu] = min{d[v] | v e (V- V7)}

Py broadcasts u

Each P;inserts into its V1

v

v

v

v

718

Shortest paths

vV V.V v v Vv Y

Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

Let |V|=n

Each process uses O(n?/p) storage
Computations are in O(rn?/p)

Reduction and broadcast are in O(log p)
There are n communication steps

To = O(/p) + O(nlog p)

The speed up is

Ts _ o(r?) B P
T, O(n?/p)+ O(nlogp) 1 + O(2loge)

S =
The efficiency is

1
:—I
1+ O(Ro9R)

8/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

Sparse graphs: Johnson’s algoritm

Algorithm (Johnson)

Input: G = (V, E, w), source vertex S
Output: vector d with shortest distances to S
Compute:
% initialization
Q = V, s source vertex
forall v € Qdo d[v] =
d[s]=0
% find distances
while Q # () do
u = extract vertex with smallest distance from Q
for each v € Adj[u] do
if v.e Qand d[u] + w(u, v) < d[v] then
d[v] = d[u] + w(u, v)
update d[v] in Q

9/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

v

Q is a priority queue

Can be implemented as min-heap

The top of the heap is the vertex with shortest distance
Distance update (rebuilding the heap) is in O(log | V)

For each vertex we scan its incident edges

|E| edges, O(log |V|) updates, O(|E|log|V]) running time
How to parallelize?

v

v

v

v

v

v

10/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

Graph distribution

v

Assume p processes

Partition V into p sets, V4, Vo,..., Vp
Process i
» stores V;
» stores for each u € V; all adjacent vertices to u, i.e.,
v € Adj[u]
and the weights of the corresponding edges
Foru e V;, let v € Adj[u]

» if v e V;, uis aninternal vertex
» if v € Vj, uis a boundary vertex

v

v

v

1118

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

Example
» Process P1 owns
» internal vertices vq, v4
boundary vertices v», vs,
Vs
» stores vertices from P2:
Ve, Vi1, V12
» Process P2 owns
» internal vertices vz, vg,
Vo, V1o
boundary vertices v,
Vi1,Vi2
» stores verices from P1
Vo, V3, V5

» Each process also stores
the weights of the
corresponding edges

P1

v5

v1

v2

12/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

Distributed implementation

» Assume p processes
» Partition V into subsets V4,..., V,

» Process P; owns V; and stores adjacent vertices that are
on other processes

» P; maintains its own priority queue Q;

» P;j keeps an array D, where D[v] is the shortest distance to
the source s

» initially D[v] = cc forall v e V;
» and D[s] = 0, where the source is
» D[v] = d[v], when v is extracted from Q;

» Each process run JA onits Q;

13/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

v

Assume P; extracts u from Q;

If (u,v) € E and v € P; # P;, P; may update d[v] and then
send it to P;
If vin Q;, P; updates Q; with d[v]
If v ¢ Qj, then P; has already computed shorted distance
for v, i.e. D[v]
» if D[v] < d[v] = d[u] + w(u, v), there is a longer path,
nothing to update
» if D[v] > d[v] = d[u] + w(u, v), there is a shorter path:
insert v back into @

v

v

v

14/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

» Each process runs JA

» When u is extracted from
Qi
if uis boundary, send d[u]
to all P/’s that contain a v
adjacentto u

» e.g. when P1 updates the
distance of v45, send this
distance to P2

P1

v5

v1

v2

15/18

Shortest paths

Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

Assume s on P,
Initially only Q is not empty
Py starts working

As distances of vertices on other processes become
available, priority queues of other processes get populated

Assume a grid graph, where s is at the bottom left corner
The computation proceeds like a wave across the grid

16/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

2D-block mapping

» Let |V| = nvertices
» Consider a grid of \/p x /p processes
» Assign a block of n/\/p x n/./p vertices to each process

» If sis in the left bottom corner, the wave moves diagonally
up the grid of processes

» No more than O(,/p) processes are busy at any time

» Assume the work of the sequential algorithmis Ts = W
» Ignoring communication cost, T, = W/,/p

» Speedupis S=,/p

» Efficiencyis E=1/,/p

17/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

1D-block mapping

v

Subdivide the grid vertically in n/p stripes

v

Assign each of them to a processor
On average p/2 processes are busy
S=p/2,E=1/2

v

v

18/18

	Shortest paths
	Dijkstra's algoritm
	Dense Graphs
	Sparse graphs: Johnson's algoritm
	Distributed implementation

