
Parallel Distributed Shortest Paths

Ned Nedialkov

McMaster University
Canada

SE 3F03
March 2013

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

Outline

Shortest paths

Dijkstra’s algoritm

Dense Graphs

Sparse graphs: Johnson’s algoritm

Distributed implementation

For more details see A. Grama, G. Karypis, V. Kumar, A. Gupta,
Introduction to Parallel Computing

2/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

Shortest paths
I G = (V ,E ,w) weighted graph
I G can be directed or undirected
I V is a set of vertices
I E is a set of edges
I w : E → R+ is a weight function
I Given s ∈ V , find the shortest paths from s to all vertices in

V
I Dijkstra’s algoritm

I Finds all shortest distances from s
I Greedy algorithm: always choses the closest vertex
I Original algorithm O(|V |2)
I Using a min-priority queue implemented by a Fibonacci

heap O(|E |+ |V | log |V |), Fredman & Tarjan 1984

3/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

Dijkstra’s algoritm
Algorithm (Dijkstra)
Input: G = (V ,E ,w), source s
Output: d an array of shortest distances
Compute:
% initialization
VT = {s}, d [s] = 0
for all v ∈ (V − VT) do

if (s, v) ∈ E then d [v] = w(s, v)
else d [v] =∞

% find distances
while VT 6= V do

find u such that d [u] = min
{

d [v] | v ∈ V − VT
}

VT = VT ∪ {u}
for all v ∈ V − VT do

d [v] = min{d [v],d [u] + w(u, v)}

4/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

Example

1

v1

v2

v3

v4

v6

v5

v7

v8

5

1

2

1

3

4

1

6

2

s = v1, VT = {v1}
After the for loop
d = (0,5,∞,∞,∞,∞,∞,1)

Iterations of the while loop

1. u = v8, VT = {v1, v8}
V − VT = {v2, v3, v4, v5, v6, v7}
d = (0,2,∞,∞,∞,∞,4,1)

2. u = v2, VT = {v1, v8, v2}
V − VT = {v3, v4, v5, v6, v7}
d = (0,2,4,∞,∞,∞,4,1)

3. u = v3, VT = {v1, v8, v2, v3}
V − VT = {v4, v5, v6, v7}
d = (0,2,4,5,5,∞,4,1)

4. u = v7, VT = {v1, v8, v2, v3, v7}
V − VT = {v4, v5, v6}
d = (0,2,4,5,5,8,4,1)
The remaining iterations do not
change d

5/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

Dense Graphs
Distribute the adjacency matrix using 1D block distribution, e.g.,

1

v1

v2

v3

v4

v6

v5

v7

v8

5

1

2

1

3

4

1

6

2

v1 v2 v3 v4 v5 v6 v7 v8

P0 v1 5 1
v2 5 2 1

P1 v3 2 1 1
v4 1 2

P2 v5 1 6
v6 4

P3 v7 2 6 4 3
v8 1 1 3

Process Pi “owns" a subset Vi of V
Pi computes in the while loop

for all v ∈ (V − VT) ∩ Vi do
d [v] = min{d [v],d [u] + w(u, v)}

6/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

I Each Pi needs to know VT

I Pi finds u such that d [u] = min
{

d [v] | v ∈ (V − VT) ∩ Vi
}

That is, a minimum among the vertices it owns
I P0 can do global reduction to find u such that

d [u] = min
{

d [v] | v ∈ (V − VT)
}

I P0 broadcasts u
I Each Pi inserts into its VT

7/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

I Let |V | = n
I Each process uses O(n2/p) storage
I Computations are in O(n2/p)
I Reduction and broadcast are in O(log p)
I There are n communication steps
I Tp = O(n2/p) + O(n log p)
I The speed up is

S =
Ts

Tp
=

O(n2)

O(n2/p) + O(n log p)
=

p

1 + O(p log p
n)

I The efficiency is

E =
1

1 + O(p log p
n)

8/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

Sparse graphs: Johnson’s algoritm
Algorithm (Johnson)
Input: G = (V ,E ,w), source vertex s
Output: vector d with shortest distances to s
Compute:
% initialization
Q = V , s source vertex
for all v ∈ Q do d [v] =∞
d [s] = 0
% find distances
while Q 6= ∅ do

u = extract vertex with smallest distance from Q
for each v ∈ Adj[u] do

if v ∈ Q and d [u] + w(u, v) < d [v] then
d [v] = d [u] + w(u, v)
update d [v] in Q

9/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

I Q is a priority queue
I Can be implemented as min-heap
I The top of the heap is the vertex with shortest distance
I Distance update (rebuilding the heap) is in O(log |V |)
I For each vertex we scan its incident edges
I |E | edges, O(log |V |) updates, O(|E | log |V |) running time
I How to parallelize?

10/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

Graph distribution

I Assume p processes
I Partition V into p sets, V1,V2, . . . ,Vp
I Process i

I stores Vi
I stores for each u ∈ Vi all adjacent vertices to u, i.e.,

v ∈ Adj[u]
and the weights of the corresponding edges

I For u ∈ Vi , let v ∈ Adj[u]
I if v ∈ Vi , u is an internal vertex
I if v ∈ Vj , u is a boundary vertex

11/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

Example

v1

v2

v10

v11

v5

v4

P1
P2

v3

v6
v7

v8
v12

v9

I Process P1 owns
I internal vertices v1, v4

boundary vertices v2, v3,
v5

I stores vertices from P2:
v6, v11, v12

I Process P2 owns
I internal vertices v7, v8,

v9, v10
boundary vertices v6,
v11,v12

I stores verices from P1
v2, v3, v5

I Each process also stores
the weights of the
corresponding edges

12/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

Distributed implementation

I Assume p processes
I Partition V into subsets V1, . . . ,Vp

I Process Pi owns Vi and stores adjacent vertices that are
on other processes

I Pi maintains its own priority queue Qi

I Pi keeps an array D, where D[v] is the shortest distance to
the source s

I initially D[v] =∞ for all v ∈ Vi
I and D[s] = 0, where the source is
I D[v] = d [v], when v is extracted from Qi

I Each process run JA on its Qi

13/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

I Assume Pi extracts u from Qi

I If (u, v) ∈ E and v ∈ Pj 6= Pi , Pi may update d [v] and then
send it to Pj

I If v in Qj , Pj updates Qj with d [v]
I If v /∈ Qj , then Pj has already computed shorted distance

for v , i.e. D[v]
I if D[v] ≤ d [v] = d [u] + w(u, v), there is a longer path,

nothing to update
I if D[v] > d [v] = d [u] + w(u, v), there is a shorter path:

insert v back into Qj

14/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

v1

v2

v10

v11

v5

v4

P1
P2

v3

v6
v7

v8
v12

v9

I Each process runs JA
I When u is extracted from

Qi
if u is boundary, send d [u]
to all Pj ’s that contain a v
adjacent to u

I e.g. when P1 updates the
distance of v12, send this
distance to P2

15/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

I Assume s on P0

I Initially only Q0 is not empty
I P0 starts working
I As distances of vertices on other processes become

available, priority queues of other processes get populated
I Assume a grid graph, where s is at the bottom left corner
I The computation proceeds like a wave across the grid

16/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

2D-block mapping

I Let |V | = n vertices
I Consider a grid of

√
p ×√p processes

I Assign a block of n/
√

p × n/
√

p vertices to each process
I If s is in the left bottom corner, the wave moves diagonally

up the grid of processes
I No more than O(

√
p) processes are busy at any time

I Assume the work of the sequential algorithm is Ts = W
I Ignoring communication cost, Tp = W/

√
p

I Speed up is S =
√

p
I Efficiency is E = 1/

√
p

17/18

Shortest paths Dijkstra’s algoritm Dense Graphs Sparse graphs: Johnson’s algoritm Distributed implementation

1D-block mapping

I Subdivide the grid vertically in n/p stripes
I Assign each of them to a processor
I On average p/2 processes are busy
I S = p/2, E = 1/2

18/18

	Shortest paths
	Dijkstra's algoritm
	Dense Graphs
	Sparse graphs: Johnson's algoritm
	Distributed implementation

