Parallel Distributed Shortest Paths

Ned Nedialkov

McMaster University Canada

> SE 3F03 March 2013

Outline

- Shortest paths
- Dijkstra's algoritm
- **Dense Graphs**
- Sparse graphs: Johnson's algoritm
- **Distributed implementation**

For more details see A. Grama, G. Karypis, V. Kumar, A. Gupta, Introduction to Parallel Computing

Shortest paths

- G = (V, E, w) weighted graph
- ► G can be directed or undirected
- V is a set of vertices
- E is a set of edges
- $w: E \rightarrow R^+$ is a weight function
- ► Given s ∈ V, find the shortest paths from s to all vertices in V
- Dijkstra's algoritm
 - Finds all shortest distances from s
 - Greedy algorithm: always choses the closest vertex
 - Original algorithm $O(|V|^2)$
 - ► Using a min-priority queue implemented by a Fibonacci heap O(|E| + |V| log |V|), Fredman & Tarjan 1984

Dijkstra's algoritm

Algorithm (Dijkstra)

Input: G = (V, E, w), source s Output: d an array of shortest distances Compute: % initialization $V_T = \{s\}, d[s] = 0$ for all $v \in (V - V_T)$ do if $(s, v) \in E$ then d[v] = w(s, v)else $d[v] = \infty$ % find distances while $V_T \neq V$ do find u such that $d[u] = \min\{d[v] \mid v \in V - V_T\}$ $V_{\tau} = V_{\tau} \cup \{u\}$ for all $v \in V - V_{\tau}$ do $d[v] = \min\{d[v], d[u] + w(u, v)\}$

Example

 $s = v_1, V_T = \{v_1\}$ After the for loop $d = (0, 5, \infty, \infty, \infty, \infty, \infty, 1)$

Iterations of the while loop

1.
$$u = v_8$$
, $V_7 = \{v_1, v_8\}$
 $V - V_7 = \{v_2, v_3, v_4, v_5, v_6, v_7\}$
 $d = (0, 2, \infty, \infty, \infty, \infty, \infty, 4, 1)$

2.
$$u = v_2, V_T = \{v_1, v_8, v_2\}$$

 $V - V_T = \{v_3, v_4, v_5, v_6, v_7\}$
 $d = (0, 2, 4, \infty, \infty, \infty, 4, 1)$

3.
$$u = v_3, V_T = \{v_1, v_8, v_2, v_3\}$$

 $V - V_T = \{v_4, v_5, v_6, v_7\}$
 $d = (0, 2, 4, 5, 5, \infty, 4, 1)$

4.
$$u = v_7$$
, $V_T = \{v_1, v_8, v_2, v_3, v_7\}$
 $V - V_T = \{v_4, v_5, v_6\}$
 $d = (0, 2, 4, 5, 5, 8, 4, 1)$

The remaining iterations do not change *d*

Dense Graphs

Distribute the adjacency matrix using 1D block distribution, e.g.,

		<i>V</i> ₁	<i>V</i> ₂	<i>V</i> 3	V_4	V 5	V_6	V 7	<i>V</i> 8
P_0	<i>V</i> 1		5						1
	<i>V</i> ₂	5		2					1
P_1	<i>V</i> 3		2		1	1			
	V_4			1				2	
P_2	V 5			1				6	
	V_6							4	
P_3	V 7				2	6	4		3
	V 8	1	1					3	

Process P_i "owns" a subset V_i of V P_i computes in the while loop for all $v \in (V - V_T) \cap V_i$ do $d[v] = \min\{d[v], d[u] + w(u, v)\}$

- Each P_i needs to know V_T
- ► P_i finds u such that $d[u] = \min\{d[v] \mid v \in (V V_T) \cap V_i\}$ That is, a minimum among the vertices it owns
- ► P_0 can do global reduction to find u such that $d[u] = \min\{d[v] \mid v \in (V V_T)\}$
- P₀ broadcasts u
- Each P_i inserts into its V_T

Dense Graphs

- Let |V| = n
- Each process uses $O(n^2/p)$ storage
- Computations are in $O(n^2/p)$
- Reduction and broadcast are in O(log p)
- There are n communication steps

$$T_p = O(n^2/p) + O(n\log p)$$

The speed up is

$$S = \frac{T_s}{T_p} = \frac{O(n^2)}{O(n^2/p) + O(n\log p)} = \frac{p}{1 + O(\frac{p\log p}{n})}$$

The efficiency is

$$E = \frac{1}{1 + O(\frac{p \log p}{n})}$$

Sparse graphs: Johnson's algoritm

Algorithm (Johnson)

Input: G = (V, E, w), source vertex s Output: vector d with shortest distances to sCompute: % initialization Q = V, s source vertex for all $v \in Q$ do $d[v] = \infty$ d[s] = 0% find distances while $Q \neq \emptyset$ do u = extract vertex with smallest distance from Qfor each $v \in \operatorname{Adj}[u]$ do if $v \in Q$ and d[u] + w(u, v) < d[v] then d[v] = d[u] + w(u, v)update d[v] in Q

- Q is a priority queue
- Can be implemented as min-heap
- The top of the heap is the vertex with shortest distance
- Distance update (rebuilding the heap) is in $O(\log |V|)$
- For each vertex we scan its incident edges
- ► |E| edges, $O(\log |V|)$ updates, $O(|E|\log |V|)$ running time
- How to parallelize?

Graph distribution

- Assume p processes
- Partition V into p sets, V_1, V_2, \ldots, V_p
- Process i
 - ► stores V_i
 - stores for each u ∈ V_i all adjacent vertices to u, i.e., v ∈ Adj[u] and the weights of the corresponding edges
- For $u \in V_i$, let $v \in \operatorname{Adj}[u]$
 - if $v \in V_i$, *u* is an internal vertex
 - if $v \in V_j$, *u* is a boundary vertex

Example

- Process P1 owns
 - internal vertices v₁, v₄
 boundary vertices v₂, v₃,
 v₅
 - stores vertices from P2: v₆, v₁₁, v₁₂
- Process P2 owns
 - internal vertices v₇, v₈,
 - *V*9, *V*10
 - boundary vertices v₆,
 - *V*₁₁,*V*₁₂
 - stores verices from P1
 v₂, v₃, v₅
- Each process also stores the weights of the corresponding edges

Distributed implementation

- Assume *p* processes
- Partition V into subsets V_1, \ldots, V_p
- Process P_i owns V_i and stores adjacent vertices that are on other processes
- *P_i* maintains its own priority queue *Q_i*
- *P_i* keeps an array *D*, where *D*[*v*] is the shortest distance to the source *s*
 - initially $D[v] = \infty$ for all $v \in V_i$
 - ▶ and *D*[*s*] = 0, where the source is
 - D[v] = d[v], when v is extracted from Q_i
- Each process run JA on its Q_i

• Assume P_i extracts u from Q_i

- If (u, v) ∈ E and v ∈ P_j ≠ P_i, P_i may update d[v] and then send it to P_j
- ► If v in Q_j, P_j updates Q_j with d[v]
- If v ∉ Q_j, then P_j has already computed shorted distance for v, i.e. D[v]
 - If D[v] ≤ d[v] = d[u] + w(u, v), there is a longer path, nothing to update
 - If D[v] > d[v] = d[u] + w(u, v), there is a shorter path: insert v back into Q_j

Dijkstra's algoritm

Dense Graphs

- Each process runs JA
- ► When *u* is extracted from *Q_i*

if *u* is boundary, send d[u] to all P_j 's that contain a *v* adjacent to *u*

 e.g. when P1 updates the distance of v₁₂, send this distance to P2

- Assume s on P₀
- Initially only Q₀ is not empty
- P₀ starts working
- As distances of vertices on other processes become available, priority queues of other processes get populated
- Assume a grid graph, where *s* is at the bottom left corner
- The computation proceeds like a wave across the grid

2D-block mapping

- Let |V| = n vertices
- Consider a grid of $\sqrt{p} \times \sqrt{p}$ processes
- ► Assign a block of $n/\sqrt{p} \times n/\sqrt{p}$ vertices to each process
- If s is in the left bottom corner, the wave moves diagonally up the grid of processes
- No more than $O(\sqrt{p})$ processes are busy at any time
- Assume the work of the sequential algorithm is $T_s = W$
- Ignoring communication cost, $T_p = W/\sqrt{p}$
- Speed up is $S = \sqrt{p}$
- Efficiency is $E = 1/\sqrt{p}$

1D-block mapping

- Subdivide the grid vertically in n/p stripes
- Assign each of them to a processor
- On average p/2 processes are busy