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Outline

! Traveling salesman problem (TSP)

! Recursive depth-first search (DFS)

! Iterative DFS

! Parallelizing tree search

! Dynamic mapping

! Some MPI issues

For more details, see Chapter 6, section 2 in the textbook
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Traveling Salesman Problem (TSP)
Given a set of cities and the distances between them, determine
the shortest path starting from a given city, passing through all the
other cities and returning to the first city
Symmetric TSP: the distance between two cities is the same in
both directions
TSP can be modeled as undirected weighted graph

! vertices denote cities

! edges connect them, and the weight of an edge is the distance
between two cities

Asymmetric TSP: paths may not exist in both directions, or the
distances might be different in opposite directions. We have a
directed graph
Can arise e.g. with one-way streets or say air fares that are
different in opposite directions
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! This is NP-hard problem; no polynomial type algorithm exists

! We study how to do parallel distributed tree search

! Example
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0, 0

0 1, 1

0 1 2, 3

0 2 3 1 0, 22

0 3 1 2 0, 15

0 1 3 2 0, 20

1 3, 70 0 2 3, 13 0 3 1, 12

0 2, 3 0 3, 8

0 3 2, 202 1, 210

0 2 1 3 0, 340 1 2 3 0, 20

0 3 2 1 0, 43

(Figures 6.9 and 6.10 from P. Pacheco, An Introduction to Parallel
Programming)
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Tree search
! Start at the origin, here city 0

! Do depth-first search

! maintain the current best tour, that is minimum cost
! if a node is reached with cost larger than current minimum

cost, do not go deeper
0, 0

0 1, 1

0 1 2, 3

0 2 3 1 0, 22

0 3 1 2 0, 15

0 1 3 2 0, 20

1 3, 70 0 2 3, 13 0 3 1, 12

0 2, 3 0 3, 8

0 3 2, 202 1, 210

0 2 1 3 0, 340 1 2 3 0, 20

0 3 2 1 0, 43

For example, going 0→ 2→ 1, we have cost 21 at 1, and we can
stop, as 0→ 1→ 2→ 3→ 0 has cost 20
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Serial depth-first search
! Cities are numbered 0, 1, . . . , n − 1

! A tour contains number of cities, the cities in the tour, and the cost
of it

! number of cities is citycount (tour)

! Initially, tour contains the first city 0 and cost 0

! besttour(tour) checks if this is the best tour so far

! updatebesttour(tour) updates the best tour

! feasible (tour , city ) checks if city has been visited, and if not, if it
can be added to tour so that
cost up to city < cost( best tour )

! add(tour, city ) adds city to tour; city must be feasible

! removelast(tour , city ) removes last city from tour

! We consider recursive and iterative depth first searches
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Recursive DFS

Algorithm (Recursive DFS)
DepthFirstSearch(tour)
if citycount (tour) = n

if besttour(tour)
updatebesttour(tour)

else
for each neighboring city of last city in tour

if feasible ( city , tour)
addcity(tour , city )
DepthFirstSearch(tour)
removelast(tour , city )
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Iterative DFS. Version I

! Use stack to avoid recursive calls

! push(stack,city) pushes city onto stack

! pop(stack) pops city from stack

! Use −1 to recognize when all children of a node are visited

! Stack contains only feasible cities, or −1 to mark the beginning of
children nodes
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Algorithm (Iterative DFS. Version I)
for city ← n − 1 downto 0

push(stack, city )
while stack is non empty

city←pop(stack)
if city= −1 % no children to visit

removelast(tour,city)
else

add(tour, city )
if citycount (tour) = n

if besttour(tour)
updatebesttour(tour)
removelast(tour,city)

else
push(stack,−1) % mark beginning of children list
for b = n − 1 downto 1

if feasible (tour ,b)
push(stack,b)
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Example

0, 0

0 1, 1

0 1 2, 3

0 2 3 1 0, 22

0 3 1 2 0, 15

0 1 3 2 0, 20

1 3, 70 0 2 3, 13 0 3 1, 12

0 2, 3 0 3, 8

0 3 2, 202 1, 210

0 2 1 3 0, 340 1 2 3 0, 20

0 3 2 1 0, 43

stack n− 1, . . . , 1, 0, tour empty
After first iteration:
city = 0
tour = 0,0
stack n − 1, . . . , 1,−1, 3, 2, 1
After second iteration:
city = 1
tour = 0→ 1, 1
stack
n − 1, . . . , 1,−1, 3, 2,−1, 3, 2
After third iteration:
city = 2
tour = 0→ 1→ 2, 3
stack
n−1, . . . , 1,−1, 3, 2,−1, 3,−1, 3
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Example

0, 0

0 1, 1

0 1 2, 3

0 2 3 1 0, 22

0 3 1 2 0, 15

0 1 3 2 0, 20

1 3, 70 0 2 3, 13 0 3 1, 12

0 2, 3 0 3, 8

0 3 2, 202 1, 210

0 2 1 3 0, 340 1 2 3 0, 20

0 3 2 1 0, 43

After third iteration:
city = 2
tour = 0 → 1 → 2, 3
stack
n − 1, . . . , 1,−1, 3, 2,−1, 3,−1, 3
After fourth iteration:
city = 3
tour = 0 → 1 → 2 → 3, 20
best tour = 0 → 1 → 2 → 3 →

0, 20
tour = 0 → 1 → 2, 3
stack
n − 1, . . . , 1,−1, 3, 2,−1, 3,−1
After fifth iteration:
city = −1
tour = 0 → 1, 1
stack
n − 1, . . . , 1,−1, 3, 2,−1, 3
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Iterative depth first search. Version II

! Push partial tours onto stack

! Code closer to recursive version, but slower than Version I

! Entire (partial) tours are in stack

! Multiple processes can get tours to work on
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Algorithm (Iterative depth-first-search. Version II)
push(stack, tour)
while stack is non empty

tour←pop(stack)
if citycount (tour) = n

if besttour(tour)
updatebesttour(tour)

else
for b = n − 1 downto 1

if feasible (tour ,b)
add(city , tour)
push(stack, tour)
removelast(tour , city )
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Example

Initially stack contains 0,0

0, 0

0 1, 1

0 1 2, 3

0 2 3 1 0, 22

0 3 1 2 0, 15

0 1 3 2 0, 20

1 3, 70 0 2 3, 13 0 3 1, 12

0 2, 3 0 3, 8

0 3 2, 202 1, 210

0 2 1 3 0, 340 1 2 3 0, 20

0 3 2 1 0, 43

Iteration 1 of while loop
tour = 0,0
b = 3, tour = 0→ 3, 8
stack 0→ 3, 8
b = 2, tour = 0→ 2, 3

stack 0→ 3, 8
0→ 2, 3

b = 1, tour = 0→ 1, 1

stack 0→ 3, 8
0→ 2, 3
0→ 1, 1
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Example

0, 0

0 1, 1

0 1 2, 3

0 2 3 1 0, 22

0 3 1 2 0, 15

0 1 3 2 0, 20

1 3, 70 0 2 3, 13 0 3 1, 12

0 2, 3 0 3, 8

0 3 2, 202 1, 210

0 2 1 3 0, 340 1 2 3 0, 20

0 3 2 1 0, 43

stack 0→ 3, 8
0→ 2, 3
0→ 1, 1

Iteration 2 of while loop
pop tour = 0→ 1, 1
stack 0→ 3, 8

0→ 2, 3
b = 3, tour = 0→ 1→ 3, 7
stack 0→ 3, 8

0→ 2, 3
0→ 1→ 3, 7

b = 2, tour = 0→ 1→ 2, 3
b = 1, not feasible
stack 0→ 3, 8

0→ 2, 3
0→ 1→ 3, 7
0→ 1→ 2, 3
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Parallelizing tree search

Recursive and Version I DFS are difficult (if not impossible) to parallelize.
Why?

0, 0

0 1, 1

0 1 2, 3

0 2 3 1 0, 22

0 3 1 2 0, 15

0 1 3 2 0, 20

1 3, 70 0 2 3, 13 0 3 1, 12

0 2, 3 0 3, 8

0 3 2, 202 1, 210

0 2 1 3 0, 340 1 2 3 0, 20

0 3 2 1 0, 43

stack after iteration 2

0→ 3, 8
0→ 2, 3
0→ 1→ 3, 7
0→ 1→ 2, 3

A process can get a stack record and work with it independently!
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Mapping
Assume p processes
One process could run Version II until there are p tours in the stack
Assign them to processes

Best tour
Processes work independently until each finds it local best tour
Do global reduction on process 0 to find the best tour
Simple, but

! a process may search through partial tours that cannot lead to
global best tour
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Dynamic mapping

When a process runs out of work, get more work
In version II, each stack entry is partial tour
A process can get a partial tour and work on it
The order in which nodes are visited does not matter
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Graph representation
Represent the graph using adjacency matrix
Entry (i , j) is the weight of edge from vertex i to vertex j

Process 0 sends this matrix to each process
Since the adjacency matrix is not large (e.g. 100× 100) each process can
store it

We have to

! partition the tree

! check and update best tour

! get best tour on process 0
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Dynamic mapping

When a process runs out of work, it can busy-wait for

! more work or

! notification that program is terminating

A process with work can send part of it to an idle process
Alternatively, a process without work can request such form other
process(es)
How can we do this?
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Terminated algorithm

A process checks if it has at least two tours
If it has received request for work, it splits its stack and sends work to
the requesting process
If it cannot send, it sends ”no work” reply

Setup:

! a process has its own my stack

! fulfill request(my stack) checks if a request for work is received; if
so it splits the stack and sends work

! send rejects checks for work requests and sends ”no work” reply

If no requests, it simply returns
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Algorithm (Terminated)
if number of tours in my stack ≥ 2

fulfill request(my stack)
return false

else
send rejects
if my stack is non empty % 1 tour

return false
else % empty stack

if only one process left
return true

announce ”out of work”
workrequest = false
while (1)

if no work left return true

Algorithm (Terminated Cont.)
else

if workrequest = false
send work request
workrequest = true

else
check for work
if work available

receive it in my stack
return false
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MPI issues
Process 0 generates and sends partial tours to p processes
Use MPI Scaterv

When a process finds a best tour, it sends its cost to all other processes
MPI Bcast cannot be used, as processes will block
We can do

f o r ( d e s t =0; d e s t < p ; d e s t++)
i f ( d e s t !=my rank )

MPI Send(&new be s t co s t , 1 , MPI INT , des t ,
NEW COST TAG,comm) ;

NEW COST TAG tells the receiving process the message contains new
cost
Destination can check periodically using

MPI Recv(& r e c e i v e d c o s t , 1 , MPI INT ,MPI ANY SOURCE ,
NEW COST TAG, comm,& s t a t u s ) ;

But receiving process will block
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Can use
int MPI Iprobe(int src , int tag,MPI Comm comm,

int ∗msg, MPI Status ∗status

Checks if a message from src with tag in communicator comm is
available

If such is available ∗msg is 1 and status−>MPI SOURCE contains the
source; otherwise ∗msg is 0

To check if there is a message from any source
MPI Iprobe(MPI ANY SOURCE,NEW COST TAG, &msg, &status)

If msg=1, we can receive with
MPI Recv(&received cost,1,MPI INT,status.MPI SOURCE,

NEW COST TAG,comm,MPI STATUS IGNORE);
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