
Traveling Salesman Problem
Parallel Distributed Tree Search

Ned Nedialkov

Dept. of Computing and Software
McMaster University, Canada

nedialk@mcmaster.ca

March 2012

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

Outline

! Traveling salesman problem (TSP)

! Recursive depth-first search (DFS)

! Iterative DFS

! Parallelizing tree search

! Dynamic mapping

! Some MPI issues

For more details, see Chapter 6, section 2 in the textbook

Ned Nedialkov, McMaster University, 2012 2/24

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

Traveling Salesman Problem (TSP)
Given a set of cities and the distances between them, determine
the shortest path starting from a given city, passing through all the
other cities and returning to the first city
Symmetric TSP: the distance between two cities is the same in
both directions
TSP can be modeled as undirected weighted graph

! vertices denote cities

! edges connect them, and the weight of an edge is the distance
between two cities

Asymmetric TSP: paths may not exist in both directions, or the
distances might be different in opposite directions. We have a
directed graph
Can arise e.g. with one-way streets or say air fares that are
different in opposite directions

Ned Nedialkov, McMaster University, 2012 3/24

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

! This is NP-hard problem; no polynomial type algorithm exists

! We study how to do parallel distributed tree search

! Example

1

5

2
1

87

12

10

4
6

18

3

0

3 2

1

0, 0

0 1, 1

0 1 2, 3

0 2 3 1 0, 22

0 3 1 2 0, 15

0 1 3 2 0, 20

1 3, 70 0 2 3, 13 0 3 1, 12

0 2, 3 0 3, 8

0 3 2, 202 1, 210

0 2 1 3 0, 340 1 2 3 0, 20

0 3 2 1 0, 43

(Figures 6.9 and 6.10 from P. Pacheco, An Introduction to Parallel
Programming)

Ned Nedialkov, McMaster University, 2012 4/24

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

Tree search
! Start at the origin, here city 0

! Do depth-first search

! maintain the current best tour, that is minimum cost
! if a node is reached with cost larger than current minimum

cost, do not go deeper
0, 0

0 1, 1

0 1 2, 3

0 2 3 1 0, 22

0 3 1 2 0, 15

0 1 3 2 0, 20

1 3, 70 0 2 3, 13 0 3 1, 12

0 2, 3 0 3, 8

0 3 2, 202 1, 210

0 2 1 3 0, 340 1 2 3 0, 20

0 3 2 1 0, 43

For example, going 0→ 2→ 1, we have cost 21 at 1, and we can
stop, as 0→ 1→ 2→ 3→ 0 has cost 20

Ned Nedialkov, McMaster University, 2012 5/24

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

Serial depth-first search
! Cities are numbered 0, 1, . . . , n − 1

! A tour contains number of cities, the cities in the tour, and the cost
of it

! number of cities is citycount (tour)

! Initially, tour contains the first city 0 and cost 0

! besttour(tour) checks if this is the best tour so far

! updatebesttour(tour) updates the best tour

! feasible (tour , city) checks if city has been visited, and if not, if it
can be added to tour so that
cost up to city < cost(best tour)

! add(tour, city) adds city to tour; city must be feasible

! removelast(tour , city) removes last city from tour

! We consider recursive and iterative depth first searches

Ned Nedialkov, McMaster University, 2012 6/24

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

Recursive DFS

Algorithm (Recursive DFS)
DepthFirstSearch(tour)
if citycount (tour) = n

if besttour(tour)
updatebesttour(tour)

else
for each neighboring city of last city in tour

if feasible (city , tour)
addcity(tour , city)
DepthFirstSearch(tour)
removelast(tour , city)

Ned Nedialkov, McMaster University, 2012 7/24

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

Iterative DFS. Version I

! Use stack to avoid recursive calls

! push(stack,city) pushes city onto stack

! pop(stack) pops city from stack

! Use −1 to recognize when all children of a node are visited

! Stack contains only feasible cities, or −1 to mark the beginning of
children nodes

Ned Nedialkov, McMaster University, 2012 8/24

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

Algorithm (Iterative DFS. Version I)
for city ← n − 1 downto 0

push(stack, city)
while stack is non empty

city←pop(stack)
if city= −1 % no children to visit

removelast(tour,city)
else

add(tour, city)
if citycount (tour) = n

if besttour(tour)
updatebesttour(tour)
removelast(tour,city)

else
push(stack,−1) % mark beginning of children list
for b = n − 1 downto 1

if feasible (tour ,b)
push(stack,b)

Ned Nedialkov, McMaster University, 2012 9/24

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

Example

0, 0

0 1, 1

0 1 2, 3

0 2 3 1 0, 22

0 3 1 2 0, 15

0 1 3 2 0, 20

1 3, 70 0 2 3, 13 0 3 1, 12

0 2, 3 0 3, 8

0 3 2, 202 1, 210

0 2 1 3 0, 340 1 2 3 0, 20

0 3 2 1 0, 43

stack n− 1, . . . , 1, 0, tour empty
After first iteration:
city = 0
tour = 0,0
stack n − 1, . . . , 1,−1, 3, 2, 1
After second iteration:
city = 1
tour = 0→ 1, 1
stack
n − 1, . . . , 1,−1, 3, 2,−1, 3, 2
After third iteration:
city = 2
tour = 0→ 1→ 2, 3
stack
n−1, . . . , 1,−1, 3, 2,−1, 3,−1, 3

Ned Nedialkov, McMaster University, 2012 10/24

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

Example

0, 0

0 1, 1

0 1 2, 3

0 2 3 1 0, 22

0 3 1 2 0, 15

0 1 3 2 0, 20

1 3, 70 0 2 3, 13 0 3 1, 12

0 2, 3 0 3, 8

0 3 2, 202 1, 210

0 2 1 3 0, 340 1 2 3 0, 20

0 3 2 1 0, 43

After third iteration:
city = 2
tour = 0 → 1 → 2, 3
stack
n − 1, . . . , 1,−1, 3, 2,−1, 3,−1, 3
After fourth iteration:
city = 3
tour = 0 → 1 → 2 → 3, 20
best tour = 0 → 1 → 2 → 3 →

0, 20
tour = 0 → 1 → 2, 3
stack
n − 1, . . . , 1,−1, 3, 2,−1, 3,−1
After fifth iteration:
city = −1
tour = 0 → 1, 1
stack
n − 1, . . . , 1,−1, 3, 2,−1, 3

Ned Nedialkov, McMaster University, 2012 11/24

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

Iterative depth first search. Version II

! Push partial tours onto stack

! Code closer to recursive version, but slower than Version I

! Entire (partial) tours are in stack

! Multiple processes can get tours to work on

Ned Nedialkov, McMaster University, 2012 12/24

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

Algorithm (Iterative depth-first-search. Version II)
push(stack, tour)
while stack is non empty

tour←pop(stack)
if citycount (tour) = n

if besttour(tour)
updatebesttour(tour)

else
for b = n − 1 downto 1

if feasible (tour ,b)
add(city , tour)
push(stack, tour)
removelast(tour , city)

Ned Nedialkov, McMaster University, 2012 13/24

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

Example

Initially stack contains 0,0

0, 0

0 1, 1

0 1 2, 3

0 2 3 1 0, 22

0 3 1 2 0, 15

0 1 3 2 0, 20

1 3, 70 0 2 3, 13 0 3 1, 12

0 2, 3 0 3, 8

0 3 2, 202 1, 210

0 2 1 3 0, 340 1 2 3 0, 20

0 3 2 1 0, 43

Iteration 1 of while loop
tour = 0,0
b = 3, tour = 0→ 3, 8
stack 0→ 3, 8
b = 2, tour = 0→ 2, 3

stack 0→ 3, 8
0→ 2, 3

b = 1, tour = 0→ 1, 1

stack 0→ 3, 8
0→ 2, 3
0→ 1, 1

Ned Nedialkov, McMaster University, 2012 14/24

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

Example

0, 0

0 1, 1

0 1 2, 3

0 2 3 1 0, 22

0 3 1 2 0, 15

0 1 3 2 0, 20

1 3, 70 0 2 3, 13 0 3 1, 12

0 2, 3 0 3, 8

0 3 2, 202 1, 210

0 2 1 3 0, 340 1 2 3 0, 20

0 3 2 1 0, 43

stack 0→ 3, 8
0→ 2, 3
0→ 1, 1

Iteration 2 of while loop
pop tour = 0→ 1, 1
stack 0→ 3, 8

0→ 2, 3
b = 3, tour = 0→ 1→ 3, 7
stack 0→ 3, 8

0→ 2, 3
0→ 1→ 3, 7

b = 2, tour = 0→ 1→ 2, 3
b = 1, not feasible
stack 0→ 3, 8

0→ 2, 3
0→ 1→ 3, 7
0→ 1→ 2, 3

Ned Nedialkov, McMaster University, 2012 15/24

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

Parallelizing tree search

Recursive and Version I DFS are difficult (if not impossible) to parallelize.
Why?

0, 0

0 1, 1

0 1 2, 3

0 2 3 1 0, 22

0 3 1 2 0, 15

0 1 3 2 0, 20

1 3, 70 0 2 3, 13 0 3 1, 12

0 2, 3 0 3, 8

0 3 2, 202 1, 210

0 2 1 3 0, 340 1 2 3 0, 20

0 3 2 1 0, 43

stack after iteration 2

0→ 3, 8
0→ 2, 3
0→ 1→ 3, 7
0→ 1→ 2, 3

A process can get a stack record and work with it independently!

Ned Nedialkov, McMaster University, 2012 16/24

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

Mapping
Assume p processes
One process could run Version II until there are p tours in the stack
Assign them to processes

Best tour
Processes work independently until each finds it local best tour
Do global reduction on process 0 to find the best tour
Simple, but

! a process may search through partial tours that cannot lead to
global best tour

Ned Nedialkov, McMaster University, 2012 17/24

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

Dynamic mapping

When a process runs out of work, get more work
In version II, each stack entry is partial tour
A process can get a partial tour and work on it
The order in which nodes are visited does not matter

Ned Nedialkov, McMaster University, 2012 18/24

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

Graph representation
Represent the graph using adjacency matrix
Entry (i , j) is the weight of edge from vertex i to vertex j

Process 0 sends this matrix to each process
Since the adjacency matrix is not large (e.g. 100× 100) each process can
store it

We have to

! partition the tree

! check and update best tour

! get best tour on process 0

Ned Nedialkov, McMaster University, 2012 19/24

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

Dynamic mapping

When a process runs out of work, it can busy-wait for

! more work or

! notification that program is terminating

A process with work can send part of it to an idle process
Alternatively, a process without work can request such form other
process(es)
How can we do this?

Ned Nedialkov, McMaster University, 2012 20/24

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

Terminated algorithm

A process checks if it has at least two tours
If it has received request for work, it splits its stack and sends work to
the requesting process
If it cannot send, it sends ”no work” reply

Setup:

! a process has its own my stack

! fulfill request(my stack) checks if a request for work is received; if
so it splits the stack and sends work

! send rejects checks for work requests and sends ”no work” reply

If no requests, it simply returns

Ned Nedialkov, McMaster University, 2012 21/24

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

Algorithm (Terminated)
if number of tours in my stack ≥ 2

fulfill request(my stack)
return false

else
send rejects
if my stack is non empty % 1 tour

return false
else % empty stack

if only one process left
return true

announce ”out of work”
workrequest = false
while (1)

if no work left return true

Algorithm (Terminated Cont.)
else

if workrequest = false
send work request
workrequest = true

else
check for work
if work available

receive it in my stack
return false

Ned Nedialkov, McMaster University, 2012 22/24

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

MPI issues
Process 0 generates and sends partial tours to p processes
Use MPI Scaterv

When a process finds a best tour, it sends its cost to all other processes
MPI Bcast cannot be used, as processes will block
We can do

f o r (d e s t =0; d e s t < p ; d e s t++)
i f (d e s t !=my rank)

MPI Send(&new be s t co s t , 1 , MPI INT , des t ,
NEW COST TAG,comm) ;

NEW COST TAG tells the receiving process the message contains new
cost
Destination can check periodically using

MPI Recv(& r e c e i v e d c o s t , 1 , MPI INT ,MPI ANY SOURCE ,
NEW COST TAG, comm,& s t a t u s) ;

But receiving process will block

Ned Nedialkov, McMaster University, 2012 23/24

TSP Tree search Serial DFS Recursive DFS Iterative DFS Parallelizing tree search Dynamic mapping Some MPI issues

Can use
int MPI Iprobe(int src , int tag,MPI Comm comm,

int ∗msg, MPI Status ∗status

Checks if a message from src with tag in communicator comm is
available

If such is available ∗msg is 1 and status−>MPI SOURCE contains the
source; otherwise ∗msg is 0

To check if there is a message from any source
MPI Iprobe(MPI ANY SOURCE,NEW COST TAG, &msg, &status)

If msg=1, we can receive with
MPI Recv(&received cost,1,MPI INT,status.MPI SOURCE,

NEW COST TAG,comm,MPI STATUS IGNORE);

Ned Nedialkov, McMaster University, 2012 24/24

