
Understanding Communications

Ned Nedialkov

Department of Computing and Software
McMaster University, Hamilton, Ontario

Canada

'

&

$

%

Outline

• Buffering

• Safe programs

• Send modes and protocols

• Performance issues

2006 Ned Nedialkov 1

'

&

$

%

Buffering

Suppose we have

if (rank == 0)

MPI Send(sendbuf,..., 1, ...)

if (rank == 1)

MPI Recv(recvbuf,..., 0, ...)

Assume that process 1 is not ready to receive

There are 3 possibilities for process 0

(a) stops and waits until process 1 is ready to receive

(b) copies the message at sendbuf into a system buffer (can be on process 0,

process 1, or somewhere else) and returns from MPI send

(c) fails

2006 Ned Nedialkov 2

'

&

$

%

• As far as buffer space is available, (b) is a reasonable alternative

• An MPI implementation is permitted to copy the message to be sent into

internal storage, but it is not required to do so

• What if not enough space is available?

– In applications communicating large amounts of data, there may not be

enough memory (left) in buffers

– Until receive starts, no place to store the send message

– Practically, (a) results in a serial execution

• A programmer should not assume that the system provides adequate

buffering

2006 Ned Nedialkov 3

'

&

$

%

Example

Consider a program executing

process 0 process 1

MPI Send to process 1 MPI Send to process 0

MPI Recv from process 1 MPI Recv from process 0

Such a program may work in many cases, but it is certain to fail for message of

some size that is large enough

2006 Ned Nedialkov 4

'

&

$

%

Example Cont.

Try executing with various BUF SIZE

/∗ mess . c ∗/
#i n c l u d e <s t d i o . h>
#i n c l u d e < s t d l i b . h>
#i n c l u d e ”mpi . h”

#d e f i n e BUF SIZE 100

i n t main (i n t argc , cha r ∗ a rgv [])
{

i n t my rank , npes ;
cha r ∗ sendbuf , ∗ r e c vbu f ;
MPI Status s t a t u s ;

MP I I n i t (&argc , &argv) ;
MPI Comm size (MPI COMM WORLD, &npes) ;
MPI Comm rank (MPI COMM WORLD, &my rank) ;

s endbu f = ma l l o c (BUF SIZE) ;
r e c vbu f = ma l l o c (BUF SIZE) ;

2006 Ned Nedialkov 5

'

&

$

%

i f (my rank==0)
{

MPI Send (sendbuf , BUF SIZE , MPI CHAR , 1 ,
0 ,MPI COMM WORLD) ;

MPI Recv (r e cvbu f , BUF SIZE , MPI CHAR , 1 ,
0 ,MPI COMM WORLD,& s t a t u s) ;

}
i f (my rank==1)

{

MPI Send (sendbuf , BUF SIZE , MPI CHAR , 0 ,
0 ,MPI COMM WORLD) ;

MPI Recv (r e cvbu f , BUF SIZE , MPI CHAR , 0 ,
0 ,MPI COMM WORLD,& s t a t u s) ;

}

f r e e (r e c vbu f) ;
f r e e (sendbu f) ;
p r i n t f (” ∗∗∗ PE %d done \n” , my rank) ;

MP I F i n a l i z e () ;
r e t u r n 0 ;

}

2006 Ned Nedialkov 6

'

&

$

%

Techniques

Ordered send and receive. If a process is sending to another, the destination

will do a receive that matches the send before doing a send on its own

Pairing send and receive. Pairing by ordering can be difficult in complex

applications

An alternative is to use MPI Sendrecv. It performs both send and receive

such that if no buffering is available, no deadlock will occur

Buffered sends. MPI allows the programmer to provide a buffer into which

data can be placed until it is delivered (or at least left in buffer)

See MPI Bsend and MPI Brecv

Nonblocking communication. With buffering, a send may return before a

matching receives is posted

With no buffering, communication is deferred until a place for receiving is

provided

2006 Ned Nedialkov 7

'

&

$

%

Safe programs

Synchronous send: MPI Ssend

Does not return until a matching receive has been posted and the matching

receive has begun reception of the data

Parameters in MPI Ssend and MPI Send are the same— no dependence on

system buffering if MPI Ssend is used

For portability, one can try replacing all MPI Send with MPI Ssend

(Try this in the previous program)

Safe programs: do not require buffering for their correct operation

Write safe programs using

• matching send with receive

• MPI Sendrecv

• allocating own buffers

• nonblocking operations

2006 Ned Nedialkov 8

'

&

$

%

Remarks

Nonblocking operations are more important for ensuring safe programs than

for improving performance

Many implementations cannot overlap communication with computation

without extra hardware in the form of a communication processor (or

controller)

That is, overlapping also depends on the hardware environment

Nonblocking operations allow an implementation to obtain extra performance,

by overlapping communication with computation, but it is not required to

2006 Ned Nedialkov 9

'

&

$

%

Sending data

Sending a message consists of sending an envelope followed by the data

An envelope contains information such as tag, communicator, length, source,

and destination

Sending data immediately is called an eager protocol

Receiving data: matching receive exists

Receiver provides a location for the data arriving behind the envelope

MPI implementation can maintain a queue of receives that have been posted

That is, a queue of messages that are expected

When an incoming message matches a receive in this queue, the receive is

marked as completed and removed from the queue

2006 Ned Nedialkov 10

'

&

$

%

Receiving data: no matching receive exists

Receiving process must remember that a message has arrived, and it must

store the data somewhere

We keep a queue of messages that are unexpected

When MPI Recv is called, it first checks the unexpected queue. If the message

is there, it can remove it from the queue, copy the data, and complete

However, the receiving process must store the data somewhere

What if the message is too big?

2006 Ned Nedialkov 11

'

&

$

%

Rendezvous protocol

Send only the envelope to the destination process

When the receiver wants the data (and has a place to put the data), it tells

the sender “send me the data”

The sender can send the data

This is the rendezvous protocol

What if too many envelopes arrive?

MPI has a limit, reasonably large, for the number of unexpected messages that

can be handled

2006 Ned Nedialkov 12

'

&

$

%

Performance issues

The rendezvous protocol can handle arbitrary large messages in any number

The eager protocol can be faster for shorter messages

Possible mapping of MPI send modes onto eager and rendezvous protocols

could be

MPI call message size protocol

MPI Send ≤ 16KB eager

MPI Send > 16KB rendezvous

MPI Ssend any rendezvous always

MPI Rsend any eager always

MPI Rsend is sending in ready mode, when we know that a receive has been

posted

Most MPI implementations provide some parameters to allow MPI users to

tune for performance

2006 Ned Nedialkov 13

