Communicators

Ned Nedialkov

Department of Computing and Software
McMaster University, Hamilton, Ontario
Canada

/ Outline

e Communicators, groups, contexts
e \When to create communicators
e Some group and communicator operations

e Examples

_

2006 Ned Nedialkov

f Communicators, groups, contexts \

e Processes can be collected into groups

e A group is an ordered set of processes
— Each process has a unique rank in the group
— Ranks are from 0 to p — 1, where p is the number of processes in the
group
e Each message is sent in a context, and must be received in the same

context

e A communicator consist of a

— group
— context

e Every communicator has a unique context and every context has a unique
communicator

_ /

2006 Ned Nedialkov 2

f Communicators, groups, contexts. Cont. \

e A process is identified by its rank in the group associated with a
communicator

e MPI_COMM_WORLD is a default communicator, whose group contains all
initial processes

e A process can create and destroy groups at any time without reference to
other processes—local to the process

e The group contained within a communicator is agreed across the processes
at the time when the communicator is created

e Intra-communicator is a collection of processes that can send messages to
each other and engage in collective communications

e Inter-communicator are for sending messages between processes of disjoint
Intra-communicators

_ /

2006 Ned Nedialkov 3

f When to create a new communicator \

e To achieve modularity; e.g. a library can exchange messages in one
context, while an application can work within another context

Use of tags is not sufficient, as we need to know the tags in other modules
e To restrict a collective communication to a subset of processes

e To create a virtual topology that fits the communication pattern better

_ /

2006 Ned Nedialkov 4

f Some group and communicator operations \

int MPI_Comm_group (MPI.Comm comm,
MPI_Group *xgroup)

Returns a handle to the group associated with comm

_ /

2006 Ned Nedialkov 5

fint MPI_Group_incl (MPI_Group group, int n, int xranks, \

MPI_Group xnew_group)

Creates a new group from a list of processes in old group
The number of processes in the new group is n
The processes to be included are listed at ranks

Process i in new_group has rank rank[i] in group

_ /

2006 Ned Nedialkov 6

fint MPI_Comm _create (MPlI_Comm comm, MPI_Group new_group, \

MPI_Comm snew_comm)

Associates a context with new_group and creates new_comm
All the processes in new_group belong to the group underlying comm
This is a collective operation

All process in comm must call MPI_Comm_create, so all processes choose a
single context for the new communicator

_ /

2006 Ned Nedialkov 7

~

fint MPI_Comm _split (MPI_.Comm comm, int color,
int key, MPI_Comm xcomm_out)

Partitions the group associated with comm into disjoint subgroups, one for each
value of color

Each subgroup contains all processes marked with the same color

Within each subgroup, processes are ranked in order defined by the value of
key

Ties are broken according to their rank in the old group
A new communicator is created for each subgroup and returned in comm_out

Although a collective operation, each process is allowed to provide different
values for color and key

The value of color must be greater than or equal to 0

_ /

2006 Ned Nedialkov 8

f Example

/*x comm.c x/
#include <stdio.h>
#include <stdlib.h>
#include "mpi.h”

#define NPROCS 8

int main(int argc, char xargv|[])
{
int rank, new_rank,
sendbuf, recvbuf,
numtasks ;
int ranksl [4]
int ranks2[4]

{0,1,2,3};
{4.5,6,7};
MPI_Group orig_group , new_group;

MPI_Comm new_comm ;

MPI_Init(&argc,&argv);
MPI_Comm_rank (MPILCOMM_WORLD, &rank);
MPI_Comm_size (MPLCOMM_WORLD, &numtasks);

2006 Ned Nedialkov

4 N

if (numtasks != NPROCS && rank==0)

{
printf (" Must_specify .MP_PROCS_.=%d._Terminating.\n",
NPROCS) ;
MPI_Finalize ();
exit (0);
¥

/+* store the global rank in sendbuf x/
sendbuf = rank;

/+* Extract the original group handle x/
MPI_Comm_group (MPLLCOMM_WORLD, &orig_group);

/+* Divide tasks into two distinct groups based upon rank x/
if (rank < numtasks/2)
/+« if rank = 0,1,2,3, put original processes 0,1,2,3
into new_group x/
MPI_Group_incl(orig_group, 4, ranksl,6 &new_group);
else
/+* if rank = 4,5,6,7, put original processes 4,5,6,7
into new_group x/

K MPI_Group_incl(orig_group, 4, ranks2, &new_group); /

2006 Ned Nedialkov 10

4 h

/% Create new new communicator and then perform collective
communications x/

MPI_Comm_create (MPI.LCOMM_WORLD, new_group, &new_comm));

/* new_comm contains a group with processes 0,1,2,3
on processes 0,1,2,3 x/
/* new_comm contains a group with processes 4,5,6,7
on processes 4,5,6,7 x/
MPI_Allreduce(&sendbuf, &recvbuf, 1, MPILINT,
MPI_SUM, new_comm);

/+* new_rank is the rank of my processs in the new group x/
MPI_Group_rank (new_group, &new_rank);

printf (" rank=_%d_newrank=1%d_recvbuf=_%d\n",
rank ,new_rank , recvbuf);

MPI_Finalize ();

return O;

}

_ /

2006 Ned Nedialkov 11

f Example

Code adapted from P. Pacheco, PP with MPI

/% comm_split.c — build a collection of q
communicators using MPI_Comm_split

x Input: none

x* Qutput: Results of doing a broadcast across each of

the g communicators.

x Note: Assumes the number of processes, p = q~2

/

#include <stdio.h>

#include "mpi.h”

#include <math.h>

int main(int argc, charx argv][])

{

int p, my_rank;

MPI_Comm my_row_comm;

int my_row, my_rank_in_row;
int q, test;

& MPI_Init(&argc, &argv);

2006 Ned Nedialkov

f MPI_Comm_size (MPLCOMM_WORLD, &p);
MPI_Comm_rank (MPLCOMM_WORLD, &my _rank);

q = (int) sqrt((double) p);
/% my_rank is rank in MPLCOMMWORLD.

qxq = p */
my_row = my_rank/q;

&my_row_comm) ;

/+* Test the new communicators x/
MPI_Comm_rank (my_row_comm, &my_rank_in_row);
if (my_rank_in_.row = 0) test = my_row;

else test = O0;

MPI_Bcast(&test, 1, MPIIINT, 0, my_row_comm);

printf (" Process. %d._>_my_row._=.%d,"
"my_rank_in_row._.=%d, _test _=.%d\n",
my_rank, my_.row, my_rank_in_row , test);

MPI_Finalize ();
return O;

MPI_Comm_split (MPLCOMM_WORLD, my_row, my_rank,

\L

2006 Ned Nedialkov

13

f How things may work \

e A group can be represented by an array group such that groupl[i] is the
address of process with rank i in group

e An intra-communicator can be represented by a structure with
components group, myrank, context

e When a process posts a send with (dest, tag, comm), the address of the
destination is computed as comm.group [dest]

e The message sent carries a header of the form
(comm.myrank, tag, comm.context)

e When a process posts a receive with (source, tag, comm), then headers of
incoming messages are matched by
(source, tag, comm.context)

(first two may be “don’t care”)

_ /

2006 Ned Nedialkov 14

