
Performance

Ned Nedialkov

Department of Computing and Software
McMaster University, Hamilton, Ontario

Canada



'

&

$

%

Outline

• Sources of overhead

• Total parallel overhead

• Speedup

• Efficiency

• Scalability

• Communication cost

• Timing

2006 Ned Nedialkov 1



'

&

$

%

Sources of overhead

• Communication

• Idling — load imbalance, synchronization, presence of serial components

• Excess computation

The fastest known serial algorithm may be difficult or impossible to

parallelize

We may have to use a poorer, but easier to parallelize algorithm

The difference in computation performed by the parallel program and the

best serial program is the excess computation overhead incurred by the

parallel program

2006 Ned Nedialkov 2



'

&

$

%

Total parallel overhead

Denote serial running time by Ts and parallel running time on p processors by

Tp

(We assume solving problems of the same size)

Total overhead is defined as

To = pTp − Ts

Ts is the time for the fastest serial algorithm solving the problem on 1 processor

pTp is total time spent over all processors solving the problem

2006 Ned Nedialkov 3



'

&

$

%

Speedup

Speedup is defined as

S =
Ts

Tp

Usually, 0 < S ≤ p

If S = p, we have linear speedup

Theoretically, S ≤ p

In practice, it may happen that S > p: superlinear speedup

2006 Ned Nedialkov 4



'

&

$

%

Efficiency

Efficiency is a measure of processor utilization in a parallel program

That is, a measure of the fraction of time for which a processor is employed

E =
S

p

If E = 1, linear speedup

If E < 1/p, slowdown (serial program is faster)

2006 Ned Nedialkov 5



'

&

$

%

Scalability

Efficiency as p grows, problem size fixed

Efficiency can be written as

E =
S

p
=

Ts

pTp

=
1

1 + To

Ts

To is an increasing function of p

• every program must contain some serial component

• if the time for this component is ts, p − 1 processors will be idle for

(p − 1)ts time

• hence To grows at least linearly

• because of communication, idling, and excess computation, it may grow

superlinearly

For a given problem size, efficiency goes down as p increases

2006 Ned Nedialkov 6



'

&

$

%

Efficiency as problem size grows, p fixed

To depends on problem size and p

In many cases, To grows sublinearly w.r.t. to program size

Efficiency increases as p is fixed and problem sized is increased

Scalable: the efficiency can be kept constant as the number of processing

elements is increased, provided that the problem size is increased

2006 Ned Nedialkov 7



'

&

$

%

Communication cost

Consider send/receive

Their execution can be divided into two phases

• startup

• communication

Their cost varies among systems

Denote the runtime of the startup phase by ts, and the runtime of the

communication phase by tc

The cost of sending a message consisting of k units is

ts + k · tc

Usually ts is much larger than tc

Their values vary among systems

2006 Ned Nedialkov 8



'

&

$

%

Timing

One can use double MPI Wtime(void) to time MPI code

This function returns elapsed time

Hence, one can measure real, or clock, time

Another approach is to measure system and user time; for example by calling

the C times function

2006 Ned Nedialkov 9


