
Designing Parallel Algorithms

Ned Nedialkov

Department of Computing and Software
McMaster University, Hamilton, Ontario

Canada



'

&

$

%

Outline

• Methodical design

• Partitioning

• Communication

• Conglomeration

• Mapping

Based on I. Foster, Designing and Building Parallel Programs [Chapter 2]

http://www-unix.mcs.anl.gov/dbpp/

2006 Ned Nedialkov 1



'

&

$

%

Methodical design

Partitioning

Computation and data are decomposed into small tasks

Focus is on recognizing opportunities for parallel execution

Communication

Communication requirements, structures, and algorithms are determined

Agglomeration

Tasks are combined into larger tasks to improve performance

Mapping

Each task is assigned to a processor

Goal is to maximize processor utilization and minimize communication costs

2006 Ned Nedialkov 2



'

&

$

%

P R O B L E M

partition

communicate

agglomerate

map

2006 Ned Nedialkov 3



'

&

$

%

Partitioning

Focus is on recognizing opportunities for parallel execution

Computation and the data operated on by this computation are decomposed

Define a number of small tasks in order to yield what is termed a fine-grained

decomposition of a problem

A good partition divides into pieces both computation and data

We try to avoid replicating computation and data

That is, we seek to define tasks that partition both computation and data into

disjoint sets

2006 Ned Nedialkov 4



'

&

$

%

Domain decomposition

• partition the data

• determine communication associated with the partition

Functional decomposition

• decompose the computation into tasks

• decompose the data based on these tasks

Common in problems where there no obvious data structures to partition

2006 Ned Nedialkov 5



'

&

$

%

Partitioning design checklist

X Does your partition define at least an order of magnitude more tasks than

there are processors in your target computer?

If not, you may have little flexibility in subsequent design stages

X Does your partition avoid redundant computation and storage

requirements?

If not, it may not be scalable

X Are tasks of comparable size?

X Does the number of tasks scale with problem size?

X Have you identified several alternative partitions?

2006 Ned Nedialkov 6



'

&

$

%

Communication

Tasks generated by a partition are intended to execute concurrently

The computation to be performed in one task will typically require data

associated with another task

Data must then be transferred between tasks, to allow computation to proceed

This information flow is specified in the communication phase of a design

2006 Ned Nedialkov 7



'

&

$

%

Local communication: each task communicates with a small set of other tasks

(its “neighbors”)

Global communication: requires each task to communicate with many tasks

Structured communication: a task and its neighbors form a regular structure,

e.g. a tree or grid

Unstructured communication: communication pattern may be complex and

irregular

Static communication: the communication pattern does not change over time

Dynamic communication: the communication pattern is determined at runtime

and may be variable

2006 Ned Nedialkov 8



'

&

$

%

Example: Jacobi vs. Gauss-Seidel

Consider Jacobi’s method

A multidimensional grid is repeatedly updated by replacing the value at each

point with some function of the values at a small, fixed number of neighboring

points

The set of values required to update a single grid point is called that grid

point’s stencil

For example, the following expression uses a five-point stencil to update each

element of a two-dimensional grid:

X
(k+1)
i,j =

4X
(k)
i,j + X

(k)
i−1,j + X

(k)
i+1,j + X

(k)
i,j−1 + X

(k)
i,j+1

8

k is iteration number

2006 Ned Nedialkov 9



'

&

$

%

X
(k+1)
i,j =

4X
(k)
i,j + X

(k)
i−1,j + X

(k)
i+1,j + X

(k)
i,j−1 + X

(k)
i,j+1

8

For each boundary point, we have

for k = 0, 1, . . .

send X
(k)
i,j to each neighbor

receive X
(k)
i−1,j, X

(k)
i+1,j, X

(k)
i,j−1, X

(k)
i,j+1

compute X
(k+1)
i,j

2006 Ned Nedialkov 10



'

&

$

%

In serial, Gauss-Seidel (G-S) is often more efficient than Jacobi

G-S is more difficult to parallelize

Consider the simple G-S scheme

X
(k+1)
i,j =

4X
(k)
i,j + X

(k+1)
i−1,j + X

(k)
i+1,j + X

(k+1)
i,j−1 + X

(k)
i,j+1

8

In average, ≈ N/2 points of an N × N grid can be updated in parallel

Red-black ordering

One can update first the odd-numbered elements and then the even-numbered

elements of an array

Each update uses the most recent information

Updates to the odd-numbered [resp. even-numbered] points are independent

and can proceed concurrently

This is red-black ordering: points can be thought of as being colored as on a

chess board, red (odd) or black (even)

Points of the same color can be updated concurrently

2006 Ned Nedialkov 11



'

&

$

%

Two finite difference update strategies

Shaded grid points have already been updated to step k + 1

Unshaded grid points are still at step k

Left: simple G-S; the update proceeds in a wavefront from the top left corner

to the bottom right

Right: red-black update scheme; all the grid points at step k can be updated

concurrently

The Jacobi update strategy is efficient in parallel, but inferior numerically

The red-black scheme combines the advantages of G-S and Jacobi

2006 Ned Nedialkov 12



'

&

$

%

Global communication

Global communication: many tasks must participate

One should try to avoid creating too many communications or restricting

opportunities for concurrent execution

Example

Consider a parallel reduction operation that sums N values distributed over N

tasks

S =

N−1∑

i=0

Xi

Assume a single “manager” task requires the result S of this operation

Taking a purely local view of communication, we recognize that the manager

requires values X0, X1, etc., from tasks 0, 1, etc.

Hence, we could define a communication structure that allows each task to

communicate its value to the manager independently

2006 Ned Nedialkov 13



'

&

$

%

1 2 3 4 5 6 7
(0)

(1) (2) (3) (4) (5) (6)

0

S

(7)

The manager can receive and sum only one number at a time

This approach takes O(N) time to sum N numbers—not a very good parallel

algorithm!

• algorithm is centralized: it does not distribute computation and

communication

• algorithm is sequential: it does not allow multiple computation and

communication operations to proceed concurrently

We must address both these problems to develop a good parallel algorithm

2006 Ned Nedialkov 14



'

&

$

%

Distributing communication and computation

Consider distributing the computation and communication associated with the

summation

We can distribute the summation of the N numbers by making each task i,

0 < i < N − 1, compute the sum:

Si = Xi + Si−1

The N tasks are connected in a one-dimensional array

Task N − 1 sends its value to its neighbor in this array

0 1 2 3 4 5 6 7
(6) (5) (4) (3) (2) (1) (0)

X7∑ 6
7∑ 5

7∑ 4
7∑ 3

7∑ 2
7∑ 1

7

Tasks 1 through N − 2 wait to receive a partial sum from their right-hand

neighbor, add this to their local value, and send the result to their left-hand

neighbor

Task 0 receives a partial sum and adds this to its local value

2006 Ned Nedialkov 15



'

&

$

%

This approach distributes the N − 1 communications and additions, but

permits concurrent execution only if multiple summation operations are to be

performed

The array of tasks can then be used as a pipeline, through which flow partial

sums

A single summation still takes N − 1 steps

2006 Ned Nedialkov 16



'

&

$

%

Uncovering concurrency: divide and conquer

Divide and conquer: divide into two or more simpler problems of roughly

equivalent size (e.g., summing N/2 numbers)

Apply recursively

Effective in parallel computing when the subproblems generated by problem

partitioning can be solved concurrently

We can do the summation as

0 1 2 3 4 5 6 7

∑ 0
1 ∑ 2

3 ∑ 4
5 ∑ 6

7

∑ 0
3

∑ 0
7

∑ 4
7

Summations at the same level can be done in parallel

O(log N) communication steps

2006 Ned Nedialkov 17



'

&

$

%

We distributed N − 1 communication and computation operations required to

perform the summation

We modified the order in which these operations are performed so that they

can proceed concurrently

The result is a regular communication structure in which each task

communicates with a small set of neighbors

2006 Ned Nedialkov 18



'

&

$

%

Unstructured and dynamic communication

The previous examples are all of static, structured communication

In practice communication pattern

• may be considerably more complex and

• may change over time

2006 Ned Nedialkov 19



'

&

$

%

Communication design checklist

X Do all tasks perform about the same number of communication

operations?

Unbalanced communication requirements suggest a non-scalable construct

See if communication operations can be distributed more equitably

X Does each task communicate only with a small number of neighbors?

If each task must communicate with many other tasks, consider

formulating this global communication in terms of local communication

X Are communication operations able to proceed concurrently?

X Is the computation associated with different tasks able to proceed

concurrently?

If not, your algorithm is likely to be inefficient and non-scalable

Consider whether you can reorder communication and computation

operations

You may also wish to revisit your problem specification (as was done in

moving from a simple G-S to a red-black algorithm)

2006 Ned Nedialkov 20



'

&

$

%

Agglomeration

We move from the abstract toward the concrete

From the first two stages, we have an abstract algorithm; not specialized for

efficient execution on any particular parallel computer

It may be highly inefficient if, for example, it creates many more tasks than

there are processors on the target computer, and this computer is not designed

for efficient execution of small tasks

We revisit decisions made in the partitioning and communication phases to

obtain an algorithm that will execute efficiently on some class of parallel

computer

We consider whether it is useful to combine, or agglomerate, tasks identified

by the partitioning phase, to provide a smaller number of tasks, each of greater

size

We also determine whether it is worthwhile to replicate data and/or

computation

2006 Ned Nedialkov 21



'

&

$

%

Increasing granularity

In the partitioning phase, our efforts are focused on defining as many tasks as

possible

Forces us to consider a wide range of opportunities for parallel execution

Large number of fine-grained tasks does not necessarily produce an efficient

parallel algorithm

Critical issue is communication costs

Each communication incurs not only a cost proportional to the amount of data

transferred, but also a fixed startup cost

2006 Ned Nedialkov 22



'

&

$

%

(a)

(b)

Effect of increased granularity on communication costs in a two-dimensional

finite difference problem, five-point stencil

(a) 64 tasks, each responsible for a single point; 4 communications per task,

64 × 4 = 256 communications, 256 data points transferred

(b) 4 tasks, each responsible for 16 points; 4 × 4 = 16 communications,

16 × 4 = 64 data points transferred

2006 Ned Nedialkov 23



'

&

$

%

Replicating computation

We can sometimes trade off replicated computation for reduced

communication requirements and/or execution time

Consider a variant of the summation problem in which the sum must be

replicated in each of the N tasks that contribute to the sum

We can use a ring- or tree-based algorithm to compute the sum in a single

task, and then broadcast the sum to each of the N tasks

The broadcast can be performed using the same communication structure as

the summation

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3
s s s b b b

s s s s

s s b b

b b b b

2006 Ned Nedialkov 24



'

&

$

%

The complete operation can be performed in either 2(N − 1) or 2N log N steps

These algorithms are optimal in the sense that they do not perform any

unnecessary computation or communication

However, there are alternative algorithms that execute in less elapsed time,

although at the expense of unnecessary computation and communication

Basic idea: perform multiple summations concurrently, with each concurrent

summation producing a value in a different task

Approach 1. All tasks are connected in a ring, and all N tasks execute the

same algorithm, so that N partial sums are in motion simultaneously

After N -1 steps, the complete sum is replicated in every task

This strategy avoids the need for a subsequent broadcast operation, but at the

expense of O((N − 1)2) redundant additions and O((N − 1)2) unnecessary

communications

However, the summation and broadcast complete in N − 1 rather than

2(N − 1) steps

Hence, this strategy is faster, if the processors would otherwise be idle waiting

for the result of the summation

2006 Ned Nedialkov 25



'

&

$

%

Approach 2. The tree summation algorithm can be modified in a similar way

to avoid the need for a separate broadcast

That is, multiple tree summations are performed concurrently so that after

log N steps each task has a copy of the sum

One might expect this approach to result in O(N2) additions and

communications, as in the ring algorithm

However, in this case we can exploit redundancies in both computation and

communication to perform the summation in just O(N log N) operations

The resulting communication structure is termed a butterfly

∑ 0
1 ∑ 2

3 ∑ 4
5 ∑ 6

7

∑ 0
3

∑ 0
7

∑ 4
7

∑ 0
1 ∑ 2

3 ∑ 4
5 ∑ 6

7

1 2 3 4 5 6 70

∑ 0
7 ∑ 0

7 ∑ 0
7 ∑ 0

7 ∑ 0
7 ∑ 0

7 ∑ 0
7

∑ 0
3 ∑ 0

3 ∑ 0
3 ∑ 4

7 ∑ 4
7 ∑ 4

7

2006 Ned Nedialkov 26



'

&

$

%

Agglomeration design checklist

X Has agglomeration reduced communication costs by increasing locality?

X If agglomeration has replicated computation, have you verified that the

benefits of this replication outweigh its costs

X If agglomeration replicates data, have you verified that this does not

compromise the scalability of your algorithm by restricting the range of

problem sizes or processor counts that it can address?

X Has agglomeration yielded tasks with similar computation and

communication costs?

X Does the number of tasks still scale with problem size?

X Can the number of tasks be reduced still further, without introducing load

imbalances, increasing software engineering costs, or reducing scalability?

Other things being equal, algorithms that create fewer larger-grained tasks

are often simpler and more efficient than those that create many

fine-grained tasks.

2006 Ned Nedialkov 27



'

&

$

%

Mapping

We specify where each task is to execute

Two strategies:

1. Place tasks that are able to execute concurrently on different processors,

so as to enhance concurrency

2. Place tasks that communicate frequently on the same processor, so as to

increase locality.

Resource limitations may restrict the number of tasks that can be placed on a

single processor

The mapping problem is known to be NP complete

Goal is to minimize total execution time

Mapping decisions seek to balance conflicting requirements for equitable load

distribution and low communication costs

2006 Ned Nedialkov 28


