
DATA, LAGRANGIAN, ACTION!
SIMULATING MECHANISMS DIRECT FROM A TEXT FILE∗

JOHN D. PRYCE† AND NEDIALKO S. NEDIALKOV‡

Abstract. We describe a representation of linkage mechanisms in Lagrangian form using carte-
sian coordinates, and an implementation thereof. As seen by a user, it is a tool that reads a text
data file specifying a mechanism along with initial values and integration range, solves the resulting
initial-value problem, and produces an animation of the result. The file is in the YAML language.

The underlying theory, for a rigid body R moving in n dimensions, uses QR factorisation to give
the position and velocity of an arbitrary point on R as a function (linear in 2D, bilinear in 3D, etc.)
of n reference points (RPs) fixed on R. For 2D and 3D we derive formulae for R’s kinetic energy, in
terms of velocities of the RPs and of constants of R—centroid, mass, moments of inertia.

Summing over the parts of a mechanism, including potential energy and applied force terms,
gives the total Lagrangian L as a function of the RPs in cartesian coordinates. Rigidity, and joints,
define algebraic constraints. The mechanism facility (currently 2D only) automates the conversion
of the data file to L. The Lagrangian facility (2D or 3D) converts L to the equations of motion, by
algorithmic differentiation at run time without computer algebra.

The result is a differential-algebraic equation system (DAE) of index 3, because of the constraints.
High-index DAEs have been seen as hard to solve numerically, so this has been considered an imprac-
tical route to solution, and much work has gone into representing L in constraint-free coordinates,
typically angles, leading to an ODE system. Efficient high-index DAE initial value solvers change
the balance of advantage. We use Daets, which solves this kind of DAE as easily as an ODE.

The paper presents the theory, illustrates the steps file → Lagrangian → DAE → solution by
examples in 2D and 3D, and reports numerical experiments and animations viewable online.

Key words. Mechanisms, Lagrangian mechanics, simulation, differential-algebraic equations,
algorithmic differentiation, YAML

AMS subject classifications. 65L05, 65L80, 70E55, 70H03

1. Introduction.

1.1. Context and aims. We are concerned with linkage mechanisms, built from
parts such as rigid bodies and springs, usually connected by various kinds of joint.
For simulation, a Lagrangian approach [3, 13] to forming their equations of motion is
popular because of its economy and flexibility.

The economy is because Lagrangians, in contrast to direct use of Newton’s three
laws, can omit mention of certain forces. By d’Alembert’s principle of virtual work,
this amounts to declaring such forces do no work: individually, e.g. reaction force
under smooth sliding; or as a group, e.g. string tensions either side of a smooth
pulley. This usually means relevant system components are frictionless.

Flexibility is due to the freedom to choose generalised coordinates q = (q1, . . . , qnq
)

to specify system configuration. Consider the basic case where the only forces acting
are conservative so that they can be regarded as due to a potential energy field.
Among all possible motions of the system, the actual one is a stationary point of the

∗June 11, 2018.
Funding: N. Nedialkov was funded by the Natural Sciences and Engineering Research Council

(NSERC) of Canada.
†School of Mathematics, Cardiff University, Cardiff CF24 4AG, United Kingdom

(PryceJD1@cardiff.ac.uk).
‡Department of Computing and Software, McMaster University, Hamilton, Canada, L8S 4K1

(nedialk@mcmaster.ca)

1

mailto:PryceJD1@cardiff.ac.uk
mailto:nedialk@mcmaster.ca

2 J.D. PRYCE AND N.S. NEDIALKOV

action integral
∫
Ldt of the Lagrangian function

L = T − V,(1.1)

where T is the system’s kinetic energy and V its potential energy.
The function L is an inherent system property, independent of the chosen coor-

dinates q. For any q, applying the Euler–Lagrange conditions for stationarity leads
to equations of motion

d

dt

∂L
∂q̇j
− ∂L
∂qj

+

nc∑
i=1

λi
∂Ci
∂qj

= 0, j = 1, . . . , nq,(1.2)

Ci = 0, i = 1, . . . , nc.(1.3)

Here T and V are assumed to have the form T (t,q, q̇) and V (t,q). The nc equations
Ci(t,q) = 0 are any constraints on the motion due to rigidity etc., with associated
Lagrange multipliers λi. We assume them holonomic, i.e. Ci does not depend on q̇.

For a DAE (1.2, 1.3), the number of positional and of velocity degrees of freedom
(DOF) are the same, and equal

dof = nq − nc.(1.4)

(We write DOF for the concept and dof for the number.) So the system state is
locally fixed at any time by dof values qj and dof values q̇j .

If constraints are absent (nc = 0) then (1.2, 1.3) is reducible to an ordinary dif-
ferential equation system (ODE). If present (nc > 0), it is a differential-algebraic
equation system (DAE)—usually true when q consists of cartesian coordinates, be-
cause rigid-body constraints must be included. The DAE has index 3, in the classical
differential index sense [2], when solved as an initial-value problem (IVP).

High-index DAEs have been seen as hard to solve numerically, so much effort has
gone into making nc = 0, i.e. finding representation methods that lead to constraint-
free coordinates, typically angles. An efficient high-index DAE solver changes the
balance of advantage. We use the C++ code Daets [6, 7], which solves a constrained
Lagrangian DAE as easily as an ODE.

On top of Daets we have built the Lagrangian facility. Operationally, its key
innovation is that the user just provides code for Lagrangian (1.1) and constraints
(1.3). From these it constructs the equations of motion (1.2) and hence the complete
DAE (1.2, 1.3) for Daets to solve—entirely by algorithmic differentiation (AD) at
run time [11]. There is no symbolic manipulation, e.g. by a computer algebra system.

On top of this again is built the mechanism facility. At run time it reads a
“MechSpec” file describing a mechanism. It uses a q made (except see §4.3) of world-
frame cartesian coordinates of selected points on the parts. For this q it constructs the
corresponding equations (1.1) and (1.3), which are passed to the Lagrangian facility.

The Lagrangian facility works in 2D and 3D. An initial 2D version of the mecha-
nism facility has been completed: see §4.1 for a list of features.

The text is structured as follows. The rest of Section 1 outlines the methodology
and gives an example to support our claim about the balance of advantage. Sections
2 and 3 give the theory of tracking rigid motion in cartesian coordinates. Section 4
explains the mechanism facility data format—the MechSpec—by 2D examples with
numerical results. Section 5 outlines how we animate in MatlabTM. Section 6
summarises what we have done on the 3D case. Section 7 gives conclusions. An
appendix shows a sample complete data file.

DATA, LAGRANGIAN, ACTION! SIMULATING MECHANISMS 3

1.2. Methodology outline.
This summarises the process developed in Section 3 whereby (1.1, 1.3) are derived

from mechanism data.
Notation: The style q is used for a generalised-coordinates vector; xxx for a position
vector in a world or local frame; x for a displacement, a difference of position vectors.

1.2.1. Basic idea. In n-dimensional Euclidean space, let R be a rigid body
moving continuously with respect to a fixed newtonian frame of reference, the world-
frame (WF for short). Then its position—that is, the WF position of any point xxx on
it—is determined by that of n fixed reference points (RPs) on it in “general position”.

1.2.2. Topology and local frames. For each rigid part of a mechanism, fix
a Euclidean coordinate system, the local frame. Our convention is that the frame is
defined by the ordered list of the part’s RPs as described in §3.1.1.

The MechSpec tabulates the cartesian coordinates of the RPs, and of each useful
point (UP), typically centroid and points where a force is applied. It also records
definitions of each joint between parts.

1.2.3. Coordinates. A mechanism’s moving RPs (those not fixed in the WF)
are coordinate points qqqj(t)=(xj(t), yj(t)) or (xj(t), yj(t), zj(t)), concatenated to form
the generalised coordinate vector q(t), such that the total kinetic and potential ener-
gies and the effect of applied forces, hence the Lagrangian, can be expressed in terms
of q and q̇. (But see §4.3.)

1.2.4. Position relations. For each partR of a mechanism we fix RPs as above,
and precompute constant data that gives the position of its UPs in terms of the RP
positions, in R’s frame. We do this by QR-factorising a matrix whose columns are
R’s RPs followed by its UPs. This gives the WF position of each UP, at any time t,
in terms of the RP positions. The dependence of a UP on the RPs is linear in 2D,
bilinear in 3D, and so on in higher dimensions.

1.2.5. Velocity relations. Rigid motion is by definition a combination of a t-
dependent translation by a vector pppt and a t-dependent rotation Qt. Differentiating
gives the velocity of each UP of each part, including the centroid, which will be a UP,
in terms of RP velocities; also the derivative Q̇t. The skew matrix QTt Q̇t gives the
part’s angular velocity, representable by a scalar in 2D, a 3-vector in 3D.

1.2.6. Lagrangian. Hence, with mass and moment of inertia data from the
MechSpec, we find each part’s linear and rotational kinetic energy contribution to the
Lagrangian. Other contributions, such as potential energy and external forces, are
also expressed in terms of q.

1.2.7. Constraints. Suitable equations for rigid parts are added to give a con-
strained Lagrangian system defining the motion. These say two RPs on a body are a
constant distance apart, a UP is correctly placed relative to the RPs, for a revolute
joint the joint-spines in each body line up, etc.

1.2.8. Mechanism and Lagrangian facilities. These allow the above to be
parameterised, so creation of the constrained Lagrangian system is not hardcoded in a
program, but driven by a MechSpec file and converted on the fly to the Euler–Lagrange
DAE in the form Daets requires. How they are implemented is not described here.

Finally Daets solves this DAE, using initial values (IVs) and a time range given
in the MechSpec. At each time step the q vector is written to an output file, which
can be passed to the animation tool and optionally be made into a movie.

4 J.D. PRYCE AND N.S. NEDIALKOV

1.3. Example: cartesian versus angle coordinates. Consider a multi-pen-
dulum, a chain of N particles (bobs) all of mass m, joined by N massless rigid rods
all of length `, hung from a fixed point and moving under the acceleration of gravity
g. The joints between rods are free pivots, i.e. their only constraint is that the start
of one rod coincides with the end of the previous (or with the top pivot), so in the
3D case each joint contributes 2 DOF, totalling dof = 2N .

The simplest case, namely 2D and N = 1, is the simple pendulum. If coordinates
are the x, y position of the bob, with +x horizontal to the right and +y upward
(following our convention later), the Lagrangian method leads after simplifying to the
index-3 DAE on the left of (1.5). If the coordinate is the angle θ made by the rod
with the downward vertical, it gives the ODE on the right:

ẍ+ xλ = 0
ÿ + yλ+ g = 0
x2 + y2 − `2 = 0

 , θ̈ +
g

`
sin θ = 0.(1.5)

Here, the angle form is simpler, but for N > 1 and motion in 3D, the balance of
advantage shifts.

Namely for N > 1 in cartesian coordinates, take the absolute positions ri =
(xi, yi, zi) of the bobs with z upward for i = 1, . . . , N , giving generalised coordinate
vector q = (r1, . . . , rN) = (x1, y1, z1, . . . , xN , yN , zN). This system’s Lagrangian in
(1.6) is an obvious extension of the one that led to the left of (1.5). It sums kinetic
and potential energy contributions from the bobs, and the N constraints say the rods
have length `:

L = 1
2m

N∑
i=1

|ṙi|2 −mg
N∑
i=1

zi,

0 = Ci = |ri − ri−1|2 − `2, i = 1, . . . , N,

 ,(1.6)

with the convention that r0 is constant equal to 0. The resulting DAE has 3N
coordinate variables and N Lagrange multipliers, so is second-order of size 4N . Daets
handles it directly—it does not need to reduce to first-order form.

For an angle formulation, about the simplest method is to use spherical polar
coordinates (θi, φi) for rod i, where θi is the rod’s angle with the downward vertical and
φi is angle of rotation from the xz plane, for i = 1, . . . , N . The resulting generalised
coordinate vector q = (θ1, φ1, . . . , θN , φN) gets rid of the constraints, and produces
an ODE system, of size 4N when reduced to first order as most ODE codes require.

However this q gives the position of each bob relative to the preceding one. One
must sum these to reconstruct absolute positions and velocities and thus compute the
energies T and V . E.g.,

T =
1

2
m`2

n∑
k=1

∣∣∣∣∣∣
k∑
i=1

cos θi θ̇i cosφi − sin θi sinφi φ̇i
cos θi θ̇i sinφi + sin θi cosφi φ̇i

− sinφi φ̇i

∣∣∣∣∣∣
2

where the | · |2 is the squared length of a 3-vector. It seems any other way to remove
the constraints will use angles in some form, and be similarly cumbersome.

This example suggests a constrained cartesian formulation is often simpler than a
constraint-free one, as well as sparser (fewer variables per equation). Thus the DAE
may be more economical overall to solve than is the ODE. Indeed Daets has quickly
solved instances of (1.6) with 40 pendula, even when the motion is quite chaotic.

DATA, LAGRANGIAN, ACTION! SIMULATING MECHANISMS 5

2. Some linear algebra.

2.1. General cross product. Computing angular velocities involves the cross
product—essentially the “wedge” product of n − 1 vectors in n-space, in exterior
algebra [1]. We define it here as the way a determinant depends on one of its columns.

For an n× (n−1) matrix W with columns w1, . . . , wn−1, the map e 7→ det
[
W, e

]
,

the determinant of the result of appending e ∈ Rn to W , is a linear functional.

Definition 2.1. The cross product of W , or of the wj, is the vector that imple-
ments this functional, i.e. the unique c ∈ Rn such that

cT e = det
[
W, e

]
, e ∈ Rn.(2.1)

We write it in two equivalent notations (the second only applies when n ≥ 3):

c =×××W = w1×××w2××× · · ·×××wn−1.

Clearly c is orthogonal to each wj , since if e equals any wj , determinant (2.1) has
two equal columns and vanishes. One may view c as the result of expanding the
determinant treating the components of e as symbols, det

[
W, e

]
= c1e1 + · · ·+ cnen,

and then letting them be the standard basis vectors, [1, 0, . . . , 0]T , [0, 1, . . . , 0]T , etc.
Two cases concern us.

Case n = 2: Let the column of W be u =

[
u1
u2

]
, then

×××W = det
[
W, e

]
= det

[
u1 e1
u2 e2

]
= −u2e1 + u1e2 =

[
−u2
u1

]
,

which is the vector u rotated through a positive right angle.

Case n = 3: Write W =
[
u v

]
=

u1 v1
u2 v2
u3 v3

, then

×××W= det

u1 v1 e1
u2 v2 e2
u3 v3 e3

 = (u2v3−u3v2)e1 + (u3v1−u1v3)e2 + (u1v2−u2v1)e3

=

u2v3 − u3v2u3v1 − u1v3
u1v2 − u2v1

 , the usual 3D cross product u×××v.

(This determinant is a common mnemonic for the 3D cross product formula.)

Theorem 2.2. For any nonsingular n× n matrix Q

×××(QW) = det(Q).(QT)−1(×××W).(2.2)

In particular if Q is a rotation,

×××(QW) = Q(×××W).(2.3)

Proof. Let c =×××W and d =×××(QW). For any e, from the definition of×××, matrix
multiplication being associative, and the fact det(AB) = det(A) det(B) we have

(dTQ)e = dT (Qe) = det
[
QW,Qe

]
= det(Q

[
W, e

]
) = det(Q) det(

[
W, e

]
)= det(Q)cT e.

But e is arbitrary, so dTQ = det(Q)cT , that is QT d = det(Q)c, or d = det(Q)(QT)−1c,
proving (2.2). A rotation has det(Q)=1 and Q−1=QT , whence (2.3).

Corollary 2.3. For a rotation, the cross product of columns 1:n−1 is column n.

Proof. This is trivial for the identity; then (2.3) proves the general case.

6 J.D. PRYCE AND N.S. NEDIALKOV

2.2. Complexity aspects. The complexity of computing c =×××W for a general
n is of interest, even though below we only consider n ≤ 3. Suppose W is n× (n− 1).
An O(n3) method is as follows. Factorise W = QR where Q is a rotation and R is
upper triangular. Then by Theorem 2.2, c is the last column of Q times the product
of R’s diagonal elements.

If the wj are already known to be the first n − 1 columns of a rotation, one can
find ±c in O(n2) time by orthonormalising a “random” vector with respect to the wj .
It seems less obvious how to choose the correct sign for c and we suspect no method
better than O(n3) exists.

3. Motion computed from reference points in n dimensions. We derive
the formulae for general dimension n, though only n = 2 or 3 are of direct relevance.
En denotes n-dimensional Euclidean space with some point O chosen as origin; we
identify points with their position-vectors relative to O, making En a real linear
space, with an inner product defining the geometry. En can be identified with Rn
with its usual inner product, when a frame—an origin plus an orthonormal basis of
coordinates—is chosen. Fixed space has a distinguished newtonian inertial frame, the
world-frame WF, in which other parts and their frames move.

As in §1.2 we use the style aaa for position-vectors in a frame, and a for displace-
ments, differences of position vectors.

3.1. Positions and velocities of a part. To follow the mission in §1.2, we
consider one rigid part R of a mechanism at a time, and seek an algorithm that does:

(a) Express the position ofR’s centroid and any other UPs at current time
t, as functions of the current RP positions and precomputed constants.

(b) By differentiating, express UP velocities and R’s angular velocity in
terms of RP velocities and precomputed constants; hence find R’s
kinetic energy contribution to the Lagrangian.

(3.1)

3.1.1. Positions. A rigid body R is given, moving in the WF. Rigid means its
position at time t is

Rt = pppt +QtR(3.2)

for some point pppt and rotation Qt, both being functions of t. On the right, R denotes
a fixed reference version of the body in a chosen local frame. A rotation is a member
of the group SO(n) of orthogonal transformations on En with determinant +1. Each
point xxx in R moves according to (3.2): its WF position at time t is xxxt = pppt +Qt xxx.

Let there be n reference points (RPs) fixed in R

aaa0, . . . , aaan−1,

and p further useful points (UPs) fixed in R

xxx1, . . . , xxxp.

The RPs shall be in general position, i.e. there is a unique hyperplane (translate of an
(n−1)-dimensional linear subspace) on which they lie. A UP can be anywhere. The
union of the RPs and UPs will be called the reference-or-useful points (RUPs).

With aaa0 as base reference point, define displacements of the other RUPs from it:

aj = aaaj − aaa0, (j = 1, . . . , n− 1), xj = xxxj − aaa0, (j = 1, . . . , p).(3.3)

The next fact is well known.

DATA, LAGRANGIAN, ACTION! SIMULATING MECHANISMS 7

Lemma 3.1. The following are equivalent:
(i) aaa0, . . . , aaan−1 are in general position.

(ii) a1, . . . , an−1 are linearly independent.

(iii) The vectors

[
aaa0
1

]
, . . . ,

[
aaan−1

1

]
are linearly independent in (n+ 1)-space.

Without a suffix “t”, items in (3.3) denote constants in R. With it, e.g. aaa1,t, they
are varying in the WF. Write them as Rn-vectors using an arbitrary but fixed local
frame in R, and form n× (n− 1) and n× p matrices

A = [a1, a2, . . . , an−1], X = [x1, x2, . . . , xp],(3.4)

The MechSpec data format of §4 makes the rule:

Frame convention: reference points define the local frame.(3.5)

This means, in traditional xyz notation, that aaa0 is the origin; line aaa0 aaa1 is the x-
axis with aaa1 on the positive side, aaa0 aaa1 aaa2 define the xy-plane with aaa2 in the upper
half-plane, and so on in any higher dimensions. Equivalently, in the coordinates thus
defined, matrix A in (3.4) is upper triangular with aii > 0. The direction of the final
axis (y if in 2D, z if in 3D, . . .) is chosen to give the frame positive orientation in the
whole space, i.e. ann > 0. Below, this makes A = A and Q = identity, but the theory
in the rest of §3 does not need this.

We form a QR factorisation of [A,X]:

[A,X] = Q [A,X].(3.6)

Here Q is n× n orthogonal; A,X have the same size as A,X; and we can write

A =

[
R
0

]
,

with R = [rij] square upper triangular of size n− 1. By Lemma 3.1 A’s columns are
linearly independent, so R is nonsingular, so its diagonal elements rii are nonzero.
We can, and do, ensure that (a) all rii > 0; (b) detQ = +1 so that Q is a rotation.

Let the columns of Q be u1, . . . , un, forming an orthonormal basis of Rn, and let
P be its first n− 1 columns so that

Q = [P , un].(3.7)

Because the bottom row of A is zero, we have A = PR, hence

P = AR
−1
.(3.8)

Note that Q, A and X, hence P and R, are constants, computed in R’s frame before
motion starts. We use Q in the graphics, see §5. In 2D it is not used in the numerical
solution; in 3D it appears in (3.16) but could be eliminated by replacing constants Iccc

with Îccc = Q
T
IcccQ, and ω with ω̂, in (3.17).

Under rigid motion, the RPs and UPs move according to (3.2). Following (3.3)
we have moving displacements

aj,t = aaaj,t − aaa0,t, (j = 1, . . . , n− 1), xj,t = xxxj,t − aaa0,t, (j = 1, . . . , p).

8 J.D. PRYCE AND N.S. NEDIALKOV

forming matrices At and Xt corresponding to (3.4). We wish to express the xj,t
as functions of the aj,t, hence Xt in terms of At. On forming displacements, the
translation pppt in (3.2) cancels, so that aj,t = Qtaj and xj,t = Qtxj . Equivalently

At = QtA, Xt = QtX.(3.9)

Using (3.9) and then (3.6), we have

[At, Xt] = Qt [A,X] = QtQ [A,X]

= Q̂t [A,X], where Q̂t = QtQ,(3.10)

so Q̂t, being a product of rotations, is a rotation. Let its columns be û1,t, . . . , ûn,t,.

Similarly to (3.7), let P̂t be its first n− 1 columns. Arguing as in (3.7, 3.8) we have

P̂t = AtR
−1
.

That is, from the known At and the precomputed triangular matrix R, we reconstruct
all of Q̂t except its last column ûn,t. This now equals×××P̂t by Corollary 2.3. Finally
compute Xt from (3.10), and obtain the xxxj,t by adding back the base position from
which the displacements xj,t were calculated in (3.3).

Write A 	 x for the result of subtracting vector x from each column of matrix
A; similarly A⊕ x. Then (3.1) item (a), expressing UP positions as functions of RP
positions, is summarised thus:

A. Precomputed constant items

A =
[
aaa1, . . . , aaan−1

]
	 aaa0, X =

[
xxx1, . . . , xxxp

]
	 aaa0,[

A,X
]

= Q

[[
R

0

]
, X

]
, Q a rotation, R upper triangular

B. During numerical solution

At =
[
aaa1,t, . . . , aaan−1,t

]
	 aaa0,t,

P̂t = AtR
−1
,

Q̂t =
[
P̂t, ×××P̂t

]
,

Xt = Q̂tX,[
xxx1,t, . . . , xxxp,t

]
= Xt ⊕ aaa0,t.

(3.11)

3.1.2. Linear velocities. The xxxj,t depend linearly on the aaaj,t except for the
cross product, which in n dimensions is (n − 1)-linear. Let a general t-dependent
n× (n− 1) matrix W have columns w1, . . . , wn−1. Then×××W = w1×××w2××× · · ·×××wn−1

differentiates as usual for a multilinear function:

d

dt
(×××W) =(ẇ1×××w2××× · · ·×××wn−1) + (w1×××ẇ2××× · · ·×××wn−1)(3.12)

+ · · ·+ (w1×××w2××× · · ·×××ẇn−1),

where in the jth term on the right, wj is differentiated and the other factors are not.

So the ẋxxj,t come from differentiating (3.11)B step by step, handling×××P̂t by (3.12).

3.1.3. Angular velocity and kinetic energy. The kinetic energy T of R is
expressed in terms of: the WF velocity ċcc of its centroid ccc; its angular velocity ω; and

DATA, LAGRANGIAN, ACTION! SIMULATING MECHANISMS 9

its total mass M and its moment of inertia Iccc about the centroid. By (3.10) we have

Qt = Q̂tQ
T

so, since Q is constant,

Q̇t =
˙̂
QtQ

T
.(3.13)

Differentiating QTt Qt=I shows QTt Q̇t is a skew-symmetric matrix St, in 1-1 corre-
spondence with the angular velocity data ω. In the notation of [12], write it as [[ω]]:

[[ω]] = QTt Q̇t = Q (Q̂Tt
˙̂
Qt)Q

T
by (3.13).(3.14)

Case n = 2: Here

St = [[ω]] =

[
0 −ω
ω 0

]
,

where ω is the scalar angular velocity. Now St commutes with rotations, in particular
with Q. Hence by (3.14) we can find ω from computed Q̂t instead of theoretical Qt:

[[ω]] = Q̂Tt
˙̂
Qt.(3.15)

The kinetic energy is then given by

T = 1
2M | ċcc|

2 + 1
2Iccc ω

2.

Case n = 3: Here

St = [[ωωω]] =def

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,
where ωωω = (ω1, ω2, ω3)T is the angular velocity vector. This matrix “does cross
product” in the sense that [[ωωω]]x = ωωω×××x for any 3-vector x.

Again we can find ωωω from the computed Q̂t instead of the theoretical Qt. Namely

in (3.14), Q̂Tt
˙̂
Qt is also skew, call it [[ω̂̂ω̂ω]]. Then Theorem 2.2 shows

ωωω = Q ω̂̂ω̂ω.(3.16)

The kinetic energy is then given by

T = 1
2M | ċcc|

2 + 1
2 ωωω

T Iccc ωωω,(3.17)

with Iccc the symmetric positive semi-definite moment of inertia matrix of R about ccc.

3.2. The 2D case.

a
b

ca

b

c

Fig. 1. Triangle notation in 2D.

In 2D, take the case where there is one UP, which
later will be R’s centroid. Rename the two RPs and
UP, (aaa0, aaa1, xxx1), as the corners (aaa, bbb, ccc) of a triangle.
Use the traditional cyclic-order notation for triangles,
see Figure 1, namely (all items are constants in the
R frame) let

a = ccc− bbb, b = aaa− ccc, c = bbb− aaa.

10 J.D. PRYCE AND N.S. NEDIALKOV

and similarly for the moving items: at = ccct− bbbt, bt = aaat− ccct, ct = bbbt− aaat. We wish
to express ccct as a function of aaat, bbbt and precomputed constants, and similarly for ċcct.

Position. It is left as an exercise that the steps of (3.11) become

A. Precomputed constant items

ξ =
1

|c|2

[
−c1b1 − c2b2
c2b1 − c1b2

]
.

B. During numerical solution

ct = bbbt − aaat, ccct = aaat +
[
ct,×××ct

]
ξ.

(3.18)

Velocity. For n = 2, dependence of UPs on RPs is linear so, differentiating (3.18),

ċt = ḃbbt − ȧaat, ċcct = ȧaat +
[
ċt,×××ċt] ξ.(3.19)

Angular velocity and KE. Extracting the (2,1) element from [[ω]] in (3.15), with
the current notation, gives

ω = (−c2,t ċ1,t + c1,t ċ2,t)/|c|2, (components of ct, not ccct).(3.20)

Taking ccc to be R’s centroid gives the kinetic energy

T = 1
2M | ċcct|

2 + 1
2Iccc ω

2.(3.21)

In the above derivation, many operations look like complex number arithmetic.
In particular for u, v ∈ R2, [u,×××u] v (matrix-vector product) equals uv (complex
number product). The following reformulation of (3.19, 3.20, 3.21) is easily derived.

Theorem 3.2. With the notation above, treating vectors as complex numbers:
(i) ccc’s WF position ccct and velocity ċcct at any time are related to those of aaa, bbb by

aaaat + bbbbt + cccct = 0, a ȧaat + b ḃbbt + c ċcct = 0.(3.22)

(ii) Let ccc be R’s centroid, then the kinetic energy is

T = 1
2

(
M |a ȧaat + b ḃbbt|2 + Iccc | ḃbbt − ȧaat|2

)
/|c|2.

A useful case, using the formula M`2/12 for a rod’s MoI about its centroid, is:

Corollary 3.3. For a uniform thin rod of mass M , taking the reference points
to be its two ends aaa, bbb, its kinetic energy is

T =
M

6

(
| ȧaat|2 + ȧaat · ḃbbt + | ḃbbt|2

)
.

Here normal vector notation is used, with · being the dot product.

DATA, LAGRANGIAN, ACTION! SIMULATING MECHANISMS 11

1 TitleTitleTitle: Mechanism0 ##

2 PhysicalParamsPhysicalParamsPhysicalParams:

3 g: -9.80665 # gravity
4 L: 1 # rod length
5 M: 1 # rod mass
6 k: 1000 # spring stiffness
7 l: 1 # spring rest-length
8 mu: .5 # spring mass
9 m: .1 # particle mass

10 DimensionDimensionDimension: 2

11 PartDataPartDataPartData:

12 FixedFixedFixed: {O: []} ##

13 RigidsRigidsRigids:

14 OA: {GeomGeomGeom: [[L]], DynaDynaDyna: [[L/2],M,M*L**2/12]} ##

15 SpringsSpringsSprings:

16 AB: [k, l, mu]

17 ParticlesParticlesParticles:

18 B: m

19 AppliedForcesAppliedForcesAppliedForces:

20 GravityGravityGravity: ##

21 ProblemDataProblemDataProblemData: ##

22 t0t0t0: 0

23 tendtendtend: 1

24 positionspositionspositions: {A: [[L,fixedfixedfixed],-L],B: [L+l,-(L+l+m*g/k)]}

25 velocitiesvelocitiesvelocities: {A: [1,0]} ##

B

A

O

Click to pause

Fig. 2. Mechanism0. Listing on the left is from file mechanism0-p.yaml, omitting sections
that guide the numerical solution and the animation.

4. The mechanism facility by examples.

4.1. Overview. As the user sees it, the mechanism facility is a way to specify a
“supported” mechanism by a MechSpec file, converted automatically to a Lagrangian
plus constraints and solved by Daets. The file—for details see [9]—is written in
YAML, a human-readable data serialization language that can handle data of arbi-
trary structure and content. YAML-readers for various languages—in our case, C++
for the numerics and Matlab for the animation—convert the text file to an internal
program data structure.

For the numerics, the program interprets this to “create” parts, forces and con-
straints. Currently, the MechSpec only supports 2D mechanisms, and these features:
Parts rigid body (of nonzero size), particle (a point), spring. Each may or may not

have mass.
Connection (a) pin-joint, the constraint that two or more RUPs in different frames

coincide in the world-frame;
(b) collinear, the constraint that three or more RUPs lie on a straight line,
which can implement various kinds of sliding or rotating joint, see §6.1.

Forces (a) terrestrial gravity;
(b) a force at a point fixed on a body, constant in the local frame or WF;
(c) constant torque on a body or between bodies.

The rest of §4 explains the MechSpec via examples.

12 J.D. PRYCE AND N.S. NEDIALKOV

4.2. Mechanism0. The right of Figure 2 shows Mechanism0. A rod OA of
length L and mass M is pivoted at fixed point O; at A is pivoted a spring AB of
stiffness constant k, rest-length ` and mass µ; at B is fastened a particle of mass m.
The system moves under gravity. The parts have “thin rod” and “particle” dynamics
despite being drawn as 3D objects. The “spring with mass” is idealised as a stretchable
uniform rod, neglecting internal modes of motion a real spring would have.

On the left of Figure 2 is a YAML description of it. Lines 1–20 define the mech-
anism. Lines 21–25 specify a particular IVP for numerical solution. Names in bold
such as TitleTitleTitle are mandatory keywords; others such as k or OA are defined by the user
for a given mechanism.

Basic YAML syntax/semantics. For more detail see [9].
– Whitespace creates indentation, is usually needed after :, and is otherwise mostly

ignored. From # to end of line is comment.
– Literal values for our purpose are either numbers or text-strings. Strings don’t

need quotes, unless they contain characters such as : that would cause ambiguity.
– Literals are formed into larger structures by these constructs:

set using braces, e.g. {A,B,C} is the unordered set containing these elements.
list using brackets, e.g. [A,B,C] is the ordered list containing these elements.
maplet or key-value pair, e.g. X: x with key X and value x. A dictionary is a set

of maplets.
– Equivalent to defining a set with braces is putting its items on separate lines without

braces, indented. (There is a similar format for lists, which we do not use.) So line
12 could be written

OA:

GeomGeomGeom: [[L]]

DynaDynaDyna: [[L/2],M,M*L**2/12]

Conversely, the PhysicalParamsPhysicalParamsPhysicalParams dictionary could be written

PhysicalParamsPhysicalParamsPhysicalParams: {g: -9.80665, k: 1000, l: 1, L: 1, m: .1, M: 1}

A YAML reader for Matlab converts this to a structure—call it data—within a
program, where each dictionary becomes a struct object whose field-names are the
keys, each field storing the corresponding value. At the top level the whole file defines
a dictionary whose keys are Title, PhysicalParams, etc., making data a struct with
these fields. Using dot-notation, for instance

data.Title accesses the corresponding value, the string "Mechanism0".
This happens recursively as needed, e.g. the value of key PhysicalParams is itself a
dictionary, so data.PhysicalParams.k accesses the value of k, the number 1000.

Nedialkov’s team has added a preprocessing stage to evaluate expressions that use
PhysicalParamsPhysicalParamsPhysicalParams values and write an intermediate YAML file containing only numeric
values, which our programs then read. E.g. on line 14, the expression M*L**2/12—a
moment of inertia M`2/12—is evaluated with ` = 1 and M = 1, and written to the
output. This feature, which standard YAML does not yet have, gives the convenience
of referring to physical parameters symbolically.

MechSpec naming convention. The name of a reference or useful point is a
single upper or lower case letter followed by zero or more digits. A part’s name is a
concatenation of RUPs on it. These rules ensure a part name determines the list of
its RUPs and vice versa. RPs must be first in the list; by the frame convention (3.5),
their order defines the part’s local frame. Otherwise the order is user-defined.

DATA, LAGRANGIAN, ACTION! SIMULATING MECHANISMS 13

The mechanics. Having got the data into a program, we describe its meaning.
FixedFixedFixed in the PartDataPartDataPartData section is a dictionary of coordinates of the RUPs fixed in

the world-frame, in this case just point O. Coordinates (x, y) are denoted by a YAML
list [x,y]. A padding convention is used, namely if too few coordinates are given,
they are padded with trailing zeros. Thus [] means [0,0], meaning O is at (0, 0).

RigidsRigidsRigids is a dictionary of the rigid parts, here just the rod OA, named by its
RUPs. This fixes the local frame: O is at (0, 0) and RigidsRigidsRigids.OA.GeomGeomGeom is a list of local
coordinates of the remaining RUPs. Using padding, [L] is short for [L,0] so this says
A is at (L, 0).

RigidsRigidsRigids.OA.DynaDynaDyna lists the coordinates of OA’s centroid, its mass and its MoI about
the centroid: using padding these are respectively (L/2, 0), M and M`2/12.

SpringsSpringsSprings specifies springs similarly. A spring is named by two RPs, its two ends
in a user-chosen order: here, there is one spring AB. Its local frame has origin at A
and x axis in the direction from A to B. The needed data for a spring is a list giving
the stiffness k, the rest-length `, and optionally the mass µ which is zero if omitted.

A spring-length should stay > 0, as if A,B coincide during motion the local
frame becomes indeterminate. However when this occurs during numerical solution
it usually seems not cause problems.

ParticlesParticlesParticles specifies particles similarly. A particle is named by the RP giving its
position, and the only data needed is its mass.

In the AppliedForcesAppliedForcesAppliedForces section, this mechanism has just (constant) terrestrial grav-
ity. The general form is Gravity: [gx,gy] giving it as a vector (gx, gy) in the world-
frame. Omitting [gx,gy], as here, gives the SI units default value (0,−9.80665), which
also declares “upwards” to be the +y direction.

Lagrangian. By convention, the coordinate vector q comprises all moving ref-
erence points, in lexicographic order of their names. Here this means

q = (A,B) = (Ax, Ay, Bx, By).(4.1)

where Ax is the x-coordinate of A, and so on. From the above data the mechanism
facility has the information to construct all the kinetic energy KE and potential energy
PE contributions as functions of q and q̇:

KE gravitational PE spring PE

TOA =
M

6
|Ȧ|2, VOA =

Mg

2
Ay,

TAB =
µ

6
(|Ȧ|2 + Ȧ · Ḃ + |Ḃ|2), V

[g]
AB =

µg

2
(Ay +By), V

[s]
AB =

k

2
(|B −A| − `)2 ,

TB =
m

2
|Ḃ|2, VB = mgBy.

(4.2)

The rows refer to rod, spring and particle respectively. Corollary 3.3 was used for the
rod and spring KEs. Superscripts [g] and [s] mark the two parts of the spring’s PE.
Finally, the system is specified by the Lagrangian:

L = L(q, q̇) = T − V = (TOA + TAB + TB)− (VOA + V
[g]
AB + V

[s]
AB + VB)(4.3)

and one constraint, that the rod has fixed length,

0 = lOA(q) = |A|2 − L2,(4.4)

which are then processed by the Lagrangian facility.

14 J.D. PRYCE AND N.S. NEDIALKOV

Output file. At each integration time point t during numerical solution, Daets
writes to a file for use by the animation and any other post-processing. The default
columns of output are, in order:

• t
• q—all the moving points plus any turn angles, see §4.3—interleaved with its

first derivative. The ordering is all moving point names and then all turn
angles, each in lexicographical order. E.g. for Mechanism0 this comprises
Ax, Ȧx, Ay, Ȧy, Bx, Ḃx, By, Ḃy.

• T, V—the total kinetic and potential energies, useful for checking energy con-
servation.

This output can be varied in the SolverParamsSolverParamsSolverParams section of the YAML file.

Signature matrix. An option in the SolverParamsSolverParamsSolverParams.DisplayDisplayDisplay section of the data
file generates the signature matrix of the DAE, that is the matrix Σ = (σkl), where
σkl is the highest order of derivative of the lth variable occurring in the kth equation,
or −∞ if it does not occur.

For Mechanism0, with some labels added, it looks as follows. A dash means −∞.

1 TABLEAU

2 -------

3 | 0 1 2 3 4 5 6 |c_i

4 ------------------------------------

5 0| 2 0 2* 0 0 - - | 0 Ax
6 1| 0 2 0 2 0* - - | 0 Ay
7 2| 2* 0 2 0 - - - | 0 Bx
8 3| 0 2 0 2* - - - | 0 By
9 4| 0 0* - - - - - | 2 lOA

10 5| 1 1 1 1 - 0* - | 0 T
11 6| 0 0 0 0 - - 0* | 0 V
12 ------------------------------------

13 d_j| 2 2 2 2 0 0 0 |

14 Ax Ay Bx By lOA T V
15 Index = 3, DOF = 6

The labels are the same for rows and columns. For columns they mean the nq
(= 4 by(4.1)) components of q, followed by the Lagrange multipliers of the nc (= 1
by(4.4)) constraint equations, followed by T and V .

For rows they denote the nq Euler–Lagrange equations generated by the qj , fol-
lowed by the nc constraints, followed by the equations that define T and V . Apart
from the T, V rows and columns, the matrix is always symmetric.

This display is a general-purpose feature of Daets, so not angled to Lagrangian
systems. The reported value Index is always 3 if nc > 0. The reported value DOF is
the total degrees of freedom, thus we halve it to get dof as defined in (1.4), namely
dof = nq − nc = 4− 1 = 3 = DOF/2.

dof is relevant for the user, since (see below (1.4)) for a well-defined IVP, dof
initial positions and dof initial velocities must be specified fixedfixedfixed in the YAML file.
Giving more items fixedfixedfixed is flagged as an error; giving fewer is not, but Daets may
alter non-fixed IVs while finding a consistent (in the DAE sense) initial solution.

The T, V rows may be used as a check of what moving points contribute to the
energy. Here, they say T depends on all of Ȧx, Ȧy, Ḃx, Ḃy and V depends on all of
Ax, Ay, Bx, By,—as one would expect.

DATA, LAGRANGIAN, ACTION! SIMULATING MECHANISMS 15

4.3. Including torques. Currently the mechanism facility supports constant
torque τ between two bodies, one of which may be the WF. When the bodies make a
relative turn through an angle θ, the torque does work τθ. Thus, it is a conservative
force that we can include in the Lagrangian as a potential energy term V = −τθ. A
q consisting only of cartesian coordinates cannot safely model this, as it cannot tell
θ from θ + 2π, so we include the turn angle explicitly as a component of q.

To illustrate, add to Mechanism0 a constant torque τ on rod OA—that is, between
OA and the world-frame. To specify this in the data file, add to the AppliedForcesAppliedForcesAppliedForces

section the line

ConstTorquesConstTorquesConstTorques: {OA: tau}

and give tau (= τ) a value in the PhysicalParamsPhysicalParamsPhysicalParams section. The effects are:
1. Append to q the variable θOA defined as the angle from the WF x axis to OA’s

local-frame x axis.1

2. Replace the single constraint (4.4) by (in complex number terms) A=LeiθOA , or as
two real equations

Ax = L cos θOA, Ay = L sin θOA.

3. Include in (4.2) and hence (4.3) the potential energy contribution

V
[τ]
OA = −τθOA.(4.5)

Items 1, 2 keep the balance between number of variables and number of equations
by adding 1 to each. The Euler–Lagrange equations then automatically track θ as a
continuous quantity.

4.4. Validation and numerical results for Mechanism0. As a check we
described Mechanism0 in a Lagrangian form without constraints, leading to an ODE
as below. This was transcribed into Matlab and solved using the Matlab ODE
suite. We found close agreement between this and the mechanism facility solution,
and take this as sufficient evidence that the code of both methods, and equations
(4.6)–(4.8), are correct. The chosen coordinates are

q = (θ, r, φ)

with
θ : angle of OA from downward vertical;
r : current length of spring AB;
φ : angle of AB from downward vertical.

With these coordinates we have positions and velocities

A = L (sin θ,− cos θ), B = A+ r (sinφ,− cosφ),

Ȧ = L (cos θ, sin θ)θ̇, Ḃ = Ȧ+ (sinφ,− cosφ)ṙ + r (cosφ, sinφ)φ̇.

}
(4.6)

1Made unique by being a continuous function of t, with initial value lying in (−π, π].

16 J.D. PRYCE AND N.S. NEDIALKOV

The Lagrangian is still given by (4.3) with extra term (4.5). In the new coordinates
(4.2) becomes

KE gravitational PE spring or torque PE

TOA = 1
6
ML2θ̇2, VOA= − 1

2
MgL cos θ V

[τ]
OA= −τθ

TAB = 1
2
µ
(
L2θ̇2 + L sin(φ− θ)θ̇ṙ + Lr cos(φ− θ)θ̇φ̇+ 1

3
(ṙ2 + r2φ̇2)

)
,

V
[g]
AB= −µg(L cos θ + 1

2
r cosφ), V

[s]
AB=

1
2
k (r − `)2 ,

TB = 1
2
m
(
L2θ̇2 + 2L sin(φ− θ)θ̇ṙ + 2Lr cos(φ− θ)θ̇φ̇+ ṙ2 + r2φ̇2

)
,

VB= −mg(L cos θ + r cosφ),

where θOA has been changed to θ in the torque PE, which is valid because these two
angles differ by a constant. This gives three equations of motion

d

dt

∂L
∂q̇

=
∂L
∂q

, call the latter F (q, q̇).(4.7)

To cast this as a second-order ODE for q is possible but needlessly complicated.
Instead, introduce the Hamiltonian generalised momentum vector

p =
∂L
∂q̇

where q̇ = (θ̇, ṙ, φ̇).

Now L is a quadratic form as a function of q̇, so p depends linearly on q̇, namely

p =M(q)q̇,

where M is a matrix (symmetric because it is the Hessian ∂2L/∂q̇2 = ∂2(TOA +
TAB + TB)/∂q̇2). Thus we can cast (4.7) as two first-order vector ODEs, making 6
scalar equations:

q̇ =M(q)−1p, ṗ = F (q, q̇).

Note the block triangular structure: find q̇ first, and use it to find ṗ. In this example,
the matrix is

M(θ, r, φ) =(4.8) (
1
3M + µ+m

)
L2 (1

2µ+m)L sin(φ− θ) (1
2µ+m)Lr cos(φ− θ)

(1
2µ+m)L sin(φ− θ) 1

3µ+m 0
(1
2µ+m)Lr cos(φ− θ) 0 (1

3µ+m)r2

A feature of the Matlab ODE suite is that output can be produced, to full

accuracy, at each t in a vector of values that is given as input to the solver call.
This made it simple to compare its output with the mechanism facility’s, without a
separate interpolation stage.

The mechanism facility program and the Matlab program read the same YAML
problem file. The IVs specify the position and velocity of A = (Ax, Ay) and B =

(Bx, By). They might not be consistent: A might not lie on, and Ȧ might not be
tangential to, the circle of radius L round O. Daets finds consistent points by calling
the optimisation code IPOPT. To make the result predictable, we use Daets’s ability
to specify some IVs “fixed”, not to be modified by IPOPT. Here, one of Ax, Ay may be

DATA, LAGRANGIAN, ACTION! SIMULATING MECHANISMS 17

PhysicalParamsPhysicalParamsPhysicalParams: {L: 11.137, M: 2.059, k: 35.24, l: 11.88, m: 1.416, mu: 2.715,

torque: 6.46, v0: 12.34}

ProblemDataProblemDataProblemData:

t0t0t0 : 0

tendtendtend : 10

positionspositionspositions : { A: [[L*5/13, fixedfixedfixed], -L*12/13],

B: [[L*5/13+0.6*l, fixedfixedfixed], [-L*12/13-0.8*l, fixedfixedfixed]] }

velocitiesvelocitiesvelocities: { A: [[v0, fixedfixedfixed], 0.0], B: [[0.0, fixedfixedfixed], [0.0, fixedfixedfixed]] }

0 1 2 3 4 5 6 7 8 9 10
time t

10-14

10-12

10-10

10-8

10-6

10-4

10-2

no
rm

(O
D

E
 s

ol
 -

 D
A

E
T

S
 s

ol
)

Mechanism0: difference of solutions including both position & velocity

tol=1e-5
tol=1e-7
tol=1e-9
tol=1e-11
tol=1e-13

0 1 2 3 4 5 6 7 8 9 10
time t

10-14

10-12

10-10

10-8

10-6

10-4

10-2

no
rm

(O
D

E
 s

ol
 -

 D
A

E
T

S
 s

ol
)

Mechanism0: approx global error including both position & velocity
tol=1e-5
tol=1e-7
tol=1e-9
tol=1e-11
tol=1e-13

Fig. 3. Above: Parameters and IVs for Mechanism0 problem. Below left: comparison of
mechanism facility and ODE solutions at different tolerances. Below right: estimate of global error,
(Daets solution)–(ode113 solution at tightest tolerance).

fixed and also one of Ȧx, Ȧy. To ensure both codes solve the same IVP, the Matlab

code is made to do the same, e.g. if Ax is “fixed” it sets Ay = ±
√
L2 −A2

x. We omit
details to do with choice of sign and possible numerical ill-conditioning.

For a test of agreement between Daets and ODE solution, we used Matlab’s
ode113, an Adams-Moulton code. The top of Figure 3 shows the “slightly random”
parameters and IVs chosen. They give mild swinging and spring oscillation, without
the chaotic behaviour that is possible. For each tolerance toltoltol, the 8-element vector
v = (A,B, Ȧ, Ḃ) (both positions and velocities) was formed for each solver at each t.

The bottom left of the figure shows ‖vDaets − vODE‖2 against t for 5 tolerances
toltoltol, with a vertical log scale. The growth of the difference is much the same for
each toltoltol: about 3 orders of magnitude over the range. The curves at different toltoltol

obviously are strongly correlated; so far we have not looked into why this is.
The bottom right of the figure shows an assessment of the global error of the

Daets solution. Namely vODE (at the given toltoltol) is replaced by a reference solution
vref which we took to be the ode113 solution at the smallest tolerance it allows, about
2.2e-14. So it plots ‖vDaets − vref‖2 against t for each toltoltol. The plots show these
errors grow more slowly than the differences on the left: they are about ten times
smaller at t = 10. This suggests Daets is somewhat more accurate than ode113, so
the difference vDaets − vODE is mostly due to global error in the ode113 solutions.

4.5. Mechanism1. The right of Figure 4 shows Mechanism1. It has three iden-
tical thin rods AC, BD and EF of length `, and a uniform rigid 45◦45◦90◦ triangle
CDE of short side `. The parts move under gravity. They pivot without friction at

18 J.D. PRYCE AND N.S. NEDIALKOV

C,D,E, and at fixed points A,B, where AB is horizontal of length L.

1 TitleTitleTitle: Mechanism1

2 DimensionDimensionDimension: 2

3 PhysicalParamsPhysicalParamsPhysicalParams:

4 l: 1 # ` = length of rods
5 L: 0.58 # L = distance AB
6 m: 1 # m = mass of rods
7 M: 1 # M = mass of plate
8 PartDataPartDataPartData:

9 FixedFixedFixed: {A: [-L/2], B: [L/2]} ##

10 RigidsRigidsRigids:

11 AC, BD, EF: {GeomGeomGeom: [[l]], DynaDynaDyna: [[l/2], m, m*l**2/12]} ##

12 CDE:

13 GeomGeomGeom: [[l*sqrt(2)], [l/sqrt(2), -l/sqrt(2)]]

14 DynaDynaDyna: [[l/sqrt(2), -l/(3*sqrt(2))], M, M*l**2/9]

15 AppliedForcesAppliedForcesAppliedForces:

16 GravityGravityGravity: ##

B

F

A

C

D

E

Click to pause

Fig. 4. Mechanism1. Listing on the left is from mechanism1-p.yaml.

On the left is a YAML description. Line 16 switches on gravity and puts the
+y axis upward, so the +x axis is horizontal to the right. In PartDataPartDataPartData, line 9 places
A and B at (∓L/2, 0), making AB horizontal. (Recall the padding convention.)
L = (2 −

√
2)` is a critical value under which the system can rotate all way round,

and above which it cannot. The given L = 0.58 is just below this.
PartDataPartDataPartData defines the vector q, namely all point names occurring in a part are

listed, the FixedFixedFixed ones removed, and the result put in lexicographic order to yield

q = (C,D,E, F) = (Cx, Cy, Dx, Dy, Ex, Ey, Fx, Fy).

If torques were present, their turn angles would go at the end of this.
As all parts are rigid bodies, PartDataPartDataPartData.RigidsRigidsRigids gives their geometry and dynamics.

Line 11 shows one can specify several identical parts simultaneously (in a comma-
separated sequence with optional space). In their local frames, A,B,E are the origins
of the three rods, whose other ends C,D, F are at (`, 0). Each has centroid at the
midpoint, mass m and MoI m`2/12. The triangle has C at the local origin, D at

(`
√

2, 0), E at (
`√
2
,− `√

2
). By standard formulae its centroid is at (

`√
2
,
−`

3
√

2
) and

its MoI about the centroid is
M`2

9
.

Mechanism1 summary. From the above data the mechanism facility constructs
the kinetic and potential energy contributions and the Lagrangian L(q, q̇). These are
similar to Mechanism0’s (4.2, 4.3) so are omitted. It constructs six constraints—a
length constraint for each rigid part, plus the equation from (3.22), equivalent to two
scalar constraints, that places the UP E in the correct world position relative to C,D,

DATA, LAGRANGIAN, ACTION! SIMULATING MECHANISMS 19

as follows.

lAC : 0 = C1(q) = |Ct −A|2 − `2,
lBD : 0 = C2(q) = |Dt −B|2 − `2,
lCDE : 0 = C3(q) = |Dt − Ct|2 − 2`2,

Ex,CD, Ey,CD : 0 = C4(q) + iC5(q) = cCt + dDt + eEt,

lEF : 0 = C6(q) = |Ft − Et|2 − `2,

On the left are labels, e.g. lAC is the length constraint for AC, and Ex,CD is the x
component of the placement of E relative to C,D. The t are a reminder of which
points are moving. For C4 + iC5, values are treated as complex numbers as in (3.22),
with these constants computed in CDE’s local frame:

c = E −D = (−1− i)`/
√

2, d = C − E = (−1 + i)`/
√

2, e = D − C = `
√

2.

The constraints follow the order of parts in PartDataPartDataPartData and within that, for each
rigid body, one length constraint for its RPs followed by two placement constraints
for each of its UPs.

4.6. Numerical results for Mechanism1. For the numerical experiments in
this subsection and in §4.8, we use order 17 in Daets.

We determine (number of) significant correct digits (scd) defined as follows. De-
note by Q a vector with the components of a reference solution at tend, and by Qtol

the vector with the corresponding components computed with tolerance tol at tend.
Then

scd = − log10 max
i

{
|Qi −Qtol

i |/|Qi|
}
.

We use tolerances tol = 10−4, 10−5, . . . , 10−13. In this subsection, reference solutions
are computed with tol = 10−14.

We plot CPU time versus scd and (Et−E0)/tol versus t, where Et is total energy
at time t, and E0 is initial energy. The platform is 2.2 GHz Intel Core i7 running Mac
OS X.

4.6.1. Mechanism1a. We simulate the Mechanism1 specification from Figure 4
with initial guesses for C, D, and F given as

positionspositionspositions: {C:[[-l/sqrt(2),fixedfixedfixed],-l], D:[l/sqrt(2),-l],

F:[[0,fixedfixedfixed], -l*(1+1/sqrt(2))]}

velocitiesvelocitiesvelocities: {C:[[2,fixedfixedfixed],0], D:[2,0], F:[[1,fixedfixedfixed],0]}

That is, with guesses for positions and velocities(
Cx, Cy; Dx, Dy; Fx, Fy

)
=
(
−`/
√

2,−`; `/
√

2,−`; 0,−`(1 + 1/
√

2)
)(

Ċx, Ċy; Ḋx, Ḋy; Ḟx, Ḟy
)

=
(
2, 0; 2, 0; 1, 0

)
,

(4.9)

where Cx, Ċx, Fx, and Ḟx are fixed, and the solver does not change their values when
computing a consistent initial point. (The position and velocity of E are determined
uniquely from those of C and D.) We refer to Mechanism1 with the initial guesses
(4.9) as Mechanism1a.

We integrate for t ∈ [0, 200]. The consistent initial values and reference solution
found by the solver are given in §A.1. When determining scd, we include positions
and velocities of C, D, and F in Q and Qtol. The corresponding plots are in Figure 5.
A discussion of the numerical results in this subsection and in §4.8 is in §4.9.

20 J.D. PRYCE AND N.S. NEDIALKOV

(a) CPU time vs. scd (b) energy preservation vs. t

Fig. 5. Performance of Daets on Mechanism1a.

4.6.2. Mechanism1b. We repeat the same numerical experiment, but with the
masses changed to m = 2 and M = 5, and the initial values for Ċx and Ḟx changed
to Ċx = −4.5 and Ḟx = 3. With such values, this mechanism behaves chaotically, and
all scd are lost at about t = 30 and for all tolerances. We integrate to tend = 20, see
Figure 6. The consistent initial values at t = 0 and the reference solution at tend = 20
are given in §A.2.

(a) CPU time vs. scd (b) energy preservation vs. t

Fig. 6. Performance of Daets on Mechanism1b.

4.7. Andrews Squeezing Mechanism (ASM). Shown in Figure 7, this is
problem A03 in the Multi Body Systems (MBS) Benchmark initiated in [14] and
implemented under the OpenSim API in [10]. It is also problem II-13 in [5]. From
the description in [14, Problem A03]:

This plane mechanism is composed by 7 bodies interconnected by revolute
joints. The assembly is driven by a motor located at point O, with a constant
drive torque of τ = 0.033 Nm. This system has a very small time scale, thus
making it difficult to simulate for solvers that can’t reach small time-steps.

Because part OF is driven by a torque, its turn angle from the x axis—θOF in

DATA, LAGRANGIAN, ACTION! SIMULATING MECHANISMS 21

Fig. 7. Andrews Squeezing Mechanism. (a) As drawn in MSB; (b) original picture in [4,
Ch. VII.7].

the general notation, here called β—must be in the coordinate vector, so

q = (D,E, F,G,H, β) = (Dx, Dy, Ex, Ey, Fx, Fy, Gx, Gy, Hx, Hy, β).

The value of β fixes the position of the whole mechanism. The initial β0 is given
as −0.0620 rad in [10], more accurately in [5, §13.3]. It approximates the unstable
equilibrium at which the spring is most stretched, so even a small nonzero torque
causes continuous rotation at increasing speed. There is no gravity and no dissipation,
so if the system starts from rest, the total kinetic energy at any time is (β − β0)τ .

4.8. Numerical results for ASM. This system was solved with the initial
condition for β0 from [5, §13.3] and with the problem parameters as given in [5,
§13.3]. See our complete YAML specification in §B. We give initial guesses as

positionspositionspositions:

E: [-2e-02, 1e-03]

F: [rr*cos(beta0), [rr*sin(beta0),fixedfixedfixed]]

G: [-3e-02, 1e-02]

H: [-3e-02, -1e-02]

velocitiesvelocitiesvelocities: # all 0’s by default

where we have fixed F and given reasonable guesses for E,G,H, else an initial con-
sistent point might not be found. (The picture shows there are 4 configurations for
any β, since G and/or H can “flip” to the other side of line AE, though this cannot
happen in continuous motion.) The position and velocity of D are determined from
those of B and E.

At tend = 0.03 (the value used in [5, §13.3]), we convert our output, which is
in cartesian coordinates, except the angle β, to find values for θ, γ, δ, ε and Ω,
cf. Figure 7(b). Then we use the corresponding reference values from [5, §13.3] to

22 J.D. PRYCE AND N.S. NEDIALKOV

determine scd. (In [5, §13.3], derivatives are not included in calculating scd, and we
do not include them either.) The resulting plots are in Figure 7.

(a) CPU time vs. scd (b) energy preservation vs. t

Fig. 8. Performance of Daets on ASM for t ∈ [0, 0.03].

We perform a longer integration up to tend = 1 and display the results in Figure 7.
In this case, we compute a reference solution with tol = 10−14, see §A.3.

Animations of Mechanisms 1a and 1b and ASM are at [8].

(a) CPU time vs. scd (b) energy preservation vs. t

Fig. 9. Performance of Daets on ASM for t ∈ [0, 1].

4.9. Discussion. From Figures 5(a), 6(a), 8(a), and 9(a), the CPU time versus
scd grows nearly linearly for tolerances ≈ 10−8 to ≈ 10−12. Compared to “hand-
coding” of a DAE as e.g. in the test problems of [5], our simulations are generally
slower. For example, on the ASM test problem, Daets’s CPU time is about an order
of magnitude larger than Radau’s CPU time, see Figure 10. However, our advantage
is in much more convenient and easier modelling, which can shorten substantially the
time from modelling to obtaining a numerical solution.

Taylor series methods are not symplectic, and they are not expected to preserve
the energy well over long integrations, cf. Figure 9 (b). For not very long integrations,
however, the energy is preserved reasonably well, cf. Figures 5(b), 6(b), and 8(b).

DATA, LAGRANGIAN, ACTION! SIMULATING MECHANISMS 23

Fig. 10. Radau versus Daets on ASM for t ∈ [0, 0.03].

5. Animation. Animation can be controlled in the data file AnimationAnimationAnimation section,
of which no more is said here.

Currently we use MatlabTM graphics. At each time-point t chosen by its step
size control, Daets has written t and the vectors q and q̇ to an output file. The
animation loop maps these by Hermite cubic interpolation to q values at a sequence
of equally spaced times tvid, and as it does so, produces animation frames in a figure
window and optionally sent to a video file. The user can choose real-time frame
rate and speed-up/slow-down factor (ratio of model time to real time). The speed of
motion in the figure window can be sluggish, but in the video is exact.

Each rigid part (which exists in the xy plane) is given a 2D shape that by default
is a round-cornered region slightly larger than the convex hull of its RUPs, and can
be customised. This is given a 3D presence by extending it slightly in the z direction
to a flat prism, and bevelling the edges. E.g. the ASM by default looks like (a) in
Figure 7 but can be made to look like (b), taken from [4, Ch. VII.7], where AG and
AH are bent and BED consists of three arms radiating from a central point.

The part is made into a Matlab hgtransform object, containing a 4 × 4 matrix
M specifying its world position. At each tvid, formulae in Section 3 are used (in an
inverse direction to the modelling process) to map q to the part’s rotation matrix Q
and shift ppp. These are copied into M . (A spring has a more complicated Q, a rotation
followed by a scaling along its length.) This instantly puts each part in the correct
position in the Matlab figure, with the benefits of correct hiding of a part by those
in front of it, reflective highlights, possible change of view-angle during motion, etc.

6. The 3D case. For 3D the theory of tracking points and computing kinetic
and where needed potential energy contributions to the Lagrangian is already in
§3.1. For the Lagrangian facility, the difference between 2D and 3D in the C++ code
amounts mainly to choosing between a vec2 and a vec3 vector class and then using
the appropriate parts of §3.1. All connections of parts that can be defined in terms
of points on bodies being coincident, collinear or coplanar are already covered—see
the universal joint example MultPendUJ below. Work needs to be done on specifying
applied forces, especially torques in 3D. For the mechanism facility, the basic YAML
constructs extend in an obvious way to 3D, e.g. how a rigid body’s part-name defines
its local frame. However we have yet to implement this.

6.1. Other kinds of connection. As in §3, the style A means a (possibly
moving) point in fixed space, aaa its representation as a position vector in some world-

24 J.D. PRYCE AND N.S. NEDIALKOV

frame, and a a displacement, a difference of position vectors.
With a cartesian approach, many connections between parts reduce to collinear-

ity/coplanarity constraints, hence to simple linear algebra tests. Collinearity is a
property of triples of A’s and aaa’s but of pairs of a’s (a and b are collinear iff lin-
early dependent). With more than three A’s or aaa’s, it means any three of them are
collinear, so aaa1, aaa2, . . . , aaak ∈ Rn are collinear iff the (n+ 1)× k matrix

M =

[
1 1 . . . 1
aaa1 aaa2 . . . aaak

]
.

has rank 1 or 2, and all coincide iff it has rank 1. In order of increasing numerical
stability, rank may be found by LU, QR or SVD factorisation of MT . It is similar for
coplanarity, a rank property of quartets of A’s and aaa’s but of triples of a’s.

Some examples follow, where either body R1,R2 might be fixed space.
• (Any n) A moving rod R1 slides through a given point C on R2. Equivalent:
A,B,C are collinear where A,B are distinct points on the rod. For n = 2
another meaning is the pin-slot joint: R2 rotates about C which can slide on
a line in R1.

• (n = 3) Revolute joint between R1,R2. Equivalent: A,B,C are collinear
where A is on both bodies, and AB, AC are the hinge axis lines in R1, R2

respectively.
• (n = 2, 3) Piston (cylindrical) joint between R1,R2, allowing sliding along an

axis and, in 3D, rotation about it. Equivalent: A,B,C,D are collinear where
AB, CD are the joint axis lines in R1, R2 respectively.

• (n = 3) Prismatic joint, allowing sliding along an axis but not rotation. As
cylindrical, plus vectors `, a, b are coplanar, where ` is along the axis line and
a, b are suitable vectors fixed in R1, R2 respectively.

6.2. 3D tests done. These examples, done directly using the Lagrangian facil-
ity, mainly aim to verify in 3D the QR factorisation approach of §3, and the joint
ideas in §6.1. Animations can be viewed at [8].

Skew2Pend. This has two rods with mass, moving under gravity. Rod OA
hangs by a hinge (revolute joint) h1 at one end from fixed point O and at the other
by hinge h2 to rod AB. The hinge axes in both rods are perpendicular to the rod’s
length, but the system is made “skew” in two ways: (a) in the WF, the axis of h1 is
at an angle α to the horizontal; (b) in OA, the axis of h2 is rotated through an angle
β relative to that of h1 (as viewed along the rod’s length). Here α, β are parameters
read as data.

MultPendFP. This, the “free pivot” (or ball-and-socket joint) multi-pendulum,
is the example in §1.3 for an arbitrary number N of pendula.

MultPendUJ. In a similar model, we replaced the chain of N particle bobs
and massless rods by uniform rods with mass, and the free pivots by universal joints
(Cardan or Hookean joints). This joint bends in any direction but can transmit
torque, unlike a free pivot. It is usually built as a rigid part X having two revolute
joints h1, h2 whose axes are coplanar and at right angles—a “cross”. Bodies R1, R2

are joined by hinging R1 to X at h1 and X to R2 at h2.
One can choose the hinge axes in R1 and R2 at will. For our model, with a chain

of rods, we put each hinge perpendicular to the length of its rod, but rotated the hinge
at the far end of each rod through a skewing angle α relative to that at the near end,
where α is a parameter. It is visually clear (with N = 10) that this system moves

DATA, LAGRANGIAN, ACTION! SIMULATING MECHANISMS 25

“less freely” than the free pivot pendulum. Changing α should change the motion
somewhat, but it is hard to spot any difference.

7. Conclusions.

What we have done. We have argued cartesian coordinates generally make
Lagrangian modelling of a mechanism simpler than do other kinds of coordinates.
This fact is not of great weight as long as the obstacles along this route to simulation
are not mainly in forming the Lagrangian description, but in deriving from it and
then solving the equations of motion, which are an index-3 DAE.

In reverse order of these three items: there is now a DAE code, Daets, that
solves such a DAE as easily as an ODE. At the mathematical level (ignoring possible
numerical difficulties, which seem rare for these systems) and for simulation as an
IVP (not, e.g., control problems which can change the DAE index), the methods in
Daets provably always succeed on these DAEs.

The deriving—often done by a computer algebra system—is streamlined by the
Lagrangian facility which does the needed ∂/∂qj , ∂/∂q̇j and d/dt in (1.2), invisibly
at run time, using algorithmic differentiation. It handles 3D problems as well as 2D.

The forming is streamlined, currently for 2D only, by the mechanism facility which
converts a text file MechSpec description of a mechanism to a form the Lagrangian
facility can use.

As a result, for simple problems one can go in a few seconds from text file to
simulation by Daets, to animation in Matlab. The numerical results in this paper
validate this approach and show its usefulness. For animations online see [8]. The
MechSpec format is documented in [9].

Potential benefits. In a constraint-free approach one spends much effort to
produce a Lagrangian that tends to be cumbersome and unreadable. The cartesian
approach gives a Lagrangian that tends to be short and readable. Now that the
equations of motion resulting from this approach can be derived, solved and animated
easily, we believe this work can have a valuable impact on education in mechanics.

Namely Lagrangian methods become accessible to mathematicians and engineers
at undergraduate level. Once students have mastered some simple examples, they
can experiment with changing the parameters and initial conditions, and invent new
mechanisms themselves, rapidly gaining physical intuition into such systems.

A disadvantage is that the analytic work that the constraint-free method puts
into deriving a coordinate system becomes, in a cartesian approach, the numerical
work of finding an initial consistent solution: a notorious difficulty for DAEs. Daets
gives this task to the powerful optimisation software IPOPT. However, IPOPT can
give wrong results or fail, if given poor initial guesses for the non-fixedfixedfixed components
of q: consider the 4 possible initial ASM configurations mentioned in §4.7.

From a pedagogic viewpoint this can be an advantage—one needs to get physical
insight into how a set of rigid parts might move before giving numerical IVs, especially
for velocities. A model with card and paper fasteners might help! The mechanism
facility currently gives little for support for finding suitable IVs: work is needed here.

In fact even for constraint-free angle coordinates, specifying initial conditions
needs insight, since often only a certain range of angle values is physically possible.

Future plans. A 3D MechSpec is an important goal. Before moving to it we
aim to put in place some features that are useful in both 2D and 3D:
– A general applied force or torque on a body that is a prescribed function of position

and velocity.

26 J.D. PRYCE AND N.S. NEDIALKOV

– A controlled speed facility, e.g. prescribing a rotating part’s angular velocity as a
function of time.

– A Rayleigh dissipative term, often a convenient way to model damping forces within
the Lagrangian.

These have the common feature of user-supplied functions, which for the C++ main
program require a new compile-and-link stage to be added to the current workflow.

The structural analysis built in to Daets “knows” a lot about IVs. E.g. for
the 2-dof Mechanism1, it knows parts AC,CDE,BD carry one dof and EF car-
ries the other. That is, subject to constraints noted above, one can specify one of
(Cx, Cy, Dx, Dy, Ex, Ey) arbitrarily, which fixes the other five; one can then specify
one of (Fx, Fy) arbitrarily and this fixes the other. The same is true for velocities.
It will take some work however to make this knowledge conveniently available in the
current context.

Finally, a mechanism implemented using this approach is conceptually an acausal
set of equations relating variables. At a software architecture level, we aim to encap-
sulate it as an object, with a suitable interface for making it a component in a larger
system such as a control or optimisation problem.

Appendix A. Consistent initial values and reference solutions.
Below are consistent initial values and reference solutions as computed by Daets.

Order is 17, tolerance is 10−14.

A.1. Mechanism1a.

consistent initial values at t = 0

Cx -7.07106781186547462e-01 Ċx 2.00000000000000000e+00

Cy -9.08857487776932649e-01 Ċy -9.17870594226585679e-01

Dx 7.07106781186547684e-01 Ḋx 1.99999999999999978e+00

Dy -9.08857487776932538e-01 Ḋy 9.17870594226586123e-01

Fx 0.00000000000000000e+00 Ḟx 1.00000000000000000e+00

Fy -2.61596426896347944e+00 Ḟy 2.55408735735967164e-16

reference solution at t = 200

Cx -8.58933625820345714e-01 Ċx 1.42392657308349713e-01

Cy -8.22383444270928132e-01 Ċy -9.85087569271938662e-02

Dx 5.47952653877345597e-01 Ḋx 1.56736017382790666e-01

Dy -9.66157558764425439e-01 Ḋy 4.18466649412351580e-02

Fx 1.20803584735356007e-02 Ḟx 5.64120716522558929e+00

Fy -2.56862038936931958e+00 Ḟy 1.30161091919837979e+00

A.2. Mechanism1b.

consistent initial values at t = 0

Cx -7.07106781186547462e-01 Ċx -4.50000000000000000e+00

Cy -7.07106781186547573e-01 Ċy 4.49999999999999911e+00

Dx 6.77443189298190029e-01 Ḋx -5.54955604839201833e+00

Dy -9.95241088811850139e-01 Ḋy -5.43352205433924484e-01

Fx 0.00000000000000000e+00 Ḟx 3.00000000000000000e+00

Fy -2.53074377172524434e+00 Ḟy 4.20048794745364340e+00

DATA, LAGRANGIAN, ACTION! SIMULATING MECHANISMS 27

reference solution at t = 20

Cx 8.40061614244513311e-01 Ċx -7.05205902707705556e-01

Cy -5.42490999255197281e-01 Ċy -1.09202993195599807e+00

Dx 1.11525829897918727e+00 Ḋx 2.83014496458055076e+00

Dy 8.44688435681409722e-01 Ḋy -1.79339329818557580e+00

Fx 8.30051052373316556e-01 Ḟx 3.98217393452508350e+00

Fy 5.54226627139820738e-01 Ḟy 1.87729689856974757e+00

A.3. ASM.

consistent initial values at t = 0

Ex -2.09600223463543393e-02 Ėx 0.00000000000000000e+00

Ey 1.29516919370668642e-03 Ėy 0.00000000000000000e+00

Fx 6.98667411545144529e-03 Ḟx 0.00000000000000000e+00

Fy -4.31723064568895491e-04 Ḟy 0.00000000000000000e+00

Gx -3.39972038858399814e-02 Ġx 0.00000000000000000e+00

Gy 1.64619716749976851e-02 Ġy 0.00000000000000000e+00

Hx -3.16331345074088999e-02 Ḣx 0.00000000000000000e+00

Hy -1.56188686683045412e-02 Ḣy 0.00000000000000000e+00

OF -6.17138900142764485e-02 ȮF 0.00000000000000000e+00

reference solution at t = 1

Ex -2.24639386331334338e-02 Ėx -4.27474460689147762e+01

Ey 6.02483760557903669e-04 Ėy -1.84761764639941397e+01

Fx 5.24386932234803104e-03 Ḟx -5.43947208190019964e+01

Fy 4.63700706600035217e-03 Ḟy 6.15135590135045689e+01

Gx -3.41833832797379944e-02 Ġx -4.84668952354823279e+00

Gy 1.68091063937647299e-02 Ġy 8.93087980248283309e+00

Hx -3.21169018672776974e-02 Ḣx -1.35899912619663397e+01

Hy -1.69138029692332895e-02 Ḣy -3.45444130482928173e+01

OF 5.98859965509975063e+03 ȮF 1.17305667308202155e+04

Appendix B. YAML specification of Andrews Squeezing Mechanism.
The physical parameter names are those used by the description in [4]. For

completeness the full list of SolverParamsSolverParamsSolverParams is given but most of the values are defaults
and could be omitted.

TitleTitleTitle: Andrews Squeezing Mechanism

PhysicalParamsPhysicalParamsPhysicalParams: { beta0: -0.0617138900142764496358948458001, m1: 0.04325,

m2: 0.00365, m3: 0.02373, m4: 0.00706, m5: 0.07050, m6: 0.00706,

m7: 0.05498, xa: -0.06934, ya: -0.00227, xb: -0.03635, yb: .03273,

xc: .014, yc: .072, c0: 4530, i1: 2.194e-6, i2: 4.410e-7, i3: 5.255e-6,

i4: 5.667e-7, i5: 1.169e-5, i6: 5.667e-7, i7: 1.912e-5, d: 28e-3,

da: 115e-4, e: 2e-2, ea: 1421e-5, rr: 7e-3, ra: 92e-5, l0: 7785e-5,

ss: 35e-3, sa: 1874e-5, sb: 1043e-5, sc: 18e-3, sd: 2e-2, ta: 2308e-5,

tb: 916e-5, u: 4e-2, ua: 1228e-5, ub: 449e-5, zf: 2e-2, zt: 4e-2,

fa: 1421e-5, mom: 33e-3 }

DimensionDimensionDimension: 2

PartDataPartDataPartData:

FixedFixedFixed: { O: [], A: [xa, ya], B: [xb, yb], C: [xc, yc] }

RigidsRigidsRigids:

OF: { GeomGeomGeom: [[rr]], DynaDynaDyna: [[ra], m1, i1] }

FE: { GeomGeomGeom: [[d]], DynaDynaDyna: [[da], m2, i2] }

BED: { GeomGeomGeom: [[ss], [sc, sd]], DynaDynaDyna: [[sa, sb], m3, i3] }

28 J.D. PRYCE AND N.S. NEDIALKOV

EG: { GeomGeomGeom: [[e]], DynaDynaDyna: [[ea], m4, i4] }

AG: { GeomGeomGeom: [[zt]], DynaDynaDyna: [[ta, tb], m5, i5] }

HE: { GeomGeomGeom: [[zf]], DynaDynaDyna: [[zf-fa], m6, i6] }

AH: { GeomGeomGeom: [[u]], DynaDynaDyna: [[ua, -ub], m7, i7] }

SpringsSpringsSprings:

CD: [c0, l0]

AppliedForcesAppliedForcesAppliedForces:

ConstTorquesConstTorquesConstTorques: { OF: mom }

ProblemDataProblemDataProblemData:

t0t0t0: 0.0

tendtendtend: 0.03

positionspositionspositions:

E: [-2e-02, 1e-03]

F: [rr*cos(beta0), [rr*sin(beta0),fixedfixedfixed]]

G: [-3e-02, 1e-02]

H: [-3e-02, -1e-02]

velocitiesvelocitiesvelocities: # all 0’s by default
SolverParamsSolverParamsSolverParams:

ModeModeMode: solve

IntegrationIntegrationIntegration:

toltoltol: 1e-14

orderorderorder: 17
OutFileOutFileOutFile:

tformattformattformat: ’% .17e’

qformatqformatqformat: ’% .17e’

pointspointspoints: [D: 2, E: 2, F: 2, G: 2, H: 2]

anglesanglesangles: [OF: 1]

AnimationAnimationAnimation:

viewviewview: [-5, 27]

physParamsToShowphysParamsToShowphysParamsToShow: [$beta0, $c0, $mom]

SkeletonSkeletonSkeleton:

zscalezscalezscale: 0.0005

fleshoutwidfleshoutwidfleshoutwid: 0.0015

SkelsSkelsSkels:

BED: {path: XBXEXDX, newpts: [X , [sa, sb]] }

AG: {path: YAYGY, newpts: [Y , [ta, tb]] }

AH: {path: ZHZAZ, newpts: [Z , [ua, -ub]] }

REFERENCES

[1] G. Birkhoff and S. MacLane, Algebra, AMS Chelsea Publishing, Providence, RI, third ed.,
1999.

[2] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations, SIAM, Philadelphia, second ed., 1996.

[3] W. Greiner, Classical Mechanics: Systems of Particles and Hamiltonian Dynamics, no. v. 1
in Classical theoretical physics, Springer, 2003.

[4] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential–
Algebraic Problems, Springer Verlag, Berlin, second ed., 1991.

[5] F. Mazzia and F. Iavernaro, Test set for initial value problem solvers, Tech. Rep. 40, De-
partment of Mathematics, University of Bari, Italy, 2003. http://pitagora.dm.uniba.it/
∼testset/.

[6] N. Nedialkov and J. Pryce, DAETS user guide, Tech. Rep. CAS 08-08-NN, Department of
Computing and Software, McMaster University, Hamilton, ON, Canada, June 2013. 68
pages, DAETS is available at http://www.cas.mcmaster.ca/∼nedialk/daets.

[7] N. S. Nedialkov and J. D. Pryce, Solving differential-algebraic equations by Taylor series
(III): the DAETS code, JNAIAM J. Numer. Anal. Indust. Appl. Math, 3 (2008), pp. 61–80.

http://pitagora.dm.uniba.it/~testset/
http://pitagora.dm.uniba.it/~testset/
http://www.cas.mcmaster.ca/~nedialk/daets

DATA, LAGRANGIAN, ACTION! SIMULATING MECHANISMS 29

[8] N. S. Nedialkov and J. D. Pryce, Multi-body Lagrangian simulations, 2017. YouTube chan-
nel, https://www.youtube.com/channel/UCCuLchOx0W0yoNE9KOCYlVQ.

[9] N. S. Nedialkov and J. D. Pryce, YAML specification of 2D mechanisms for the DAETS La-
grangian facility, tech. rep., Department of Computing and Software, McMaster University,
2018. In preparation.

[10] OpenSim, OpenSim implementation of MBS Benchmark, 2008 (accessed July 2017). http:
//rehabenggroup.github.io/MBSbenchmarksInOpenSim/index.html.

[11] J. D. Pryce, N. S. Nedialkov, G. Tan, and X. Li, How AD can help solve differential-
algebraic equations, Optimization Methods and Software, (2018), pp. 1–21. DOI:
10.1080/10556788.2018.1428605.

[12] M. D. Shuster, A survey of attitude representations, The Journal of the Astronautical Sciences,
41 (1993), pp. 439–517.

[13] L. Susskind and G. Hrabovsky, Classical Mechanics: The Theoretical Minimum, The theo-
retical minimum, Penguin Books, 2014.

[14] University of Coruña, Multi body systems (MBS) benchmark, 2005 (accessed July 2017).
http://lim.ii.udc.es/mbsbenchmark.

https://www.youtube.com/channel/UCCuLchOx0W0yoNE9KOCYlVQ
http://rehabenggroup.github.io/MBSbenchmarksInOpenSim/index.html
http://rehabenggroup.github.io/MBSbenchmarksInOpenSim/index.html
http://lim.ii.udc.es/mbsbenchmark

	Introduction
	Context and aims
	Methodology outline
	Basic idea
	Topology and local frames
	Coordinates
	Position relations
	Velocity relations
	Lagrangian
	Constraints
	Mechanism and Lagrangian facilities

	Example: cartesian versus angle coordinates

	Some linear algebra
	General cross product
	Complexity aspects

	Motion computed from reference points in n dimensions
	Positions and velocities of a part
	Positions
	Linear velocities
	Angular velocity and kinetic energy

	The 2D case

	The mechanism facility by examples
	Overview
	Mechanism0
	Including torques
	Validation and numerical results for Mechanism0
	Mechanism1
	Numerical results for Mechanism1
	Mechanism1a
	Mechanism1b

	Andrews Squeezing Mechanism (ASM)
	Numerical results for ASM
	Discussion

	Animation
	The 3D case
	Other kinds of connection
	3D tests done

	Conclusions
	Appendix A. Consistent initial values and reference solutions
	Mechanism1a
	Mechanism1b
	ASM

	Appendix B. YAML specification of Andrews Squeezing Mechanism
	References

