
A Simple Method for Quasilinearity Analysis of
DAEs

Guangning Tan, Nedialko S. Nedialkov and John D. Pryce

Abstract We present a simple method for quasilinearity (QL) analysis of differential-
algebraic equations (DAEs). It uses the sigma matrix and offsets computed by
Pryce’s structural analysis and determines if a DAE is QL in its leading derivatives.
Our method is suitable for an implementation through either operator overloading
or source code translation.

1 Introduction

We are interested in solving initial value problems in DAEs of the general form

fi(t, the x j and derivatives of them) = 0, i = 1, . . . ,n, (1)

where the x j(t), j = 1, . . . ,n are state variables, and t is the time variable.
Based on Pryce’s structural analysis (SA) [4], we solve (1) numerically using

Taylor series, as implemented in the DAETS solver [2]. On each integration step,
we compute Taylor coefficients for the solution up to some order, where we solve
systems of equations for these coefficients in stages. Up to stage zero, a system
can be linear or nonlinear in the variables being solved for, and after this stage, the
systems are always linear.

G. Tan
Department of Computing and Software, McMaster University, Hamilton, Canada, e-mail:
tang4@mcmaster.ca

N. S. Nedialkov
Department of Computing and Software, McMaster University, Hamilton, Canada, e-mail:
nedialk@mcmaster.ca

J. Pryce
Cardiff School of Mathematics, Cardiff University, UK, e-mail: prycejd1@Cardiff.ac.uk

1

2 Guangning Tan, Nedialko S. Nedialkov and John D. Pryce

We present a simple method for deciding if such a system is linear in the unknown
derivatives, respectively Taylor coefficients. We refer to such systems as quasilinear
(QL). If the unknowns appear nonlinearly, we have a non-quasilinear (NQL) system.
Such information is used to determine what solver to use and the minimum number
of variables and derivatives of them that need initial conditions; for details see [5].

Sect. 2 summarizes Pryce’s SA. Sect. 3 gives the definitions needed for our
method. It is described in Sect. 4, and illustrated on an example in Sect. 5. Con-
clusions are in Sect. 6.

2 Summary of Pryce’s SA

This SA [4] constructs for (1) an n×n signature matrix Σ = (σi j) such that

σi j =

{
the highest order of the derivative to which x j occurs in fi; or
−∞ if x j does not occur in fi .

A highest value transversal (HVT) is a set of n positions (i, j) with one entry in
each row and each column, such that the sum of these entries is maximized over
all transversals. From Σ , we find a HVT and equation and variable offsets c and d,
respectively, which are non-negative integer n-vectors satisfying

d j− ci ≥ σi j for all i, j with equality on an HVT .

When the SA succeeds [1, 4], using these offsets, we can determine structural index
(which is a bound for the differentiation index, and often they are the same), degrees
of freedom, and a solution scheme for computing derivatives of the solution.

They are computed in stages k = kd ,kd +1, . . ., where kd =−max j d j. Denote

xJk =
{

x
(d j+k)
j | d j + k ≥ 0

}
, xJ<k =

{
x(r)j | d j + k > 0

}
, and

fIk =
{

f (ci+k)
i | ci + k ≥ 0

}
.

At stage k, we solve a system of equations fIk(t,xJ<k ,xJk) = 0 for xJk , where xJ<k
are computed at earlier stages. A system at stage k = kd ,kd +1, . . . ,0 can be QL or
NQL, while for stages k > 0 the systems are always linear.

Example 1. We show below for the simple pendulum (PEND), an index-3 DAE, the
signature matrix and offsets. (The state variables are x(t), y(t), and λ (t), G is gravity,
and L is the length of the pendulum.) There are two HVTs, marked with • and ∗.

A Simple Method for Quasilinearity Analysis of DAEs 3

0 = f1 = x′′+ xλ

0 = f2 = y′′+ yλ −G

0 = f3 = x2 + y2−L2

→ Σ =

x y λ ci
f1 2• 0∗ 0

f2 2∗ 0• 0
f3 0∗ 0• 2

d j 2 2 0

The equations for stages k =−2,−1,0 are

k fIk(t,xJ<k ,xJk) xJ<k xJk

−2 f3 = x2 + y2−L2 x,y NQL

−1 f ′3 = 2xx′+2yy′ x,y x′,y′ QL

f1 = x′′+ xλ

0 f2 = y′′+ yλ −G x,x′,y,y′ x′′, y′′, λ QL

f ′′3 = 2
(
xx′′+ x′2 + yy′′+ y′2

)
Obviously, at k =−2 we have a NQL problem, and then two QL problems.

3 Quasilinearity at stage k

Definition 1. The system
fIk(t,xJ<k ,xJk) = 0 (2)

is QL, if xJk appears linearly in it, and NQL otherwise.

Definition 2. A DAE is QL, if at stage k = 0, (2) is QL, and NQL otherwise.

Definition 3. Equation i at stage k is QL, if f (k+ci)
i = 0 is linear in the xJk occurring

in it, and NQL otherwise.

If ci + k > 0, f (k+ci)
i = 0 is always QL. For example, in PEND at stage k = 1,

f ′3 = 2xx′+2yy′ = 0 is QL in x′ and y′.
At stage k, consider equations i for which ci + k = 0. If each such fi = 0 is QL,

then (2) is QL; it is NQL if there is a NQL fi = 0; cf. PEND at stage 0.
Therefore, to determine quasilinearity at stage k, we need to check for QL only

the fi = 0 for which ci + k = 0.

4 Algorithm

For simplicity in our exposition, we consider the code list for evaluating the fi’s as
consisting of assignment, unary, and binary operators. This is the case when exe-

4 Guangning Tan, Nedialko S. Nedialkov and John D. Pryce

cuting the function for evaluating the DAE through operator overloading. Our algo-
rithm consists of initialization and propagation of offset and type data through the
code list as described below.

Initialization. We derive from Σ the n×n offset matrix Θ = (θi j) as

θi j =

{
σi j if σi j = d j− ci

+∞ otherwise ,

and derive from it the n×n type matrix T= (Ti j)

Ti j =


L (Linear) if θi j = 0
U (Undetermined) if 0 < θi j <+∞

C (Constant) if θi j =+∞ .

Then we associate with each x j an offset vector γ(x j) being the jth column of Θ ,
and a type vector T(x j) being the jth column of T.

Propagation. We propagate these vectors through the code list of the DAE ac-
cording to the following rules.

R1. If v =+u or v =−u, then

γ(w) = γ(v) and T(w) = T(v) .

R2. If u = g(v) is nonlinear, then

γ(u) = γ(v) and Ti(u) =

{
N (Nonlinear) if Ti(v) = L

Ti(v) otherwise .

R3. If w = g(u,v), then for all i = 1, . . .n,

γi(w) = min
{

γi(u),γi(v)
}

and

Ti(w) =

{
N if Ti(u) = Ti(v) = L & g nonlinear
max

{
Ti(u),Ti(v)

}
otherwise .

Here we use the ordering
C< U< L< N .

R4. If w = g(u,v), u is a constant or the time variable t, and v is not, then

γ(w) = γ(v) and T(w) = T(v) .

Similarly, when v is a constant or the time variable t, and u is not, then

γ(w) = γ(u) and T(w) = T(u) .

A Simple Method for Quasilinearity Analysis of DAEs 5

R5. If v = dpu/dt p, then

γi(v) = γi(u)− p and Ti(v) =


L if γi(v) = 0
U if 0 < γi(v)<+∞

C if γi(v) = +∞ .

After executing the code list for an fi, using R1-R5, fi = 0 is QL at stage k =−ci if
Ti(fi) = L, and NQL if Ti(fi) = N.

5 Example
We illustrate the above method on the following index-7 DAE

0 = f1 = x′′+ xλ

0 = f2 = y′′+ yλ +(x′)3−G

0 = f3 = x2 + y2−L2

0 = f4 = u′′+uµ

0 = f5 = (w′′′)2 +wµ−G

0 = f6 = u2 +w2− (L+ cλ)2 +λ
′′

(3)

(state variables are x,y,λ ,u,v, and w) derived from a two-coupled pendula problem,
an index-5 DAE, with originally

f2 = y′′+ yλ −G, f5 = w′′+wµ−G, f6 = u2 +w2− (L+ cλ)2 .

We wish to determine if the DAE (3) is QL; that is, if (3) is QL at stage k = 0.
The corresponding matrices are

x y λ u w µ ci


f1 2 0 4
f2 1 2 0 4
f3 0 0 6
f4 2 0 0
f5 3 0 0
f6 2 0 0 2

d j 6 6 4 2 3 0

x y λ u w µ ci


2 0 4

2 0 4
0 0 6

2 0 0
3 0 0

2 0 2
d j 6 6 4 2 3 0

x y λ u w µ


U L

U L

L L

U L

U L

U L

Σ , blanks denote −∞ Θ , blanks denote +∞ T,blanks denote C

Note that d1− c2 > σ2,1 and d5− c6 > σ6,5; hence these σ ’s do not appear in Θ .
Since ci = 0 for equations 4 and 5, we need to examine only these two equations.

(The remaining f (ci+k)
i = 0 are QL since ci > 0 for i = 1,2,3,6.)

6 Guangning Tan, Nedialko S. Nedialkov and John D. Pryce

Consider f5 = (w′′′)2 +wµ−G = 0 with unknowns w′′′ and µ . We initialize

γ5(w) = 3, T5(u) = U and γ5(µ) = 0, T5(µ) = L

and propagate

code list evaluates γ5(v) T5(v) applying
v4 = Dif(w,3) = w′′′ 0 L R5
v5 = v2

4 = (w′′′)2 0 N R2
v6 = w∗µ = wµ 0 L R3
v7 = v5 + v6 = (w′′′)2 +wµ 0 N R3

f5 = v8 = v7−G = (w′′′)2 +wµ−G 0 N R4

Since T5(f5) = N, f5 is NQL. Hence this DAE is NQL.

6 Conclusion

We presented a simple method for quasilinearity analysis when solving a DAE by
stages determined from Pryce’s SA. Our method is implemented in the DAESA tool
[3] for SA of DAEs and the DAETS solver [2]. In DAESA, we also construct a block-
triangular form (BTF) of the DAE, and with this analysis, we determine the smallest
number of variables and their derivatives that need initial values for a consistent
initialization [3]. In DAETS, this method is used to select the appropriate solver
when solving up to stage zero.

When applied block-wise to a BTF, our method considers variables that occur
in positions outside diagonal blocks as constants. As a result, we need to set the
corresponding off-diagonal entries in Θ to +∞ and in T to C. The propagation rules
do not change.

The proof of correctness of our algorithm and a detailed description of how it
works in the case of BTFs will be presented in a future work.

References

1. Nedialkov, N.S., Pryce, J.D.: Solving differential-algebraic equations by Taylor series (II):
Computing the System Jacobian. BIT 47(1), 121–135 (2007)

2. Nedialkov, N.S., Pryce, J.D.: Solving differential-algebraic equations by Taylor series (III): The
DAETS code. JNAIAM 3(1–2), 61–80 (2008)

3. Nedialkov, N.S., Pryce, J.D., Tan, G.: DAESA — a Matlab tool for structural analysis of DAEs:
Software. ACM Transactions on Mathematical Software (2013). Accepted for publication

4. Pryce, J.D.: A simple structural analysis method for DAEs. BIT 41(2), 364–394 (2001)
5. Pryce, J.D., Nedialkov, N.S., Tan, G.: DAESA — a Matlab tool for structural analysis of DAEs:

Theory. ACM Transactions on Mathematical Software (2013). Accepted for publication

