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Abstract We present a simple method for quasilinearity (QL) analysis of differential-
algebraic equations (DAEs). It uses the sigma matrix and offsets computed by
Pryce’s structural analysis and determines if a DAE is QL in its leading derivatives.
Our method is suitable for an implementation through either operator overloading
or source code translation.

1 Introduction

We are interested in solving initial value problems in DAEs of the general form

fi( t, the x j and derivatives of them) = 0, i = 1, . . . ,n, (1)

where the x j(t), j = 1, . . . ,n are state variables, and t is the time variable.
Based on Pryce’s structural analysis (SA) [4], we solve (1) numerically using

Taylor series, as implemented in the DAETS solver [2]. On each integration step,
we compute Taylor coefficients for the solution up to some order, where we solve
systems of equations for these coefficients in stages. Up to stage zero, a system
can be linear or nonlinear in the variables being solved for, and after this stage, the
systems are always linear.
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We present a simple method for deciding if such a system is linear in the unknown
derivatives, respectively Taylor coefficients. We refer to such systems as quasilinear
(QL). If the unknowns appear nonlinearly, we have a non-quasilinear (NQL) system.
Such information is used to determine what solver to use and the minimum number
of variables and derivatives of them that need initial conditions; for details see [5].

Sect. 2 summarizes Pryce’s SA. Sect. 3 gives the definitions needed for our
method. It is described in Sect. 4, and illustrated on an example in Sect. 5. Con-
clusions are in Sect. 6.

2 Summary of Pryce’s SA

This SA [4] constructs for (1) an n×n signature matrix Σ = (σi j) such that

σi j =

{
the highest order of the derivative to which x j occurs in fi; or
−∞ if x j does not occur in fi .

A highest value transversal (HVT) is a set of n positions (i, j) with one entry in
each row and each column, such that the sum of these entries is maximized over
all transversals. From Σ , we find a HVT and equation and variable offsets c and d,
respectively, which are non-negative integer n-vectors satisfying

d j− ci ≥ σi j for all i, j with equality on an HVT .

When the SA succeeds [1, 4], using these offsets, we can determine structural index
(which is a bound for the differentiation index, and often they are the same), degrees
of freedom, and a solution scheme for computing derivatives of the solution.

They are computed in stages k = kd ,kd +1, . . ., where kd =−max j d j. Denote

xJk =
{

x
(d j+k)
j | d j + k ≥ 0

}
, xJ<k =

{
x(r)j | d j + k > 0

}
, and

fIk =
{

f (ci+k)
i | ci + k ≥ 0

}
.

At stage k, we solve a system of equations fIk(t,xJ<k ,xJk) = 0 for xJk , where xJ<k
are computed at earlier stages. A system at stage k = kd ,kd +1, . . . ,0 can be QL or
NQL, while for stages k > 0 the systems are always linear.

Example 1. We show below for the simple pendulum (PEND), an index-3 DAE, the
signature matrix and offsets. (The state variables are x(t), y(t), and λ (t), G is gravity,
and L is the length of the pendulum.) There are two HVTs, marked with • and ∗.
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0 = f1 = x′′+ xλ

0 = f2 = y′′+ yλ −G

0 = f3 = x2 + y2−L2

→ Σ =

x y λ ci
f1 2• 0∗ 0

f2 2∗ 0• 0
f3 0∗ 0• 2

d j 2 2 0

The equations for stages k =−2,−1,0 are

k fIk(t,xJ<k ,xJk) xJ<k xJk

−2 f3 = x2 + y2−L2 x,y NQL

−1 f ′3 = 2xx′+2yy′ x,y x′,y′ QL

f1 = x′′+ xλ

0 f2 = y′′+ yλ −G x,x′,y,y′ x′′, y′′, λ QL

f ′′3 = 2
(
xx′′+ x′2 + yy′′+ y′2

)
Obviously, at k =−2 we have a NQL problem, and then two QL problems.

3 Quasilinearity at stage k

Definition 1. The system
fIk(t,xJ<k ,xJk) = 0 (2)

is QL, if xJk appears linearly in it, and NQL otherwise.

Definition 2. A DAE is QL, if at stage k = 0, (2) is QL, and NQL otherwise.

Definition 3. Equation i at stage k is QL, if f (k+ci)
i = 0 is linear in the xJk occurring

in it, and NQL otherwise.

If ci + k > 0, f (k+ci)
i = 0 is always QL. For example, in PEND at stage k = 1,

f ′3 = 2xx′+2yy′ = 0 is QL in x′ and y′.
At stage k, consider equations i for which ci + k = 0. If each such fi = 0 is QL,

then (2) is QL; it is NQL if there is a NQL fi = 0; cf. PEND at stage 0.
Therefore, to determine quasilinearity at stage k, we need to check for QL only

the fi = 0 for which ci + k = 0.

4 Algorithm

For simplicity in our exposition, we consider the code list for evaluating the fi’s as
consisting of assignment, unary, and binary operators. This is the case when exe-



4 Guangning Tan, Nedialko S. Nedialkov and John D. Pryce

cuting the function for evaluating the DAE through operator overloading. Our algo-
rithm consists of initialization and propagation of offset and type data through the
code list as described below.

Initialization. We derive from Σ the n×n offset matrix Θ = (θi j) as

θi j =

{
σi j if σi j = d j− ci

+∞ otherwise ,

and derive from it the n×n type matrix T= (Ti j)

Ti j =


L (Linear) if θi j = 0
U (Undetermined) if 0 < θi j <+∞

C (Constant) if θi j =+∞ .

Then we associate with each x j an offset vector γ(x j) being the jth column of Θ ,
and a type vector T(x j) being the jth column of T.

Propagation. We propagate these vectors through the code list of the DAE ac-
cording to the following rules.

R1. If v =+u or v =−u, then

γ(w) = γ(v) and T(w) = T(v) .

R2. If u = g(v) is nonlinear, then

γ(u) = γ(v) and Ti(u) =

{
N (Nonlinear) if Ti(v) = L

Ti(v) otherwise .

R3. If w = g(u,v), then for all i = 1, . . .n,

γi(w) = min
{

γi(u),γi(v)
}

and

Ti(w) =

{
N if Ti(u) = Ti(v) = L & g nonlinear
max

{
Ti(u),Ti(v)

}
otherwise .

Here we use the ordering
C< U< L< N .

R4. If w = g(u,v), u is a constant or the time variable t, and v is not, then

γ(w) = γ(v) and T(w) = T(v) .

Similarly, when v is a constant or the time variable t, and u is not, then

γ(w) = γ(u) and T(w) = T(u) .
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R5. If v = dpu/dt p, then

γi(v) = γi(u)− p and Ti(v) =


L if γi(v) = 0
U if 0 < γi(v)<+∞

C if γi(v) = +∞ .

After executing the code list for an fi, using R1-R5, fi = 0 is QL at stage k =−ci if
Ti( fi) = L, and NQL if Ti( fi) = N.

5 Example
We illustrate the above method on the following index-7 DAE

0 = f1 = x′′+ xλ

0 = f2 = y′′+ yλ +(x′)3−G

0 = f3 = x2 + y2−L2

0 = f4 = u′′+uµ

0 = f5 = (w′′′)2 +wµ−G

0 = f6 = u2 +w2− (L+ cλ )2 +λ
′′

(3)

(state variables are x,y,λ ,u,v, and w) derived from a two-coupled pendula problem,
an index-5 DAE, with originally

f2 = y′′+ yλ −G, f5 = w′′+wµ−G, f6 = u2 +w2− (L+ cλ )2 .

We wish to determine if the DAE (3) is QL; that is, if (3) is QL at stage k = 0.
The corresponding matrices are

x y λ u w µ ci


f1 2 0 4
f2 1 2 0 4
f3 0 0 6
f4 2 0 0
f5 3 0 0
f6 2 0 0 2

d j 6 6 4 2 3 0

x y λ u w µ ci


2 0 4

2 0 4
0 0 6

2 0 0
3 0 0

2 0 2
d j 6 6 4 2 3 0

x y λ u w µ


U L

U L

L L

U L

U L

U L

Σ , blanks denote −∞ Θ , blanks denote +∞ T,blanks denote C

Note that d1− c2 > σ2,1 and d5− c6 > σ6,5; hence these σ ’s do not appear in Θ .
Since ci = 0 for equations 4 and 5, we need to examine only these two equations.

(The remaining f (ci+k)
i = 0 are QL since ci > 0 for i = 1,2,3,6.)
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Consider f5 = (w′′′)2 +wµ−G = 0 with unknowns w′′′ and µ . We initialize

γ5(w) = 3, T5(u) = U and γ5(µ) = 0, T5(µ) = L

and propagate

code list evaluates γ5(v) T5(v) applying
v4 = Dif(w,3) = w′′′ 0 L R5
v5 = v2

4 = (w′′′)2 0 N R2
v6 = w∗µ = wµ 0 L R3
v7 = v5 + v6 = (w′′′)2 +wµ 0 N R3

f5 = v8 = v7−G = (w′′′)2 +wµ−G 0 N R4

Since T5( f5) = N, f5 is NQL. Hence this DAE is NQL.

6 Conclusion

We presented a simple method for quasilinearity analysis when solving a DAE by
stages determined from Pryce’s SA. Our method is implemented in the DAESA tool
[3] for SA of DAEs and the DAETS solver [2]. In DAESA, we also construct a block-
triangular form (BTF) of the DAE, and with this analysis, we determine the smallest
number of variables and their derivatives that need initial values for a consistent
initialization [3]. In DAETS, this method is used to select the appropriate solver
when solving up to stage zero.

When applied block-wise to a BTF, our method considers variables that occur
in positions outside diagonal blocks as constants. As a result, we need to set the
corresponding off-diagonal entries in Θ to +∞ and in T to C. The propagation rules
do not change.

The proof of correctness of our algorithm and a detailed description of how it
works in the case of BTFs will be presented in a future work.
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