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Abstract.

This paper is one of a series underpinning the authors’ DAETS code for solving
DAE initial value problems by Taylor series expansion. First, building on the second
author’s structural analysis of DAEs (BIT 41 (2001) 364–394), it describes and justifies
the method used in DAETS to compute Taylor coefficients (TCs) using automatic
differentiation. The DAE may be fully implicit, nonlinear, and contain derivatives of
order higher than one. Algorithmic details are given.

Second, it proves that either the method succeeds in the sense of computing TCs of
the local solution, or one of a number of detectable error conditions occurs.

AMS subject classification: 34A09, 65L80, 65L05, 41A58.
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1 Introduction.

1.1 DAETS and the problem it handles.

The Taylor series expansion approach to ordinary differential equation (ODE)
initial value problems (IVPs) has a long pedigree. Pryce’s structural analysis
[28] shows how the Taylor approach may be extended to differential-algebraic
equations (DAEs). Advances in programming languages and automatic differen-
tiation (AD) tools imply the symbolic preprocessing involved in Taylor methods
no longer requires special-purpose packages or languages, and can be included
seamlessly when coding in a general-purpose language. The authors’ DAETS
code solves IVPs by this method and is written in standard C++. This paper is
one of a series on the theory underpinning DAETS.
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For suitable problems, especially at high accuracy, Taylor series ODE methods
can be orders of magnitude faster than traditional multistep or Runge–Kutta
methods. They are also the basis of current validated ODE solvers, which pro-
duce rigorous bounds on the numerical solution [16, 23, 24]. Both facts motivated
us in developing DAETS.

Two features mark out DAETS from most DAE codes. First, the differentia-
tion operator d/dt has equal status with +,× and other algebraic functions, so
that a system can be coded (in C++) in a form close to its natural mathematical
formulation1. Second, Pryce’s approach has no restriction on the DAE index.
Numerical results for one high-index problem are given in Section 7.

We consider a fully implicit DAE initial-value problem comprising n equations
fi = 0 in n dependent variables xj = xj(t), with t a scalar independent variable.
In DAETS, the fi can be arbitrary expressions built from the xj and t using
+,−,×,÷, other standard functions, and ′ = d/dt. We informally write

(1.1) fi( t, the xj and derivatives of them ) = 0, 1 ≤ i ≤ n.

This encompasses such expressions as f1 =
(
x2 sin((tx1)

′)
)′

, which written with
its arguments would be f1(t, x1, x

′
1, x

′′
1 , x2, x

′
2). The fi must be sufficiently

smooth, see Theorem 3.1. We assume for simplicity they are defined by straight-
line code without branches and loops — though DAETS allows these, provided
the structural analysis is independent of the control path taken.

In exact arithmetic the method implemented by DAETS succeeds, roughly
speaking, for any DAE whose sparsity structure correctly represents its math-
ematical structure: false in general, but true for many standard DAE forms,
see [28, Theorem 5.3]. We prove a complementary result: if a certain matrix is
nonsingular, the method has succeeded. Hence failure is detectable in practice.

The numerical results in Section 7 show DAETS can be very accurate and
efficient, and particularly suitable for problems that are of too high an index for
existing methods and solvers.

1.2 Background.

Taylor series solution of ODEs. Automatic computation of Taylor series to
solve ODE IVPs has been known since the 1950’s. Moore [22, pp. 107–130]
presents an approach for efficient generation of Taylor coefficients (TCs). Bar-
ton, Willers, and Zahar [3] give one of the first such methods for IVPs for ODEs.
Rall [29] details AD algorithms, generation of TCs, and application to ODEs.
Griewank [12, chapter 10] describes automatic computation of TCs and solv-
ing IVPs for ODEs, and discusses briefly the extension to a DAE of the form
F (z(t), z′(t)) = 0.

Packages for generating TCs include TADIFF [4], FADBAD++ [30], and
ADOL-C [13]. Established codes for generating TCs, and solving ODEs thereby,

1We thank Ole Stauning for augmenting his FADBAD++ [30] tool with a d/dt opera-
tor. Without it, our approach is harder to implement. Packages such as ADOL-C [13] and
TAYLOR [18] do not provide a d/dt.
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include COSY [5], ATOMFT [7], TAYLOR [18] and Taylor Center [10]. All these
in effect use a special-purpose language to formulate the ODE.

DAE structural analysis. The structural analysis of Pantelides [26] is essen-
tially equivalent to Pryce’s, but applies only to DAEs containing at most first
derivatives, that is f(t, x, x′) = 0. Campbell’s derivative array equation theory
[6] is more widely applicable but more complex, and harder to apply automati-
cally to program code. More detailed comparisons are given in [28].

Taylor series solution of DAEs. Chang and Corliss [7] show how to generate
Taylor series for the simple pendulum DAE (2.7), but in an ad hoc way. Corliss
and Lodwick [8] extend this to validated solution of (2.7).

Pryce [27] outlines a prototype implementation of the present approach. A
Prolog preprocessor converts an algebraic description of the DAE into a code
list, which is read and interpreted by a Matlab code that solves the DAE.

Hoefkens [14] uses Pryce’s structural analysis to convert the DAE to an ODE,
which is solved using Taylor series and the COSY package [5].

Barrio et al. [1, 2] apply Taylor methods to very high accuracy solution of
dynamical system ODEs, and to DAEs using Pryce’s approach. The implemen-
tation combines the Mathematica symbolic system and Fortran 77.

We believe the present paper is the first systematic description of methods for
computing TCs for a general DAE — high-index, high-order, fully-implicit; and
that the “nonsingularity implies validity” results of Section 5.2 are new.

1.3 Structure of this paper.

Section 2 summarizes the main steps of Pryce’s structural analysis. Section 4
shows how TCs for the equations fi can be generated, and how they are organized
to find those of the xj . It explains what a consistent point is, and describes
the general method for computing TCs for a DAE. Section 3 derives needed
smoothness results. Section 5 shows that hidden cancellations in the expressions
(1.1) defining the DAE cannot cause the method to compute a solution when
none exists. This is done in two stages: Subsection 5.1 investigates the effect of
“non-canonical problem offsets” on the process of computing TCs; Subsection
5.2 shows cancellations have the effect of producing non-canonical offsets. The
overall algorithm is given in Section 6. Section 7 gives numerical results from
DAETS. Conclusions and notes on future work are in the final Section 8.

2 Outline of Pryce’s structural analysis.

We present the main steps of Pryce’s structural analysis [28].
The following definitions are needed. A transversal T of an n × n matrix

(σij) is a set of n positions in the matrix with one entry in each row and each
column. That is, T is a set {(1, j1), (2, j2), . . . , (n, jn)} where (j1, . . . , jn) are a
permutation of (1, . . . , n). The value of T is ValT =

∑
(i,j)∈T σij .

Given a DAE in the form of (1.1), we perform the following steps.
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1. Form the n × n signature matrix Σ = (σij), where

σij =





order of the derivative to which the jth variable xj

occurs in the ith equation fi; or

−∞ if xj does not occur in fi.

2. Find a highest value transversal (HVT), which is a transversal T that makes
Val T as large as possible. The value of a HVT is also, by definition, the
value of the signature matrix, written Val Σ.

The value of any transversal, and of Σ, is either an integer or −∞. The DAE
is structurally regular if ValΣ is finite: that is, if there exists at least one
transversal all of whose σij are finite. Otherwise the DAE is structurally
ill-posed — there is probably some error in problem formulation.

3. Find n-dimensional integer vectors c and d, with all ci ≥ 0, that satisfy

dj − ci ≥ σij for all i, j = 1, . . . , n and(2.1)

dj − ci = σij for all (i, j) ∈ T .(2.2)

By [28, Lemma 3.3], if a transversal T and vectors c,d are found such that
(2.1) and (2.2) hold, then necessarily T is a HVT. Summing (2.2) over T
gives an alternative formula for Val Σ:

n∑

j=1

dj −
n∑

i=1

ci = ValT = Val Σ.

From this follows for any c and d:

If (2.1, 2.2) hold for some HVT, then (2.2) holds for any HVT.(2.3)

We refer to c and d as the offsets of the problem. They are never unique.
As discussed later, it is advantageous to choose the smallest or canonical
offsets, smallest being in the sense of a ≤ b if ai ≤ bi for each i. Our
method works correctly, however, when c and d are not canonical.

Step 2 is a Linear Assignment Problem (LAP), a form of a linear program-
ming problem. Step 3 defines its dual. The two formulae for ValΣ instance
the fact that primal and dual have the same optimal value.

4. Form the n × n System Jacobian matrix

J =
∂
(
f

(c1)
1 , . . . , f

(cn)
n

)

∂
(
x

(d1)
1 , . . . , x

(dn)
n

) .(2.4)

By results in [28], (2.4) has the equivalent reformulations:

Jij =
∂fi

∂x
(dj−ci)
j

=






∂fi

∂x
(σij)
j

if dj − ci = σij and

0 otherwise.

(2.5)
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5. Seek values for the xj and for appropriate derivatives, consistent with the
DAE in the sense of Section 4.4, and at which J is nonsingular. If such
values are found, they define a point through which there is locally a unique
solution of the DAE. In this case we say the method “succeeds”.

When the method succeeds:

• Val Σ equals the number of degrees of freedom (DOF) of the DAE, that is
the number of independent initial conditions required.

• An upper bound for the differentiation index νd, see [6], of the DAE is
given by the Taylor index

(2.6) νT = max
i

ci +

{
1 if some dj is zero,
0 otherwise.

In many cases, νT = νd.

Algorithms for steps 1 and 4 are discussed in the companion paper [25]. Steps 2
and 3 can be carried out by solving a suitable LAP as covered in [28] and briefly
in Section 6. Step 5, the main topic of this paper, is covered in Section 4.

Example 2.1. Throughout this paper, we give examples based on the simple
pendulum, a DAE of differentiation-index 3. Though this system is small, solving
it with our method displays almost all the algorithmic features. It is:

0 = f = x′′ + xλ

0 = g = y′′ + yλ − G

0 = h = x2 + y2 − L2.

(2.7)

Here gravity G and length L of pendulum are constants, and the dependent
variables are the coordinates x(t), y(t) and the Lagrange multiplier λ(t).

A signature matrix Σ will be shown by a “tableau”, which annotates it with
the offsets ci, dj and the names of the functions and variables, and marks the
positions of a HVT. For (2.7), there are two HVTs, marked • and ◦ in the tableau
below. The canonical offsets are c = (0, 0, 2) and d = (2, 2, 0):

x y λ ci[ ]
f 2• −∞ 0◦ 0

g −∞ 2◦ 0• 0

h 0◦ 0• −∞ 2

dj 2 2 0

For this system, (2.5) then gives the system Jacobian

J =



∂f/∂x′′ 0 ∂f/∂λ

0 ∂g/∂y′′ ∂g/∂λ

∂h/∂x ∂h/∂y 0


 =




1 0 x
0 1 y
2x 2y 0


 .(2.8)

From (2.6) the Taylor index is 3, agreeing with the differentiation index.
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3 A needed smoothness result.

If Taylor coefficients of a solution x(t) to (1.1) exist to some order — that
is, if x(t) is sufficiently smooth — the methods of Section 4 can compute them.
However, DAEs of form (1.1) are not covered by standard theory, so that a

priori there is no guarantee that solutions exist, let alone are smooth. Existence
is proved by [28, Theorem 4.2] — ExT for short. This section extends ExT to a
smoothness result.

Let Y denote the vector of derivatives x
(dj)
j (j = 1, . . . , n) and X the vector

formed by all lower derivatives x
(l)
j (0 ≤ l < dj , 1 ≤ j ≤ n), in some standard

sequence that does not matter for the present purpose. The equations f
(ci)
i = 0,

i = 1, . . . , n, form a vector system

(3.1) F(t,X,Y) = 0,

where the x
(l)
j in X are regarded as independent algebraic variables.2

ExT shows, using the Implicit Function Theorem (ImFT), that near a point of
(t,X,Y) space where J is nonsingular, (3.1) defines a locally unique functional
dependence Y = φ(t,X). That is,

(3.2) x
(dj)
j = φj(t,X) for j = 1, . . . , n.

The xj for which dj = 0 (“algebraic” variables) do not appear on the right-hand
sides.

Temporarily writing x
(l)
j as xj,l, one can recast (3.2) as a standard first-order

ODE with
(∑

j dj

)
dependent variables xj,l for 0 ≤ l < dj , j = 1, . . . , n. Namely

it is the system formed by concatenating, for j such that dj > 0, the equations

x′
j,0 = xj,1,

...

x′
j,dj−2 = xj,dj−1,

x′
j,dj−1 = φj(t,X).

(3.3)

Once this is solved, each algebraic variable is found explicitly from its corre-
sponding equation (3.2), which for such variables has the form xj = φj(t,X).

If the system (3.1) is linear in the elements x
(dj)
j of Y, it takes the form

JY = G, where J and G depend only on (t,X). This holds when consistent
points can live in (t,X) space, rather than (t,X,Y) space — see Section 4.4 and
Lemma 4.1.

ExT states that the solutions of the DAE (1.1) are just the solutions of ODE
(3.3) that pass through a consistent point; more precisely, a solution of either
can be reconstructed from a solution of the other in an obvious way. This leads
to the main result of this Section:

2In the notation of Section 4, X is xJ0
, Y is xJ≤0

, and (3.1) is the system fI0 = 0.
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Theorem 3.1. Let x(t) be a solution of (1.1). Let (t∗,X∗,Y∗) (or (t∗,X∗) in
the linear case above) be the consistent point comprising the relevant derivatives
of x(t) evaluated at t = t∗. Suppose J is nonsingular at this point and each
function fi in (1.1) has (N+ci) continuous derivatives in a neighbourhood of
this point, where N ≥ 1.

Then the jth component xj(t) has (N+dj) continuous derivatives in a neigh-
bourhood of t∗. Hence, the algorithm for computing TCs can be carried out up
to stage k = N .

Proof. That the n functions φj in (3.2) exist, comes from applying the ImFT

to the system formed from the n functions f
(ci)
i , with the x

(dj)
j as the unknowns.

From its definition, f
(ci)
i is a sum of terms each of which is

(a partial derivative of fi of order at most ci)

× (a product of zero or more x
(l)
j ’s).

Hence f
(ci)
i has N continuous derivatives. By a standard corollary of the ImFT,

this is true also of the functions φj , hence of each right-hand side in (3.3).
By a standard ODE result, this implies each component of any solution of (3.3)

has N+1 continuous derivatives. In particular, each xj,dj−1(t) = x
(dj−1)
j (t) does

so, whence each differential variable xj(t) has N+dj continuous derivatives. It
is easy to extend this to the algebraic variables, which completes the proof.

Check. This gives the expected result when the DAE is a first-order explicit
ODE system x′ = g(t,x). In this case, all ci = 0 and all dj = 1. Then,
Theorem 3.1 says, correctly, that if g is CN then all solutions x(t) are CN+1.

Example 3.1. For the pendulum example, X is (x, y, x′, y′), Y is (x′′, y′′, λ).
We solve (3.1) — which in this case is linear in Y — to obtain x′′, y′′, λ as
functions X, Y, Λ of x, y, x′, y′. Renaming the latter as x0(t), y0(t), x1(t), y1(t)
gives the ODE (3.3) as

x′
0 = x1,

x′
1 = X(x0, y0, x1, y1),

y′
0 = y1,

y′
1 = Y (x0, y0, x1, y1).

From a solution of this, one can then obtain λ0 = λ0(t) = Λ(x0, y0, x1, y1).

4 How the method works.

We denote the pth TC of a function u of a real variable t at a point t∗ by

(u)p = u(p)(t∗)/p !

The overall solution process goes in steps over the t range like a typical ODE
solver. TCs (scaled by a power of the current step size to eliminate over- or
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under-flow problems) are computed to a chosen order at the current t∗ . Sum-
ming Taylor series with a stepsize h yields approximate values of solution com-
ponents at the next point t = t∗ + h, and this process repeats.

Compare a Taylor method for an explicit ODE. There, the TCs are evaluated
in batches of n at a time by the AD methods of the next subsection: the given
initial values specify the zero-order TCs (xj)0, then one computes all the (xj)1,
then all the (xj)2, and so on. By contrast for the implicit DAE (1.1), we must
solve for the (xj)l by regarding the TCs (fi)l as algebraic functions of them,
equating the latter to zero, and using a numerical root-finding method. The role
of the offsets ci, dj is to organize this process, as described in Section 4.2.

When solving an ODE, the solution computed at the previous step is used
unchanged as the initial point for the current step. For a DAE however, this
point is usually inconsistent in the sense that it does not satisfy the algebraic
constraints. The solution process takes this point as an initial guess and (pro-
vided it converges) produces a consistent point. In effect it projects the initial
guess on to the consistent manifold at the start of each step.

Subsection 4.1 shows how expressions for evaluating TCs can be generated.
Subsection 4.2 shows how the solution process breaks into stages. Subsection 4.3
defines a compact notation and displays the block-triangular structure of the
equations. Subsection 4.4 defines the notion of solutions of a DAE living in
a certain space, and of consistent point. Subsection 4.5 shows how the block-
triangular structure is exploited in a numerical method. Each subsection is
illustrated by the simple pendulum example.

The companion paper [25] shows how to generate automatically the Jacobians
that are used to solve the equations by a Newton-type method.

4.1 Generating expressions for Taylor coefficients of the equations.

An expression for evaluating (fi)p can be constructed by applying well-known
techniques for computing TCs (see the references in Section 1.2). For instance,
if sufficient TCs of two functions u and v are known, we can compute the pth
TCs for u + cv, where c is a constant, u · v, u/v and the dth derivative of u by

(u + cv)p = (u)p + c · (v)p,(4.1)

(u · v)p =

p∑

r=0

(u)r(v)p−r,(4.2)

(u/v)p =
1

(v)0

(
(u)p −

p−1∑

r=0

(v)p−r(u/v)r

)
, (v)0 6= 0, and(4.3)

(
u(d)

)
p

= (p + 1)(p + 2) · · · (p + d) · (u)p+d.(4.4)

Similar formulas can be derived for the standard functions [12].

Example 4.1. For the pendulum example (2.7), the TCs will be written
without parentheses for brevity: xp rather than (x)p, etc. Applying (4.1), (4.2),
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and (4.4) to (2.7), we obtain for the f equation

fp = (x′′)p + (xλ)p = (p + 1)(p + 2)xp+2 +

p∑

r=0

xrλp−r ,

and similarly for the g and h equations. The first three coefficients are:

p 0 1 2

fp 1·2x2 + x0λ0, 2·3x3 + x0λ1 + x1λ0, 3·4x4 + x0λ2 + x1λ1 + x2λ0

gp 1·2y2 + y0λ0 − G, 2·3y3 + y0λ1 + y1λ0, 3·4y4 + y0λ2 + y1λ1 + y2λ0

hp x2
0 + y2

0 − L2, 2x0x1 + 2y0y1, 2x0x2 + x2
1 + 2y0y2 + y2

1

Note that for a constant c such as G and L2, (c)0 = c and (c)p = 0 for p > 0.

4.2 The stages of solving for Taylor coefficients of the solution.

It is not obvious by inspection how the various equations obtained by differ-
entiating the original DAE equations fi can be organized to solve for the TCs of
the state variables xj . This is made clear by the offsets ci and dj , which tell us
that the computation forms a sequence of stages indexed by integer k. At stage
k we solve a system of equations containing

(fi)k+ci
= 0 for all i such that k + ci ≥ 0(4.5)

to determine values for

(xj)k+dj
for all j such that k + dj ≥ 0.(4.6)

All previously computed (xj)l in any equation (4.5) are to be treated as constants.
Clearly in the above, each (fi)l (i = 1, . . . , n; l = 0, 1, . . .) is used exactly once

and each (xj)l (j = 1, . . . , n; l = 0, 1, . . .) is solved for exactly once. Let

kc = −max
i

ci and kd = −max
j

dj .

Then the set of equations is empty for all k < kc, and the set of unknowns
is empty for all k < kd. It follows from the definition (2.1, 2.2) of the offsets
that kd ≤ kc ≤ 0. Hence the process effectively starts at stage k = kd and is
performed for stages k = kd, kd+1, . . ..

Except when (1.1) is purely algebraic with no derivatives at all, one always
has kd < 0. The algebraic constraints, and on the first integration step the
initial conditions, are applied during stages k < 0. It is after stage k = 0 that
a consistent point has been computed, so this is a good time to output solution
values to the user.

Suppose that each function fi in (1.1) has at least (N + ci) continuous deriva-
tives, where N ≥ 1, in a neighbourhood of a point (t∗,x∗) at which J is nonsingu-
lar. Theorem 3.1 shows that, for any solution x(t) of (1.1) in a neighbourhood
of t = t∗, and with x(t∗) sufficiently near x∗, the jth component of x(t) has
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(N + dj) continuous derivatives in a neighbourhood of t∗. Hence one can find
TCs up to at least stage k = N . If the fi are C∞, one can find indefinitely many
TCs.

Example 4.2. For the pendulum, (4.5, 4.6) give the following recipe:

Stage uses equations to obtain
k = −2 0 = h0 x0, y0

k = −1 0 = h1 x1, y1

k = 0 0 = f0, g0, h2 x2, y2, λ0

k = 1 0 = f1, g1, h3 x3, y3, λ1

. . . . . . . . .

Thus at stage k = kd = −2, we find x0, y0 that satisfy

0 = h0 = x2
0 + y2

0 − L2.(4.7)

At stage k = −1, we find x1, y1 that satisfy

0 = h1 = 2x0x1 + 2y0y1(4.8)

taking the previously computed x0, y0 as known. At stage k = 0, we find
x2, y2, λ0 that satisfy

0 = f0 = 1 · 2x2 + x0λ0

0 = g0 = 1 · 2y2 + y0λ0 − G

0 = h2 = 2x0x2 + x2
1 + 2y0y2 + y2

1

taking the previously computed x0, y0, x1, y1 as known. This forms the linear
system

0 =




2 0 x0

0 2 y0

2x0 2y0 0








x2

y2

λ0



+




0

−G
x2

1 + y2
1



 = A0ξ + b, say.(4.9)

Matrix A0 is a diagonally scaled version of the pendulum’s System Jacobian J,
given in (2.8). Namely

A0 = diag(1, 1, 2)−1 J diag(2, 2, 1).

Now J is nonsingular since its determinant is −2(x0
2 + y0

2) = −2L2 6= 0. Hence
(4.9) has a unique solution.

In general, for every stage k ≥ 0, (4.5) and (4.6) tell us to find xk+2, yk+2, λk

satisfying fk, gk, hk+2 = 0, subject to all the already found values. The resulting
system is linear with a matrix Ak that is a scaled J:

Ak =



(k+1)(k+2) 0 x0

0 (k+1)(k+2) y0

2x0 2y0 0




= diag
(
k!, k!, (k+2)!

)−1
J diag

(
(k+2)!, (k+2)!, k!

)
.

Hence Ak is nonsingular, and we can solve for
(
xk+2, yk+2, λk

)T
.
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4.3 Structure of the equations for Taylor coefficients of the solution.

We start with a compact notation for the equations and the unknowns in (4.5,
4.6). Let I and J be index sets labeling the complete set of (fi)l and (xj)l

respectively. For the general case (1.1), we take both I and J to be the set of
pairs {(i, l) | i = 1, . . . , n; l = 0, 1, . . .}.

If I is some (in practice finite) subset of I, define fI to be the vector function
whose components are (fi)l as (i, l) ranges over I — in some standard sequence
that does not matter at present.

Similarly, if x is an arbitrary numeric vector indexed over J , and J some
subset of J , define xJ to be the sub-vector of x whose components are (xj)l as
(j, l) ranges over J .

The equation system (4.5) to be solved at stage k can then be written as

fIk
= 0 where Ik =

{
(i, l) | 0 ≤ l = k + ci

}
=
{
(i, l) ∈ I | l = k + ci

}

whose unknowns are the vector

xJk
where Jk =

{
(j, l) | 0 ≤ l = k + dj

}
=
{
(j, l) ∈ J | l = k + dj

}
.

In general fIk
is also a function of the xJκ

for all κ < k. That is, the complete
set of equations and unknowns is organized into the block triangular structure






0 = fIkd

(
t,xJkd

)
,

0 = fIkd+1

(
t,xJkd

,xJkd+1

)
,

...
0 = fIk

(
t,xJkd

,xJkd+1
, . . . ,xJk

)
,

...

(4.10)

To simplify discussing the root-finding process, let Fk denote fIk
regarded

purely as a function of the stage-k unknowns. That is, for k = kd, kd + 1, . . . we
have to solve

0 = Fk(xJk
)

=def fIk

(
t,xJkd

,xJkd+1
, . . . ,xJk

)
.

(4.11)

When we wish to speak of the previously-found xJκ
it is convenient to pack them

up into one vector xJ<k
: this denotes

(
xJkd

,xJkd+1
, . . . ,xJk−1

)
.

We also write xJ≤k
= (xJ<k

,xJk
), so fIk

with its arguments can be written

fIk

(
t,xJ<k

,xJk

)
or fIk

(
t,xJ≤k

)
.

For each k, let mk and nk be the number of equations and unknowns respec-
tively in (4.11). Thus by (4.5, 4.6),

mk is the number of i for which k + ci ≥ 0; and

nk is the number of j for which k + dj ≥ 0.
(4.12)
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It is proved in [28] that, first, the system Fk = 0 is nonlinear in general for
k ≤ 0, but linear for k > 0. Second, by a counting argument using (2.1, 2.2),

mk ≤ nk for all k.

Thus Fk = 0 is square (mk = nk) or underdetermined (mk < nk) but never
overdetermined. It is clear from (4.12) that mk [resp. nk] increases from 0 when
k < kc [resp. k < kd] to n when k ≥ 0, so only the negative stages k = kd, . . . ,−1
can have mk 6= nk.

Also from [28], the total “amount of underdetermination”,

D =
−1∑

k=kd

(nk − mk)

is the number of DOF of the system, also given by ValΣ, see Section 2.
For all k ≥ 0, the Jacobian F′

k of Fk equals the system Jacobian J up to
diagonal scaling (that is, F′

k = D1JD2 where D1, D2 are nonsingular diagonal
matrices). Thus F′

k is nonsingular if J is nonsingular at the current point.
Finally, for k < 0, F′

k, again up to scaling, is the result of deleting those rows
i and columns j of J for which k+ci < 0 and k+dj < 0, respectively. Moreover,
F′

k is of full row-rank if J is nonsingular.

Example 4.3. The pendulum, with c = (0, 0, 2) and d = (2, 2, 0), has mk, nk

as follows:

k −2 −1 ≥ 0
mk 1 1 3
nk 2 2 3

Thus the k = −2 system (4.7) and the k = −1 system (4.8) each introduce one
DOF, as we expect, since one position and one velocity condition are required
to specify the motion. They both have the same Jacobian, obtained by deleting
the λ column and f, g rows of J, namely

F′
−2 = F′

−1 = (2x0, 2y0).

4.4 The consistent manifold.

For a DAE, not all initial conditions (ICs) are compatible with a solution. An
IC that is so is called consistent. For a DAE system as general as (1.1) it is not
obvious what collection of values of the xj and their derivatives makes up a valid
IC. This subsection makes the notion precise.

A useful comparison is with an explicit ODE, not of the first-order form x′ =
f(t,x) but one with higher orders on the left side, for instance

u′′ = p(t, u, v),

v′′′ = q(t, u, v),
(4.13)
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with scalar u, v. Then an IC consists of given values for u, u′, v, v′, v′′ at a given
t. We say solutions of (4.13) live in in (t, u, u′, v, v′, v′′) space in the sense that
there is a unique solution through each point of this space (assuming the ODE
is defined there, is smooth, etc.). Solutions do not live in (t, u, u′, v) space, say,
because it does not give enough information to specify solutions uniquely.

The following definition applies to points at which our method applies, namely,
points that give a nonsingular system Jacobian.

Definition 4.1. Let J be a set of indices
(
(j1, l1), (j2, l2), . . .

)
in J . Thus

xJ =
(
(xj1 )l1 , (xj2)l2 , . . .

)
represents a list of TCs of the variables. The variable

t should be added if the DAE is non-autonomous: that is, if t appears explicitly
in it.

Solutions of the DAE live in xJ space, or (t,xJ) space in the non-autonomous
case, if there is at most one solution having specified values of these TCs at t = 0,
or at a specified t in the non-autonomous case.

If solutions live in such a space, a point of the space for which a solution of
the DAE exists is a (globally) consistent point. The set of all consistent points
is the consistent manifold M for this space.

The interesting J ’s when using our method are J≤k’s as defined above. Namely,
the solution is uniquely determined once (4.10) has been solved as far as k = 0.
This is clear from the fact that for k > 0, the equations Fk = 0 are square, linear
and nonsingular (it is proved directly in [28]). This is equivalent to saying that
any vector xJ≤0

that satisfies Fk = 0 for k ≤ 0 is consistent, and that solutions
live in xJ≤0

, or (t,xJ≤0
), space.

A very common situation is that the DAE is linear in the derivatives that

appear in xJ0
, that is the x

(dj)
j . The following is easily proved:

Lemma 4.1. System F0 = 0 is linear in the x
(dj)
j iff every fi, whose offset ci

is zero, is linear in the x
(dj)
j .

In this case, solutions actually live in xJ<0
, or (t,xJ<0

), space. This is be-
cause then F0 = 0 is also square, linear and nonsingular, so that the solution is
uniquely determined by the stages up to k = −1. This situation is detectable
during preprocessing and might be used to generate more efficient code, for both
operator overloading and source translation implementations. Currently DAETS
does not detect such a situation.

Example 4.4. (2.7) illustrates the linear case mentioned above. It is linear
in the highest derivatives, so already after stages −2,−1, a unique solution is
specified. Thus solutions can live in xJ<0

space, that is in (x, y, x′, y′) space.
If we change the first equation to 0 = (x′′)2−(xλ)2, which does not change the

signature matrix or offsets, the DAE is now nonlinear in the highest derivatives.
Then for a given solution to stages k = −2,−1, there is usually more than
one solution to stage k = 0. Solutions must now live in xJ≤0

space, namely
(x, y, x′, y′, x′′, y′′, λ) space.

For the pendulum, if living in (x, y, x′, y′) space, M is the solution set of
(0 = h = x2 + y2 − L2, 0 = h′ = 2xx′ + 2yy′), a 2-dimensional manifold in
R

4. If we choose to make the problem live in (x, y, x′, y′, x′′, y′′, λ) space, M is
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the solution set of 0 = (h, h′, f, g, h′′) — now in R
7, but still 2-dimensional and

easily seen to be equivalent to the previous M.

4.5 Numerics of solving for Taylor coefficients of the solution.

At each integration time-step, input data is available in the form of initial
“guesses” to solution components. The first step is different from subsequent
steps so we discuss them separately. In either case, the guesses are organized as
approximations xa

Jk
to the solution of Fk(xJk

) = 0 in (4.11) for relevant k. At
present, DAETS uses the full generality of the IPOPT [31] optimization package
in both cases, but it should be possible to perform the general step robustly with
a simpler algorithm.

4.5.1 The general step.

Here the guesses are values from advancing the previous step by summing
relevant Taylor series. The error control selects a stepsize h to keep the estimated
truncation error within a tolerance.

We try to find the closest point (in an appropriate Euclidean norm related to
the error estimate criterion) x∗

Jk
to xa

Jk
such that Fk(x∗

Jk
) = 0 in (4.11) holds.

Thus we solve a sequence of constrained optimization problems

min
x

‖x − xa
Jk
‖2 subject to Fk(x) = 0,(4.14)

to find x∗
Jk

for k = kd, kd + 1, . . . , 0. The concatenation of these x∗
Jk

is a point
x∗ on M in xJ≤0

space that we may call “stage-wise closest” to the guess.

By the remarks in Subsection 4.3, the Jacobians F′
k have full row rank. If

the error control was successful, the xa
Jk

form a point xa sufficiently close to
the consistent manifold M that each problem (4.14) has a unique solution, and
convergence is rapid.

Subsequent stages are square and linear, all with a matrix equal to the last
value of J found (at the end of process (4.14)) up to diagonal scaling. Thus they
can all be solved with a single LU factorization.

In the common case that the stage 0 equations are linear (but (1.1) as a whole
need not be), M can live in xJ<0

space instead, and one can save computation
by only running (4.14) as far as k = −1.

If any Fk for k ≤ 0 is linear — in particular in the important case when
(1.1) is entirely linear — (4.14) can be solved more simply, as the minimum-
norm solution of an underdetermined linear system if mk < nk, or a nonsingular
linear system if mk = nk.

Currently DAETS does not have mechanisms to detect such linear cases.

4.5.2 The first step.

At the initial step, the task can also be written in the form of (4.14). If a good
guess of a consistent point is available this process will find it. If not, finding a
consistent point can be a difficult numerical problem, but our experience is that
good optimization software, such as IPOPT, usually succeeds.
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In practice the user may want to add extra constraints besides those in (4.14).
This may involve fixing some initial values; or imposing further equations on
the variables; or imposing upper/lower bounds on variables. For instance in
the pendulum problem one might specify the angular position by an equation
c1x + c2y = 0, and the velocity by an equation (x′)2 + (y′)2 = c3 together with
a bound such as y′ ≥ 0. DAETS does not yet have such a feature but using a
standard optimizing code makes it easy to add.

Example 4.5. For the pendulum, for k = −2, (4.14) is the nonlinear problem

to find the closest point
(
x0, y0

)T
to
(
x0

a, y0
a
)T

that satisfies 0 = h0 = x2
0+y2

0−L2.

For k = −1, it is the linear problem to find the closest
(
x1, y1

)T
to
(
x1

a, y1
a
)T

that satisfies 0 = h1 = 2x0x1 + 2y0y1, with
(
x0, y0

)T
known.

5 The method cannot be deceived.

This section shows that an event that looks potentially fatal to the method
is in fact not a problem. Namely, the system Jacobian J is computed from
(2.4) using the offsets, which come from the signature matrix Σ, which in turn
comes from analysing the program code that defines the DAE functions fi — the
DAE code, built from the input xj as described in Subsection 1.1 from algebraic
functions and ′ = d/dt.

Suppose the code contains something like w = (x′
1 +x1)−x′

1 or, less obviously,
w = (x1x2)

′ − x′
1x2. In either case, “formally” computing the order of highest

derivative of x1 in w yields 1, not the correct value 0. By “formal” is meant:

• If a variable w in the code is a purely algebraic function of variables u, v, . . .,
then the order of highest derivative of xj occurring in w is taken to be the
maximum of the corresponding orders in u, v, . . .;

• If w = u′, then the order of highest derivative of xj occurring in w is taken
to be one more than that in u.

When such hidden cancellation occurs, the computed Σ̃ may not be the true Σ.
No clever symbolic manipulation can overcome the hidden cancellation problem,
because the task of determining whether some expression is exactly zero is known
to be undecidable in any algebra closed under the basic arithmetic operations
together with the exponential function.

We show that this essentially does not matter and the approach of deriving Σ
formally gives a robust algorithm. As the above examples suggest (and is proved

in [25]) any error will be an overestimation, that is Σ̃ ≥ Σ elementwise.
For the rest of the section it is assumed that

• The computed signature matrix Σ̃ satisfies Σ̃ ≥ Σ.

• The numerical algorithm for J computes (2.4) exactly up to roundoff error.

Under these assumptions we show that the computed J either is nonsingular,
and the method is using valid, but non-canonical, offsets for the true Σ; or is
structurally singular, so that the method fails in a way that can be detected.
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Thus, symbolic simplification may help, converting a structurally singular case
to a“success” case. But it is not a prerequisite of making the method robust.

5.1 Valid offsets and corresponding J.

It was not pointed out in [28], but is needed here, that [28, Theorem 4.2]
and other results used here do not require the offsets to be canonical. That is,
they must satisfy the inequality dj − ci ≥ σij with equality on some transversal;
but they need not be the minimal offsets subject to ci ≥ 0, guaranteed by [28,
Theorem 3.6] and computed by [28, Algorithm 3.1].

Therefore, Theorem 3.1 holds whether the offsets are canonical or not, provided
only that the J defined by (2.4) is nonsingular. It is possible to have different
offsets for the same DAE system. Their effect is to produce the same TCs, but in
a different sequence. This leads to the following, where the term “offset vector”
is used to refer to the complete list of values (c,d) = (c1, . . . , cn, d1, . . . , dn)

Definition 5.1. An offset vector for a given signature matrix Σ is called
valid if and only if

(i) dj − ci ≥ σij , (i, j = 1, . . . , n).

(ii) Equality holds on some and, by (2.3), on every HVT.

(iii) mini ci = 0. (This can be assumed without loss, because adding a constant
to all the ci and dj does not essentially change the solution process.)

Also define the essential sparsity pattern Sess of Σ to be the union of the HVTs
of Σ: that is, the set of all (i, j) positions that lie on any HVT.

The situation is summarized by the following result, which underlies the im-
portant Theorem 5.2.

Theorem 5.1. Suppose one offset vector for the signature matrix of a DAE
system (1.1) gives a nonsingular J as defined by (2.5) at some consistent point.
Then all valid offset vectors give a nonsingular J there, and thus define a solution
scheme for the TCs. All resulting J are equal on Sess, and all have the same
value of the determinant detJ.

Proof. Equality on Sess comes at once from (2.5) and (2.3).
The determinant of J can be written as the sum of all products prod(T ) =

sign(T )
∏

(i,j)∈T Jij , taken over all n! transversals T , where sign(T ) is ±1 accord-
ing as T , regarded as a permutation, is even or odd. Consider any J and any
transversal T . Summing the inequalities dj − ci ≥ σij over (i, j) ∈ T shows that
if T is not a HVT then σij must be strictly less than dj − ci for some (i, j) ∈ T .
By the definition of J, its (i, j) entry is therefore zero, and the product prod(T )
corresponding to T is also zero.

Thus, only prod(T )’s belonging to HVTs contribute to detJ — that is, detJ
depends only on those entries of J that lie within Sess. But all J are equal on
Sess, whence they all have the same value of detJ.

Therefore, if J is nonsingular for one valid offset vector, it is nonsingular for all.
From remarks preceding Theorem 5.1, this implies that all valid offset vectors
specify a solution scheme for the TCs. This completes the proof.
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Example 5.1. The following examples illustrate how much freedom there
may be in choosing the offsets, how this affects sequencing the computation of
TCs, and how J varies according to the offsets chosen.

Consider some variants on an ODE system with n = 2. The tableau will be
shown, and to its right some equations that could give rise to it. Version 1 is

(5.1)

x y ci Possible realization( )
f 1• 1 0 0 = f(t, x, y, x′, y′)
g 1 1• 0 0 = g(t, x, y, x′, y′)

dj 1 1

The offsets shown, namely c = (0, 0), d = (1, 1), are clearly the only valid ones.
This reflects the fully coupled nature of the equations, which forces the TCs to
be obtained in the sequence

Stage uses equations to obtain
k = −1 none x0, y0

k = 0 f, g x1, y1

k = 1 f ′, g′ x2, y2

. . . . . . . . .

The entry “none” for k = −1 signifies that x0, y0 are arbitrary initial values.
The associated system Jacobian is

[
fx′ fy′

gx′ gy′

]
.

Next consider

(5.2)

x y ci Possible realization( )
f 1• 0 0 0 = f(t, x, y, x′)
g 0 1• 0 0 = g(t, x, y, y′)

dj 1 1

The equations are still implicit, but less tightly coupled than in (5.1). Definition
5.1 gives the constraints

d1 − c1 = 1, d2 − c2 = 1; d2 − c1 ≥ 0, d1 − c2 ≥ 0; min
i

ci = 0.

The tableau (5.2) shows the canonical offsets c = (0, 0), d = (1, 1). There are
two other possibilities: c = (1, 0), d = (2, 1) and c = (0, 1), d = (1, 2). This
reflects the weaker coupling of the equations compared with (5.1), which permits
the TCs to be obtained in either of the sequences

Stage uses eqns to obtain
k = −2 (none) x0

k = −1 f x1, y0

k = 0 f ′, g x2, y1

k = 1 f ′′, g′ x3, y2

. . . . . . . . .

or

Stage uses eqns to obtain
k = −2 (none) y0

k = −1 g x0, y1

k = 0 f, g′ x1, y2

k = 1 f ′, g′′ x2, y3

. . . . . . . . .
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That is, either of xk and yk can “lag” behind the other by up to one stage, but
not more. The system Jacobians in each case are tabulated below:

c,d (0, 0), (1, 1) (1, 0), (2, 1) (0, 1), (1, 2)

J

[
fx′ 0
0 gy′

] [
fx′ fy

0 gy′

] [
fx′ 0
gx gy′

]

As a contrast, compare the DAE 0 = f(t, x, x′); 0 = g(t, x, y, x′, y′), where the
reader may verify the constraints

d1 − c1 = 1, d2 − c2 = 1; d1 − c2 ≥ 1; min
i

ci = 0,

whose general solution is c = (K, 0), d = (1+K, 1) for any integer K ≥ 0. Thus
the TCs of the first equation can (if desired) be generated to some given order
K, independently of the second equation, and stored. After this the TCs of the
second equation can be generated to that same order.

5.2 Nonsingularity implies success.

Under the assumptions at the start of Section 5, the computed signature matrix
Σ̃ satisfies Σ̃ ≥ Σ. Let c̃, d̃ be any valid offsets defined by Σ̃, and J̃ the resulting
Jacobian defined by (2.4), equivalently (2.5).

Structural singularity is a property of a matrix that depends on parameters.
Here, the DAE code defines each of its variables, hence also J̃, as a real function
over some domain D in some R

M , a space of certain xj ’s and appropriate deriva-

tives. A structural zero of J̃ is an (i, j) position where J̃ij is identically zero for all

ξ ∈ D. Then, J̃ is structurally singular if every matrix B ∈ R
n×n, with Bij = 0

in J̃’s structural zero positions, is singular — equivalently, if every transversal
of J̃ contains a structural zero. J̃ is structurally nonsingular otherwise.

We can now prove the main result of this section. In inexact arithmetic, a
structural zero may become a non-zero near roundoff level, requiring standard
methods of rank estimation [11] to decide which alternative of the Theorem has
occurred. Recall ValΣ was defined in Section 2 step 2.

Theorem 5.2. Let the notation be as at the start of this subsection. In exact
arithmetic, just one of two alternatives must occur:

(i) Val Σ̃ = Val Σ. Then every HVT of Σ is a HVT of Σ̃, and c̃, d̃ are also
valid offsets for Σ. Thus the method computes the correct TCs, but in a
possibly different sequence from those of the canonical offsets for Σ; and J̃

is the correct System Jacobian for the sequence used.

(ii) Val Σ̃ > ValΣ. In this case J̃ is structurally singular.

Proof. By definition, c̃, d̃ satisfy

d̃j − c̃i ≥ σ̃ij ≥ σij ,(5.3)

with min c̃i = 0.
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Suppose case (i), Val Σ̃ = ValΣ. Let T be an arbitrary HVT of Σ. Then

summing (5.3) over (i, j) ∈ T gives Val Σ̃ on the left and ValΣ on the right.

Since these are equal, we must have equality term by term: d̃j − c̃i = σ̃ij = σij

on T . Thus c̃, d̃ are valid offsets for Σ in the sense of Definition 5.1. Theorem
5.1 then completes the proof of case (i).

In case (ii), Val Σ̃ > Val Σ. By a similar argument, for any transversal T ,

d̃j − c̃i > σij for at least one (i, j) ∈ T .

For such an (i, j), we see from (2.5) that J̃ij = ∂fi/∂x
(edj−eci)
j is a structural zero

in exact arithmetic, because σij is the highest order of derivative of xj on which
fi truly depends; cf. (2.5). That is, every transversal contains a structural zero

of J̃, and J̃ is structurally singular. This completes the proof of case (ii).

Example 5.2. The following examples illustrate some ways in which com-

puting a Σ̃, different from Σ, can change the TC calculation.

v w x y ci2
64

3
75

f1 1• − − − 0

f2 1 1• − − 0

f3 − − 0• − 1

f4 − − 1 0•
0

dj 1 1 1 0

Case (a), ValΣ = 2

v w x y ci2
64

3
75

f1 1• − − − 1

f2 1 1• − − 1

f3 − 1 0• − 1

f4 − − 1 0•
0

dj 2 2 1 0

Case (b), Val eΣ = 2

Case (a) shows3 the true Σ. There is one HVT, marked with asterisks. This
tableau represents a system of size 4 with two degrees of freedom (DOF), com-
prising two independent subsystems of size 2. Assume for illustration that they
are a partially implicit ODE system for v and w (2 DOF), and an index-2 DAE
system for x and y, (0 DOF), say

0 = f1 = v′ − g1(t, v),
0 = f2 = w′ − g2(t, v, w, v′)

and
0 = f3 = x − g3(t),
0 = f4 = y − g4(t, x, x′).

The canonical offsets are shown. The corresponding J is the identity matrix.
Case (b) shows the same system, but with the code written in such a way as

to introduce into f3 an apparent dependence on w′. Write

f3 = x − g3(t) + ζ(w′),

where ζ(a, b, . . .) stands for a generic expression that apparently depends on
a, b, . . . but is identically zero.

The computed Σ̃ is now different from Σ. There is still just one HVT, but
the canonical offsets have changed. Indeed, if the w′-dependence were real, this
would be an index-3 DAE with 2 DOF. Since Val Σ̃ = Val Σ = 2, by Theorem
5.2, these offsets give a valid TC evaluation scheme for the original problem.

3“−”denotes −∞.
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Now consider further changes:

v w x y ci2
64

3
75

f1 1• − 0◦ − 1

f2 1◦ 1• − − 1

f3 − 1◦ 0• − 1

f4 − − 1 0•◦
0

dj 2 2 1 0

Case (c), Val eΣ′ = 2

v w x y ci2
64

3
75

f1 1 − − 0•
0

f2 1• 1 − − 0

f3 − 1• 0 − 0

f4 − − 1• 0 0

dj 1 1 1 0

Case (d), Val eΣ′′ = 3

Case (c) again shows the same system, but with ζ(w′) added to f3 and ζ(x)
added to f1. This creates a second transversal of value 2, marked ◦. Since
Val Σ̃′ = 2, we again have a valid TC evaluation scheme for the original problem
— identical in fact with that of case (b).

If the ζ(x) of case (c) is changed to ζ(y), case (d) arises. Here, a transversal,
and HVT, of value 3 has been created. If the apparent dependencies were real,
this would be a fully coupled index-2 DAE system with 3 DOF. Since Val Σ̃ >
ValΣ, Theorem 5.2 shows that we no longer have a valid solution scheme, and
that J̃ (in exact arithmetic) is structurally singular. Indeed,

J̃ =
∂(f1, f2, f3, f4)

∂(v′, w′, x′, y)
=




1 0 0 0
−∂g2/∂v′ 1 0 0

0 0 0 0
0 0 0 1


 .

6 The complete method.

The overall method for computing TCs for the solution of (1.1) is summarized
in the following algorithm.

Algorithm 6.1 (Taylor coefficients).

Input for preprocessing, steps 1,2:
the code defining the DAE.

Input for run time, steps 3 onwards:
value of t;
approximations to the relevant xj derivatives, xJ≤0

.

1. Generate code for the System Jacobian as described in [25].
2. Generate code for computing the TCs (fi)l

using the approach of Subsection 4.1.
3. for stages k = kd . . . 0
4. try to solve (4.14)
5. if failure, exit
6. Factorize the J produced at the end of stage k = 0.
7. for k = 1 . . . kmax

8. solve linear system (4.11), noting that its matrix is a scaled
version of J, hence using the factorization from step 6.
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Some implementation-related remarks follow.

Solving the LAP. An efficient method for the Linear Assignment Problem in
Section 2 step 2 is the shortest augmenting path algorithm. DAETS uses the
program lap implementing it [17]. It inputs a cost matrix, here Σ, and outputs
a HVT. Then DAETS uses [28, Algorithm 3.1] to find the canonical offsets.

Note that, if the computed HVT contains −∞, Algorithm 6.1 should exit before
computing the offsets ci, dj . In this case, the DAE is structurally ill-posed.

Stages k ≤ 0. Currently DAETS always uses IPOPT [31] to solve (4.14).
Numerical experience suggests that at integration steps after the first, a simple
Gauss-Newton [19] iteration would suffice.

In step 4, the solution of (4.14) fails if a rank-deficient matrix arises. In this
case, we exit this algorithm, and know that the System Jacobian is singular.
Otherwise, each Jk would have been of full row rank; see [28, Prop. 4.1].

Stages k > 0. After the first step, DAETS uses the (currently) computed TCs
as an initial guess for the TCs for the next step. That is, xa

Jk
in (4.11) is set to

the computed x∗
Jk

on the previous step. This essentially happens automatically
since TCs are stored in an array: the values in this array are used as an initial
guess and overwritten with the new TCs.

If approximations for the TCs for stages k > 0 are not available, we can set
them to zero since the equations are linear. But using such approximations has
accuracy advantages, since the solution process can be regarded as a step of
iterative refinement [11] of an already reasonable solution.

Scaled Taylor coefficients. When integrating a DAE using Taylor series, to
reduce the possibility of overflows and underflows, it is desirable to compute
TCs multiplied by the appropriate power of a stepsize h = t − t∗. Instead of
computing (xj)l = xj

(l)/l! and then forming (xj)l hl, DAETS directly computes

the scaled TCs x
(l)
j /l!hl.

Problem specification. A DAE should be encoded in a form as close as possi-
ble to its mathematical formulation. Both source-text translation and operator
overloading allow such an encoding. The way it is done in DAETS is shown by
example in the next section.

7 Numerical results.

Experience with DAETS suggests the performance of Taylor methods on non-
stiff or mildly stiff DAEs is broadly similar to that for ODEs. We give results
of running the complete DAETS code. This involves many algorithms beyond
the scope of this paper, notably: evaluating Σ and solving the linear assignment
problem; finding an initial consistent point; evaluating J; stepsize and order
control, and resulting error control; output to the user.

First we show some results from solving the Car Axis problem from the Test
Set for IVP Solvers [21] (the former CWI test set [20]). Second, we illustrate
DAETS solving an index-5 problem. Third, and of particular relevance to this
paper, we show how total work depends on the Taylor order and tolerance.
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7.1 Car Axis.

This problem is a moderately stiff DAE of index 3. It is a simple model of a
car axis going over a bumpy road. For solution in [21], the original second-order
form is converted to a first-order form. In DAETS, we solve directly using the
original form

Kp′′ = f(t, p, λ),

0 = φ(t, p),
(7.1)

with p, f of dimension 4, and λ, φ of dimension 2. Here, p = (xl, yl, xr, yr)
T , and

(xl, xr) and (yl, yr) are the coordinates of the left and right wheels, respectively;
λ = (λ1, λ2)

T are Lagrange multipliers.
Figure 7.1 displays the code used to define the DAE to DAETS. This (tem-

plate) code is employed when computing the Σ matrix and generating a com-
putational graph by FADBAD++ for evaluating TCs for the fi and needed
gradients for stages k ≤ 0. In this figure, the function Ftpl evaluates f(t, p, λ),
and the function CarAxis computes

F (t, p, p′′, λ) :=

(
−Kp′′ + f(t, p, λ)

φ(t, p)

)
.

The form of the DAE problem solved by DAETS is F (t, p, p′′, λ) = 0.
Figure 7.2 shows resulting solutions for p with the initial condition given in

[21].

7.1.1 Accuracy results.

We investigate the accuracy of the numerical solutions computed by DAETS
on (7.1), over a range of tolerances, and the accuracy of the reference solutions
reported in [20] and [21]. We use the same initial condition as in [20, 21].

If we denote the ith component of a reference solution at tend by ri and the ith
component of a solution computed by DAETS by xi, we estimate the relative
error in xi at tend by |xi−ri|/|ri|. By SCD, significant correct digits, we denote
the number of minimum correct digits in a numerical solution at the end of an
integration interval [20, 21]:

SCD := − log10

(
‖relative error at the end of integration interval‖∞

)
,

where we take the norm of a vector of relative errors.
We consider three reference solutions:

1. computed by DAETS on Ultra Sparc 10 in IEEE double precision with
order 15, atol = rtol = 10−16, and tolerance dtol = 10−14 for the IPOPT
package4;

4atol and rtol are used to control the truncation error in the Taylor series solution, and dtol
is the tolerance used by IPOPT; 10−14 is the smallest tolerance it can satisfy on this problem.
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// Various #include and #define statements omitted

template <typename T> void Ftpl( T *f, const T *y, const T & t )

{
T yb = R*sin(W*t); yb = R sin(Wt)

T xb = sqrt( sqr(L) - sqr(yb) ); xb =
p

L2 − y2

b

T Ll = sqrt( sqr(xl) + sqr(yl) ); Ll =
p

x2

l
+ y2

l

T Lr = sqrt( sqr(xr-xb) + sqr(yr-yb) ); Lr =
p

(xr − xb)2 + (yr − yb)2

f[0] = (L0-Ll)*xl/Ll + lam1*xb + 2.0*lam2*(xl-xr) ;

f0 =
(L0 − Ll)xl

Ll

+ λ1xb + 2λ2(xl − xr)

f[1] = (L0-Ll)*yl/Ll + lam1*yb + 2.0*lam2*(yl-yr) - EPS M;

f1 =
(L0 − Ll)yl

Ll

+ λ1yb + 2λ2(yl − yr) −
ε2

M
f[2] = (L0-Lr)*(xr-xb)/Lr - 2.0*lam2*(xl-xr);

f2 =
(L0 − Lr)(xr − xb)

Lr

− 2λ2(xl − xr)

f[3] = (L0-Lr)*(yr-yb)/Lr - 2.0*lam2*(yl-yr) - EPS M;

f3 =
(L0 − Lr)(yr − yb)

Lr

− 2λ2(yl − yr) −
ε2

M
}

// function for evaluating the DAE

template <typename T> void CarAxis( T *f, const T *y, const T & t )

{
// set the differential equations

Ftpl( f, y, t );

for ( int i = 0; i < 4; i++ ) For i = 0, . . . , 3

f[i] = -EPS M*diff( y[i], 2 ) + f[i]; fi = −
ε2

M
y
′′
i + fi

// set the algebraic equations

T yb = R*sin(W*t); yb = R sin(Wt)

T xb = sqrt( sqr(L) - sqr(yb) ); xb =
p

L2 − y2

b

f[4] = xl*xb+yl*yb; f4 = xlxb + ylyb

f[5] = sqr(xl-xr) + sqr(yl-yr) - sqr(L); f5=(xl−xr)
2+(yl−yr)

2−L2

}

Figure 7.1: C++ code defining the Car Axis DAE, with the mathematical form of
the equations on the right. ε, M, L, L0, W, R are constants. Input array y holds
the state variables xl, yl, xr, yr, λ1, λ2; for example, xl is encoded (for clarity) as
#define xl y[0], and the rest of the variables are encoded similarly.

2. computed by PSIDE [9] on Cray C90 with Cray’s double precision and
atol = rtol = 10−16, as reported in [20];

3. computed by GAMD [15] on an Alpha server DS20E in quadruple precision
with atol = rtol = 10−24, as reported in [21].

In Figure 7.3(a) we plot, for each of these reference solutions, the SCD of the
numerical solution produced by DAETS with respect to the corresponding ref-
erence solution. Since, in [20, 21], the relative errors in p, p′, and λ are in-
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Figure 7.2: Car Axis: plots of xl, yl, xr , and yr versus t.
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Figure 7.3: Car Axis: accuracy and work-precision diagrams. DAETS refers
to the SCD in DAETS with respect to its reference solution; PSIDE refers to
the SCD computed with the numerical solutions from DAETS and the reference
solution from PSIDE; similar for GAMD.

cluded when computing SCD, we include them here too. The numerical solu-
tions with DAETS are computed with atol = rtol = 10−m and dtol = 0.5 · atol
for m = 5, . . . , 13, and atol = rtol = 10−14 and dtol = 10−14.

Although we do not have a guarantee that the DAETS reference solution is
the most accurate one, based on our numerical experience and the above plots,
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we believe it is. From this figure, the reference solution from PSIDE has about
7.1 SCD, and the reference solution from GAMD has about 9.2 SCD.

7.1.2 Timing results.

Figure 7.3(b) shows the work-precision diagram for executing DAETS on the
Car Axis problem. We have used order 15 in DAETS and tolerances and DAETS
reference solution as described before. The timing is performed on Sun Ultra
5/10, Ultra SPARC-IIi 360MHz CPU, 4GB memory, Solaris 9. The compiler is
gcc 3.2 with optimization flag -O2.

On this problem, for the accuracy PSIDE and GAMD can achieve, DAETS
is less efficient (cf. [20, 21]), but it is much more accurate at small tolerances.
Generally, on problems for which a solver based on a Runge-Kutta or a multistep
method is already very efficient, DAETS may not be competitive. However, it
will be competitive on problems that current methods cannot handle because of
high index, or if high accuracy is required.

7.2 Two pendula: index-5 DAE.

This artificial problem of index 5 comprises two simple pendula coupled in
such a way that the length of the second, “driven” pendulum depends on tension
(effectively λ) in the first, “driving” one. The equations are

0 = x′′ + xλ, 0 = u′′ + uκ,

0 = y′′ + yλ − G, 0 = v′′ + vκ − G,(7.2)

0 = x2 + y2 − L2, 0 = u2 + v2 − (L + cλ)2,

where G, L, c are constants, x(t), y(t), u(t), v(t) are the position variables of
the pendulum masses, and λ(t), κ(t) are Lagrange multipliers.

We illustrate the behaviour of two numerical solutions to (7.2) computed by
DAETS. We integrate this problem from t0 = 0 to tend = 50 using

• constants G = 1, L = 1, and c = 0.1;

• order = 20, atol = rtol = 10−10, dtol = 0.5 · 10−10;

• two initial conditions at t0 = 0:

x = 1, x′ = 0,

y = 0, y′ = 1,

u = 1, u′ = 0,

v = 0, v′ = 1;
(7.3)

and

the same as (7.3) except v = 0 is replaced by v = 0.001.(7.4)

The values for x, x′, y, and y′ are consistent for the first pendulum, but the
values for u, u′, v, and v′ are not consistent for the second pendulum. Table 7.1
contains the consistent values computed by DAETS for these variables.
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consistent values
(7.3) (7.4)

u 1.1 1.0999994500004
u′ 3 · 10−1 2.9899985100011 · 10−1

v 0 1.0999994500004 · 10−3

v′ 1 1.0002989998510

Table 7.1: Consistent initial values for the second pendulum corresponding to
initial values (7.3) and (7.4).

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

x

t

-1.5

-1

-0.5

0

0.5

1

1.5

0 5 10 15 20 25 30 35 40 45 50

u
t

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

y

t

-1.5

-1

-0.5

0

0.5

1

1.5

0 5 10 15 20 25 30 35 40 45 50

v

t

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35 40 45 50

λ

t

-2

-1

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40 45 50

κ

t

Figure 7.4: Two Pendula: plots of x, y, λ, u, v, and κ versus t. The solid and
dashed lines denote the solutions corresponding to (7.3) and (7.4) respectively.

In Figure 7.4, we plot the solution components corresponding to (7.3, 7.4).
The two solutions for u, v and κ are close until t ≈ 30 and diverge afterwards,
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indicating a sensitive dependence on initial conditions. Although the motion of
the driven pendulum appears chaotic, from our experiments, the computed solu-
tions by DAETS are consistent over a wide range of tolerances, giving confidence
that DAETS solves this high-index problem correctly.

7.3 Work versus order of Taylor series.

We have performed experiments in which DAETS was run repeatedly on a
problem, varying the error tolerance and the Taylor order (the latter being held
fixed for the run) and with its standard stepsize control. The CPU time for
each DAETS call was measured. Tests on several problems suggest that, for
problems of little or moderate stiffness, an order in the range 20 to 30 appears
a good choice at all tolerances. For illustration, Figure 7.5 plots of CPU time
against order at various tolerances for the Two Pendula (left) and Car Axis
problem (right).
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Figure 7.5: CPU time versus Taylor series order.

8 Conclusions.

We have presented a method for computing TCs for the solution of a general
DAE, and some examples of the performance of a C++ code based upon it. Given
a DAE described by computer program, the necessary structural analysis data
and System Jacobian can be obtained via operator overloading, as in DAETS;
or in a pre-processing stage, for an implementation by source-text translation.
Either the structural analysis succeeds, or one can know for certain (subject to
obstacles of inexact arithmetic) that it has failed.

With this approach, simulation software that automatically converts a model
to a DAE need not to produce it in a particular (first-order or lower-index) form:
it can be a direct, compact translation of the model.

Computing an initial consistent point, which is quite separate from stepping
in most DAE codes, here is just the implementation, for the first step, of stages
k ≤ 0 of the stepping algorithm. It only differs from subsequent steps in that a
more robust nonlinear least squares algorithm is used.

The restrictions noted in Subsection 1.1 (no branching, etc., in the code for
the DAE) are to simplify the exposition. If they are violated, the theory applies
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locally. Of the resulting difficulties, those due solely to discontinuities are well-
studied in the AD community. In the extra case that the DAE’s structure
changes during solution — for instance in a chemical plant model, opening or
closing a valve may change the index — run time re-analysis is needed.

The structural analysis has also been implemented in C++ as a stand-alone
structural analyzer. When it succeeds, it reliably finds the degrees of freedom
and an upper bound for the differentiation index, and can give a recipe for
converting the DAE to ODE form.

Useful insights into Taylor methods are in Barrio’s recent work. First, high
orders can be used without fear of accuracy loss by cancellation, etc. In [2],
dynamical system ODEs are solved to very high accuracy using a multi-precision
package. The variable step, variable order method chose orders around 150 at
the smallest tolerance used, namely 10−128. Second, in this work, and in [1]
where they solve DAE problems in the CWI test set using Pryce’s approach,
Taylor methods were far faster at high accuracies than others tested.

Third, they show empirically that the stability region of the Taylor method
approaches a semicircle in the left half-plane, whose radius increases linearly
with the order. Hence Taylor methods can be highly efficient on moderately stiff
problems. With DAETS, we have observed this is also true for DAEs.

Owing to the explicit nature of Taylor series methods, they cannot be very
efficient for highly stiff DAEs . A promising approach is to generalize the Taylor
series approach to Hermite-Obreschkoff (HO) methods [23], which are known to
have much better stability, in the ODE sense, than Taylor series methods. Tech-
niques for efficient computation of the relevant Jacobians are being developed.

Future work will include study of HO methods, description of the whole in-
tegration process, more detailed reports of numerical experience with DAETS,
and study of the applicability of this method to engineering problems.
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