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Abstract

When computing thesg;, we use interval methods to
enclose roundoff and truncation errors in the computed

We overview the current state of interval methods and bounds, thus obtaining rigorous bounds on the true solution
software for computing bounds on solutions in initial value of the ODE [24, 44].

problems (IVPs) for ordinary differential equations (ODEs

When describing the theory of these methods, it is con-

We introduce the VNODE-LP solver for IVP ODEs, a suc- venient to work with an autonomous ODE. However, this
cessor of the author's VNODE package. VNODE-LP is is not a restriction, as the theory can be applied to non-
implemented entirely using literate programming. A ma- autonomous systems, or a non-autonomous system can be

jor goal of the VNODE-LP work is to produce an interval

converted into an autonomous one. Also for convenience,

solver such that its correctness can be verified by a humanwe require thateng > to, but in generateng may be less

expert, similar to how mathematical results are certified fo
correctness.

thant,.
Section 2 lists software packages for computing bounds

We also discuss the state in computing bounds on solu-on the solution of (1) and lists various applications. Sec-

tions in differential algebraic equations.

1. Introduction

We consider the initial-value problem (IVP)

y'(t) = fy), (1)

Since interval methods for IVPs for ordinary differential

y(to) =vo, yeR" teR.

tion 3 outlines some of the theory behind interval methods
for IVP ODEs. Section 4 gives an overview of VNODE-
LP, elaborates on literate programming (LP), and presents
numerical results to illustrate some of the issues in these
methods. Section 5 outlines Pryce’s [52] structural anal-
ysis for solving systems of differential algebraic equasio
(DAEs) and summarizes work to date on Taylor series meth-
ods for DAEs. Conclusions are in the last Section 6.

In this paper, we assume knowledge of interval arith-
metic and basic interval techniques (see for example [2,
37]). Intervals, interval vectors, and interval matricat w

equations (ODEs) are typically based on Taylor series, e 'in bold font.

which require the computation of Taylor coefficients (TCs)
for ¢y up to some ordek > 1, we assume that is as differ-
entiable as needed.

The initial condition can be in an interval vectgy, that
iS, Yo € y,- If we denote the solution of (1) by(t; to, yo),
we denote byy(t; 10, y,) the set of solutions originating
from each initial condition iry:

y(t;to,yo) = {y(t;tmyo) | yo € yo}-

Giventeng > to, We wish to compute interval vectors that
are guaranteed to contain the solution to (1) at pdinter
whichty < t; <ty < -+ <ty = teng. Namely, we want
to findy; such that

y(tjito,yo) Cy,; forallj.

2. Software and applications

In Table 1, we list packages for computing bounds on
the solution of an IVP ODE. We refer to the methods im-
plemented in the packages AWA [33], ADIODES [54], VN-
ODE [43], VNODE-LP [40], and VODESIA [18] as “tradi-
tional” interval methods for IVP ODEs. The COSY VI [9]
solver is based on Taylor models [48], and VSPODE [32]
can be viewed as a mixture of traditional methods and Tay-
lor models! All require computing TCs, while ValEnclA-
IVP [4] needs only the Jacobian ¢f

1To the author's knowledge, VODESIA is not publicly avaikephnd
VSPODE is available by request from the authors.



package year language 3. Theory
AWA 1988 Pascal-XSC

ADIODES 1997 C++

We outline the theory of a traditional interval method

COSY VI 1997 Fortran for IVP ODEs (Subsection 3.1), discuss briefly Taylor mod-
C++ interface els (Subsection 3.2), and show how they work in VSPODE

VNODE 2001 C++ (Subsection 3.3).

VODESIA 2003 Fortran-XSC

VSPODE 2005 C++

3.1. Traditional methods
ValEnclA-IVP 2005 C++

VNODE-LP 2006 C++ Suppose that we have computgdatt; such that

Table 1. Packages for computing bounds in
IVP ODEs. y(tjito, Yo) C y;-

A notable contribution to this area are the automatic dif- VW& @dvance to the next pointin time in two phases.
ferentiation (AD) packages FADBAD [7] and TADIFF [g], ~_ AALGORITHM | tries to find an intervalt;, ¢;,] and an
and now FADBAD++ [55]. They have been instrumentalin & Priori enclosurgy; such thay’ = f(y), y(t;) = y; has a
VNODE, VNODE-LP, and VSPODE for computing TCs of Unique solution forall; € y; and allt & [t;,;1], and
an ODE solution and TCs of the solution to the associated ~
variational equation, and in ValEnclA-IVP for evaluating ytity,y;) Sy, forallt €[t 4. (2)

the Jacobian of. , Proving existence and uniqueness, and finditygt, 1]

In general, traditional methods produce tight bounds on andy ,, is usually based on applying a fixed-point theorem
solutions in linear ODEs and in nonlinear problems, when [19 33 39]. In practice, if the stepsizg.; = t;41 — t;
’ ’ . ’ - J

the computed enclosures remain sufficiently small. If the (yeermined in this phase) is smaller than a value for the
overestimations in the computed bounds start growing, theng - 11ast allowable stepsize, then normally the integratio

these bounds typically blow up quickly. In particular, on 506t proceed [40]. That is, we cannot validate existence
nonlinear ODEs, if the initial condition set is not very sinal and uniqueness.

or long integration is desired, these methods usually break 5| soriTHM 11 use
down because of overestimations on the computed solutiony, o method and com
sets.

Taylor model integration is more effective than tradi-
tional methods at producing tight enclosures on a solution y(tis15t0,¥o) S Y41 C U (3)
to a nonlinear ODE, with an initial condition set that is not
very small and over longer integration intervals. However,  Figure 1 depicts bounds produced in these two phéses.
Taylor models become expensive computationally on larger
problems (more than 5-10 equations), while a traditional
method, from the author's experience, can deal with afew | . A Bonds
hundred equations.

While applications of interval methods for ODEs were
scarce ten years ago, we see a variety of applications in the
last few years; in particular, after the VNODE solver be- -
came available, and COSY VI with its Taylor models be-
came popular.

Application of these methods include rigorous computa-
tion of asteroid orbits [11], studying long-term stabiliy
large particle accelerators [12], global optimization fiar
rameter estimation in chemical engineering [31], and simu- t
lation of wastewater treatment processes [26]. The VNODE

sy ; to enclose the truncation error of
putes a tighter enclogyye, att;;
such that

package has been employed in rigorous multibody simula- Figure 1. A priori and tight bounds.
tions [3], reliable surface intersection [38, 50], robusdle _ )
uation of differential geometry properties [29], compagtin Methods for implementing the above two phases are usu-

bounds on eigenvalues [14], parameter and state estimatiot/ly based on Taylor series. One reason for their popularity
(25, 53]’_ rigorous shadowing [21, 22], and theoretical COM- ~ 2qy this visualization, the tight bounds are connected fivitks, which
puter science [1]. do not necessarily enclose the true solution.




is that it is relatively easy to enclose the truncation eofor

(h; = tj4+1 — t;), which contains the true solution, but the

the method; see also [44]. Before we describe how thesewidth of y,_ ; is

two algorithms work, we introduce convenient notation for
TCs.

Taylor coefficients. Denote
%) =,
- 1
() = =
1w =1 (%5
Given the IVPy'(t) = f(y), y(t;) = y;, we have for the
ith TC of its solution

Li).(tj) = Wy;).

7!

ofli-1l

f) (y) fori>1.

Such coefficients can be computed through source-code

translation [15] or operator overloading, as in TADIFF and

FADBAD++, for example. These packages can compute

TCs with a user-supplied data type. In particular, given an
interval as an input, they can generate interval TCs.

We note that to computecoefficients, we requir®(k?)
work. Given a stepsizg, one can generate scaled TCs di-
rectly, that ish? £ (y;), instead of computing firstl” (y,)
and then multiplying it byh?.

Computing a priori bounds. In VNODE, VNODE-LP,
and VSPODE, Algorithm I implements the High-Order En-
closure (HOE) method [45]. It is based on the following
result: ify; is in the interior ofy ;, and

k—1
i+ > =) ;) + (£ — )" fF(g;) € g,

=1

(4)

(k > 1)forallt € [t;,t;+1] and ally; € y;, then there
exists a unique solution t9’ = f(y), y(t;) = y; for all
y; € y; and

k—1
y(tity,yy) €y + Y (E— 1) ) + (=) M (g))
=1
forallt € [t;,t;+1] and ally; € y;.
Whenk = 1, we obtain the method in AWA, but it re-
stricts the stepsizes similarly to Euler's method. An advan

tage of the HOE method is that it allows larger stepsizes

compared to AWA. Moreover, a good stepsize control can
be conveniently incorporated in the HOE method. Details
are in [40, 45].

Computing tight bounds. Usingy ;, we wish to compute a
tighter enclosurg ;. ; such that (3) holds. A basic approach

is to use Taylor series. Writing a Taylor series expansion,

we can compute

k—1
Yjr1=Y; + Z h;'fm (y,) + h?f[k] (¥;)

=1

w(y,4+1) = w(y;), andusuallyw(y, ) > W(yj)7

even if the solutions are contracting—-“naive” method.
To obtain a scheme that could follow contracting solu-
tions, we apply the mean-value evaluation: for gnyy; €

y_j!
k—1 ‘ ‘
yi+ > ki ;) + nk I (g,)
=1
k—1 . .
i+ > i@ + kM (y;)
=1
k—1

+{I+

9 fli
S
=1 ay

(%)

(yj)} (Y —j),

wherel is then x n identity matrix. The above Jacobians
can be evaluated through AD by generating TCs for the so-
lution to the associated variational equation [33, 39]. The
FADBAD++ [55] package can readily evaluate these Jaco-
bians [40, 43].

true solutions

e Ui+l 24

J/ﬁ‘ Yjt1

tj

tis1 t

Figure 2. The enclosure at  t;; is formed from
an approximate point solution, an enclosure
on the local excess, and an enclosure on the
propagated global excess.

Based on (5), we can form an enclosyrg ; consisting
of (see also Figure 2)
. . . ~ k—1 ; i1~
(a) a point approximation; 1 = g; + >, i fl(7);
(b) an enclosure; ., = k¥ f1*1(y;) of the truncation error;
this enclosure can be viewed as the excess introduced on the
current integration step over the true solution setioorl
exces$39]; and
(c) an enclosuré; (y; — v;), where
k—1 ;
o fll
S;=1 h

(yj)7



of the propagatedlobal exces§39] to ¢;,,. One can view Sja;
y; — y; as an enclosure of the global excess;at
Thus,

Y1 = Ui + 241+ S5(y; — j). (6)

. . a;
Since we also enclose roundoff errors in the above compu- g
{Sjalaca;}

tations, when executed in machine interval arithmetic, we
have a rigorous enclosure on the true solution of (1).

There are two major sources of overestimation in (6).
First, we have a high-order Taylor series expansion in time,
but only a first-order Taylor series expansion in space. In
general, we cannot expect to compute tight bounds for non-
linear ODEs when the initial set, hegg, is not sufficiently
small. For linear ODEs, we do not have overestimations in
the Jacobian evaluations, as they do not depengl,on

(a) ©)

Second, there is typically wrapping effect [37, 42] origi- .
nating from the produc$; (y, — 7;). Because of the wrap-
ping effect, the scheme (6) can follow contracting soluion FA s
in a few special cases only [42]. / © W
Wrapping effect. For simplicity in the illustration that fol- _ R o
lows, Figure 3.1, assume = 2, S; € S; is a2 x 2 point Figure 3. () a; = y; — y;; (b) wrapping in the
matrix, and denote; = y, — 7;. We are interested in the original coordinate system; (c) and (d) wrap-
set{S;a | a € a;}, cf. (6), but we compute in interval arith- ping in a moving orthogonal coordinate sys-
metic the boxS;a;, which can introduce significant over- ~ t€ms that matches one of the edges of the
estimation over the parallelepipdd;a | a € a;}. Then, enclosed set.

we have to work with this box on the next step, may have
another overestimation, and so on. Such overestimations
can quickly accumulate, leading to the wrapping effect and select a nonsingulat ;. ,, and form
a blow up in the computed bounds.

Lohner's QR factorization method [33] for reducing the  Ti+1 = {A; 11 (S545) }r; + A7} {z01 —m(z;40) ).
wrapping effect puts a box in a moving orthogonal coor- . . .
dinaﬁg s?/stem, zfnd this box matches gne of ?he edges of The selection of4;; is crucial for the performance of

the enclosed parallelepiped. We can always “match” thelthliS §chgme.h Igljiré ;3 mESfJ'Aj)' Wle Pg)avekthec?aral-b
longest edge, and intuitively, introduce a smaller ovérest elepipedmethod [19, X ] It rgquenty reaks down be-
cause theAd; become ill conditioned, and the computed

mation. .
bounds become too wide.
Reducing the wrapping effect. Instead of working with In Lohner’s QR method, we seledt;,; = Q;, from
box encl_osu_regyj, we can also represent an enclosure on the QR factorization); 1 R;j 11 = m(S;4;). We enclose
the solution in the form in a moving orthogonal coordinate system, and we can al-
_ A _ ways “match” the longest edge of the enclosed set by a suit-
v € {05 + Ay [rj €73l able permutation of the columns of(,4;), [33]. An
wherejj; € R", A; € R"*" is nonsingular, and; € IR". e_igenvalue-type_ _analysis shows t_hat_ the QR method pro-
(IR™ denotes the set of-dimensional interval vectors.) vides good stability for the underlying interval method]j42
Instead of computing with (6), we proceed as follows.
We set initially 3.2. On Taylor models
Ao=1, Yo =m(yy), and ry =1y, — Yo, The above approach uses a parallelepiped to enclose a

solution set, which may not be convex. Inherently, methods
of this type cannot follow accurately complicated solution
sets and can produce large overestimations.

An integration based on Taylor models [10, 35] repre-
N sents a solution enclosure as a multivariate polynomial in
Yj+1 = ujrr +M(zj41), Yo, Whereyy € y,, plus a small remainder interval. As a

where n{-) denotes componentwise midpoint. Then on
each step, we find

Yjp1 = Wit1 + zjp1 + (S 45)r;,



result, such enclosures are not necessarily convex and caas follows. Initially, set Taylor models
describe a solution set much more accurately than a paral-

lelepiped.
Let F be the set of continuous functions anc TR" to
R, letp : R™ — R be a polynomial of ordein, and letr be
an interval. A Taylor model is (cf. [482.3])
{feF|fl)ep

(z)+r forallz € x}.

Arithmetic operations and elementary functions can be im-
plemented on Taylor models such that each of these opera-

tions results in a Taylor model [10, 34].

In practice, given a sufficiently differentiableon « €
IR™ andzy € x, one can apply a (multivariate) Taylor
expansion ofg aroundz, to construct a polynomial ap-
proximationp(z — x¢) to g(x) and enclose the error term
(for all z € ) in this expansion in an interval. Then
g(z) € p(x—xo)+rforallz € x. We refertap(x—xz¢)+r
as a Taylor model, of g.

Figure 4 |IIustrates a Taylor model of a function. If its

range is enclosed by an interval, we would propagate a box
through a computation. With Taylor models, we propagate

a Taylor modell;, a much tighter enclosure gfthan an
interval enclosure.

Figure 4. Function and its Taylor model en-
closure.

In this paper, we show how Taylor models are incorpo-
rated in VSPODE. A good exposition of how “full” Taylor
model integration works is in [48].

3.3. Taylor models in VSPODE

Lin and Stadtherr [32] consider the IVP
y/ = f(y(t),@),

wheret € R,y € R, y, € IR", 0 € IR', 0 is a parameter,
andf is assumed sufficiently differentiable, so TCsfarp
to some ordek > 1 can be computed.

The goal is to enclose the solution to (7) forall € y,,
and alld € 8. The method implemented in VSPODE works

l/(to) = Yo € Yo 0 e 07 (7)

yo € Tyy = M(yo) + (vo — M(y,)) +[0,0]" and
0 € Ty =m(6) + (9 — m(8)) + [0, 07,
where [0, 0]™ denotes then vector with all components

[0, 0].
We denote the solution to (7) hy(¢; to, yo, 0). Assume
that, att;,

(8)

wherep; : R**! — R" is a polynomial iny, andd of some
degree, sayn, andv; € IR". That is, we have a Taylor
model att;.

Thenat;, foranyy; € p;(yo,0)+v; and anyd € Ty,

y(tj;to, yo,0) € p;(yo,0) + vy,

y(tj+l;t07y01 € Zhl l y]7 +hkf[k (yj, )
k—1 o
> hi P p; +v;,Ty) + wiga, (9)
=0

where thefl"! are functions of bothy andd, and
wj1 =ht (g, 0),

in whichy; is an a priori enclosure ovet;, ¢;1].

The termw ;4 is computed with the HOE method. The
TCsfll fori=1,...,k— 1, can be enclosed by perform-
ing Taylor model arithmetic through a TC computation.
That is, suppose we have a program for computing TCs that
works with a generic data type (TADIFF and FADBAD++
allow user-defined types). If we have a Taylor model class
with overloaded arithmetic operations and elementary-func
tions, we can execute TC computation with our program
and objects of this class. Hence, we can enclos¢theand
thereforey(t;11;t0, y0,0), for all yo € y, and alld € 6.
However, since intervals are involved in evaluating theecod
list of eachf!" in (9), the widths of the enclosures that we
would compute using (9) grow similarly to the widths in
the naive Taylor series method described earlier (butyikel
much slower).

Applying the mean-value theorem to tifé! and evalu-
ating them withp; and7}, we have

Zhl
[i]
(Zh 6f yj, )vj.

When evaluating~}~ ' 1’ f17l(p;, Tp), we can construct a
polynomialp; 1 (yo, ) of degreem, enclose the resulting

y(tjr1;to, Yo, 0) il (pj, Tp) + wjtq

(10)



higher order terms, and include this enclosure and; in
an interval (vectory;; [32]. Thatis, we have

th

Denoting

Z (P, To) + wjt1 € pjy1(yo,0) +wjp1. (11)

v, Zhlaf 0).

we have from (10) and (11) that

Y(tjr15to,v0,0) € pjr1(yo,0) +ujp1 + Vv, (12)

If we implement a scheme based on (12), the product
V ;v; would typically give rise to the wrapping effect. To
reduce it, instead of (8), VSPODE uses the representation

{pj(yo,ﬁ) + Bjs|yo €yg,0€0,5€ sj},

whereB; € R™ "™ is nonsingular, and; < IR", as an

paramount importance to ensure that an interval algorithm
is encoded correctly in a programming language.

In the author’s opinion, interval software should be pro-
duced in a form such that program correctness can be cer-
tified in ahuman peer-review procedike a mathematical
proof is checked for correctness. This is in contrast to me-
chanical software verification, when a proof tool is applied
to verify code against given specifications.

A major goal of the VNODE-LP work is to implement
and document an interval solver for IVPs for ODEs such
that its correctness can be verified by a reviewer.

4.2. Literate programming

To accomplish our goal, we have chosen the LP ap-
proach. The author has found LP particularly suitable for
ensuring that an implementation of a numerical algorithm is
a correct translation of its underlying theory into a progra
ming language. With LP, theory, code, and documentation
are interwoven inATEX-like webfiles® The source code is

enclosure on the solution settat Then (12) becomes

extracted in dangleprocess, and the documentation is cre-

ated in aweaveprocess. With VNODE-LP, we have used

Y(tjr15to,yo,0) € pjv1(yo,0) +ujp1 + (V;Bj)s;

For the next step,Bj;1 and s;;; are computed as in
Lohner’s method.

We evaluate Jacobians ¢f!! overy; (and in this case
0) as in traditional methods and deal with the wrapping ef-
fect as in Lohner’s method. Hence, propagating the global
excess in VSPODE is similar to propagating global excess
in traditional methods. However, due to the more elaborate
enclosures of TCs, this excess often remains smaller (and
the enclosures tighter) in VSPODE compared to the excess
in traditional methods; see for comparison the numerical re
sults in [32].

4. VNODE-LP

Figure 5. Producing C++ and
web files

ctangle source
code
web file(s)
cweave latex file

IATEX files from

the CWEB package [28]. The LP document [40], which
contains theory, code, examples, user guide, etc.,

is gener

ated by executingweave [28] on VNODE-LP’s web files;

4.1. Motivation

see Figure 5. The C++ code of VNODE-LP and all the ex-

amples in [40] are generated by executaigngle [28]
In general, interval methods produce results that cangp, those files (Figure 5).

have the power of a mathematical proof. As shown in the
previous section, when computing an enclosure of the so-
lution of an IVP ODE, an interval method first proves that
there exists a unique solution to the problem and then pro-
duces bounds that contain it. When solving a nonlinear
equation, an interval method can prove that a region does
not contain a solution or compute bounds that contain a
unigue solution to the problem.

However, if such a method is not implemented correctly,
it may not produce rigorous results. Furthermore, we can-
not claim mathematical rigor if we miss to include even a

Some of the benefits of using LP follow.

e We can combine theory, source code, and documenta-

tion in a single document.

e With LP, we can produce nearly “one-to-one” trans-

lation of the mathematical theory of a method into a
computer program. In particular, we can split the the-
ory into small pieces, translate each of them, and keep
mathematical expressions and the corresponding code
close together in a unified document. This facilitates

single roundoff error in a computation. Therefore, it is of

3web” is unrelated to the World Wide Web.



verifying the correctness of smaller pieces and of a 4.4. Packages and platforms
program as a whole.

e Since theory and implementation are in a single doc- V_NODE—LP compiles with either of the interval arith-
ument, it is easier to keep them consistent, comparedMetic (IA) packages PROFIL/BIAS [27] or FILIB++

to having separate theory, source code, and documenl30]. The interface to an IA package is encapsulated in
tation. about 25 short wrapper functions that call functions from it

[40]. In principle, one should be able to incorporate a diffe
Finally, if the correctness of the manuscript [40] is con- ent IA package without major difficulties by implementing
firmed by reviewers in a peer-review-like process, we may these wrapper functions.
trust in the correctness of the implementation of VNODE-  The automatic differentiation is done through FAD-
LP, and accept the bounds it computes as rigorous. WhenBap++ [55], and the necessary (non-rigorous) linear al-
claiming rigor, we presume that the operating system, com-gepra is done through LAPACK and BLAS.
piler, and the packages VNODE-LP uses do not contain er-  1q gate, VNODE-LP has installed successfully with the

rors. GNU C++ compiler as shown below:
4.3. Overview IA oS Architecture
FILIB++ Linux x86
In its basic usage, VNODE-LP attempts to compute Solaris Sparc
bounds on the solution of PROFIL  Linux x86
Solaris Sparc
Y = f(t,y), ylto) €y Mac OSX PowerPC

at a given pointeng # to. (Here,y, € IR"™, andtg, tend € Windows with Cygwin  x86

R.) If VNODE-LP cannot reachteng for example if the
bounds are too wide, bounds on the solution at ste- 4.5. Performance
tweenty andteng are returned.

This package is applicable to ODE problems for which
derivatives of the solution exist to some order. Hence, the
code list of f should not contain functions such alss or

We report numerical results to illustrate some of the is-
sues in this area. The computations are performed on a
3 GHz dual-core Pentium with 2GB RAM and 4MB L2
min. . . .

. . cache. The operating system is Linux (Fedora), the com-

When integrating fromty 10 feng, VNODE-LP can also piler is gcc version 4.1.1, and the IA package is PRO-

returnr??he?cg srt]egl)dan endclosgyrjeoln th~e SOILf[trllon atl ptplnt FIL/BIAS. VNODE-LP and the supporting packages are
t; such that (3) holds, and an enclosgreon the solution compiled with option02 .

over|[t;,t;+1] such that (2) holds. Examples of how such
enclosures are obtained are given in [40].

The HOE method (cf. Section 3) isimplemented in Algo- Work versus order
rithm 1, and the interval Hermite-Obreschkoff method [39] We integrate the Lorenz system
is implemented in Algorithm Il. (The latter can be viewed
as a generalization of a Taylor series method.) VNODE-LP Yy = 10(ya — 1)
features variable stepsize control and constant order. The vh = y1(28 — y3) — y (13)
stepsize is varied such that an estimate of the size of the lo- 2 ' S
cal excess per unit step in Algorithm | is below a tolerance. Yz = y1y2 — 8/3y3
Namely,h; is selected such that

with
BE|[w( M @) S by (atol + xtol - |y, ). y(0) = (15,15,36)7, ¢ € [0, 20]
whereatol andrtol are absolute and relative tolerances, re- andatol = rtol = 10~7,107%, 10~!*, and10~'3. In Fig-
spectively, with default values afo—12, and|| - || is the ure 6, we plot the user CPU time (in seconds) taken by
infinity norm. VNODE-LP versus the order of the method. As can be seen

Typical values for the order can be between 20 and 30from this figure, choosing the optimal value for the order
(cf. Subsection 4.5), and a default order is set to 20. Thereis not crucial for the efficiency of the integration: any or-
is also improved wrapping effect control compared to VN- der around 20 yields good performance. Experience shows
ODE [43] by combining the parallelepiped and QR factor- that, in general, the value for the order that results in the
ization methods [40]. least amount of work is located in a rather flat minimum.
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Figure 6. Work versus order for the Lorenz

system.

order

Work versus problem size
We give the DETEST [23] problem C3

1 0 O

-2 1 0

1 -2 1
1 -2
0 1

o O O

1
-2

with y(0) = (1,0, ...,0) to VNODE-LP.

We integrate with problem sizes= 40, 60, . . ., 300 for

€ [0,5]. In this and the remaining examples, we use the
default order 20 andtol = rtol = 10~'2. In Figure 7, we
plot in a log-log scale the CPU time per step versusor

eachn, VNODE-LP takes 8 steps.

10%
l02 L
Q)
)
% 10t
()
£
0|
> 10
O
107t
40

Figure 7. CPU time versus n for the DETEST

C3 problem.

60 80 100 140
n

200 260

wrapping effect, and this complexity is a serious obstacle
towards solving larger problems.

Remark. To keep the dependence on an IA package as
minimal as possible, the author has implemented the in-
terval linear algebra through the C++ standard template li-
brary, not exploiting PROFILs matrix and vector opera-
tions, which are optimized in terms of minimizing rounding
mode switches. The presentimplementation of VNODE-LP
does not attempt to minimize the number of these switches
in matrix and vector operations. If such optimizations are
taken into account, the running time would be reduced, but
it will be still O(n?).

Stiff problems

We integrate Van der Pol’s equation (written as a first-order
system)

Yi =2

yo = n(l —yDy2 —

with (0) = (2,0)” andteng = 200. We varyy and report
the number of steps and CPU time used by VNODE-LP in
Table 2.

1 steps CPU time (s)

10* 2377 0.8
102 11697 3.6
103 126459 36.1
10* 1180844 336.4

Table 2. Number of steps and CPU time when
integrating the Van Der Pol system.

As u increases, the stiffness of this problem increases,
and VNODE-LP is forced to take very small stepsizes, re-
sulting in an inefficient integration. For an efficient intag
tion of stiff problems, we need a scheme that would allow
much larger stepsize, and no such scheme is available to
date.

In passing we note that, for the same order of the trun-
cation error, an interval Hermite-Obreschkoff method al-
lows larger stepsizes than an interval Taylor series method
[39, 41]. However, as shown in [39], these methods have
a restriction on the stepsize due to the associated formula

On this problem, the linear algebra contributes the most for the truncation error. As a consequence, their stabgity
in the total amount of work. From Section 3 (and this plot), determined not only by the stability function of the under-

it is obvious that this work grows like®. TheO(n?) com-

lying formula, as in a standard ODE method, but also by the

plexity comes from the matrix operations in reducing the associated formula for the truncation error.



Interval initial conditions

We illustrate how the bounds behave when integrating the
Lorenz system with

15+ [-107%,1074]
15+ [-107%,107%]
36 4+ [—1074,1074]

y(0) € (14)

In Figure 14, we plot the bounds an versust. In the
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Figure 8. Bounds on y; versus ¢ for the Lo-
renz system (13) with (14).

second plot, we show the computed bounds and their mid-
points. Clearly, one should expect a divergence of these
bounds. Once they start growing, typically they explode in

size very soon. Here, a Taylor model integrator, such as
COSY VI, may be able to compute tighter bounds over a

longer time interval.

5. On solving DAEs

5.1. Pryce’s structural analysis

We consider an IVP for a DAE system withequations
fi in n_dependent variables; = x;(t). We write infor-
mally

fi(t, thex; and derivatives of then=0  (15)

(1 <i < n). Thef; are assumed sufficiently smooth. They
can be arbitrary expressions built from thg andt using

+, —, X, -+, other standard functions, and the differentiation
operatord? /dtP.

A common measure of the numerical difficulty of a DAE
is its differentiation index/,; [13], the number of times the
fi must be differentiated (w.r.t) to obtain equations that
can be solved to form an ODE system for the As shown
in [46, 47], a method based on Pryce’s SA and Taylor series
does not find high index inherently hard.

The steps of this SA are summarized below.

1. Formthen x n signature matriz = (o;;), where

Uij—{

Find a Highest Value Transversal (HVT), whichris
positions(z, j) in X with one entry in each row and
column such tha} " o;; is maximized.

order of derivative of; in f;, or
—oo if z; does not occur iry;.

. Find the smallest “offsets’;, d; > 0 satisfying

forall ,57=1,...,nand
on the HVT.

dj —¢; > 05
d;

—C; =045

Steps 2 and 3 are equivalent to a linear assignment
problem and its dual.

4. Form the system Jacobidnwhere

ofi
ox

if d; — C; = 044
Jij: J J

(ij)

0 otherwise

Example. Consider the simple pendulum,
0=f=a"+2z\
0=g9g=9y"+y -G
0=h=a"+y>—L?

which is an index-3 DAE. The dependent variables are

y, and \; G (gravity) andL (length) are constants. The
While several interval solvers for IVPs for ODEs are Signature matrix and the offsets are

publicly available, no software is available for computing
rigorous bounds on the solution of IVP DAEs. A promising
approach for building an interval method (and a solver) for
DAEs is Pryce’s structural analysis [52] combined with a
Taylor series expansion of the solution of a DAE. We out-
line this analysis and summarize work to date.

x y A Ci
f /720 —oco  Ox 0
v 9 (—oo 2 0° ) 0
h \ Ox 0° —o0o/ 2
d; 2 2 0



There are two HVTs, which are marked byando. The 5.2. Work to date
system Jacobian is

af 0 o Chang and Corliss [15] show how to generate Taylor se-
9" oA ries for the simple pendulum DAE. Then Corliss and Lod-
J=10 % % . wick [17] show how to use interval techniques to obtain
% % 0 bounds on the solution of a simple linear DAE with AWA.
z Y

They assume that consistent initial conditions are gived, a

If J is nonsingular at aonsistent pointhen the SAsuc-  consistency on subsequent steps is a result of AWAs vali-
ceeds, and the DAE is solvable in a neighborhood of this dation algorithm. In [16], they investigate the role of con-
point [51, 52]; see also [46]. Provided that the SA suc- straints in an interval method for DAEs when applied to the

ceeds, it derives structural index simple pendulum, and in particular, how to use these con-
straints to verify consistency of user-supplied initiahde
1 ifsomed; =0 tions; to suggest consistent initial conditions if necegsa
Vg = maxc; + . . " .
i 0 otherwise and to tighten initial conditions (on first and subsequent

steps) by a Gauss-Seidel iteration or intersecting with the
which is the same as that found by the method of Pantelidesconstraints.

[49]. Itis shown in [52] thaty < v; often they are the Hoefkens [14] uses Pryce’s structural analysis to convert

same. a DAE into a generalized ODE, which is then solved in a
In the pendulum exampld,is nonsingular for any values  rigorous way using Taylor models and the COSY package

of z andy, and the index i, = vy = 3. [5]. We note that transforming a DAE into an ODE usu-

To solve (15) by Taylor series, one can use AD to gener- g|ly increases the size of the problem to be solved and may
ate functions for evaluating TCs of the equatignsEquat- destroy its original sparsity pattern.
ing these coefficients to zero gives equations that aredolve  The rest of this summary includes work on computing
for the TCs of the solution components(¢). The off-  approximate DAE solutions using Taylor series. The au-
sets prescribe how to o_rganize the computation of Tcsthorhas developed a C++ package DAETS for solving high-
[46, 51, 52] for the solution components of (15); that is, ingex, fully-implicit, arbitrary order DAES in the form (35
what equation to solve and for vyhlch TCs of the_solu_non. This package takes a C++ description of the DAE, generates
_ We believe that the computation of TCs described in [46] ; through operator overloading, finds the problem offsets,
Qnthe point, approximate case) can b.e. extended to computng computes TCs using FADBAD++. Then an approx-
ing interval enclosures of such coefficients. Hence, Algo- jmate solution is obtained by summing these coefficients
rithm | and Algorithm Il could be carried out in the DAE (with appropriate stepsize) and projecting it to satisfy th
case. A key issue is to ensure that the initial values on theconstraints of the DAE. Theory, algorithmic details, and ex
first and subsequentintegration steps are consistenthth t amples produced by DAETS are given in [46, 47].
DAE. That is, they must satisfy the constraints of the DAE,  \naither and Griewank [20] report of a similar imple-

which can include hidden constraints. Pryces’s SA identi- .\ antation (to DAETS) of a Taylor series method based on
fies the constraints of the DAE using the offsgtsNamely, Pryce’s analysis, but using the ADOL-C package.

P f_(cyz—l) —0 Finally, Barrio [5] uses MTHEMATICA to computeX:,

v set up an ODE system, and then generate FORTRAN 77
must hold for alli = 1,...,n, from which we can deter- ~ code for evaluating TCs for the ODE system. In [6], he
minea;, 2/, ... 7x§_drl) forj=1,...,n. studies the applicability of Taylor series methods for sens

For example, for the simple pendulum the valuesafor tivity analysis of ODEs and DAEs, where DAEs are solved
2/, y, andy’ must satisfy the obvious and hidden constraints USing Pryce’s SA and very high-order Taylor series.

> +y*—L?>=0 and

/ p (16) 6. Conclusion
e +yy =0,

respectively. In an interval setting, given intervals esel In the area of interval methods for IVPs for ODEs, we
ing x andz’, one may apply an interval Newton method to would like to be able to compute efficiently tight bounds on
enclosey andy’, or given intervals for, 2/, y, ', onemay  solutions of much larger problems than the currenttools can
verify that they contain a point satisfying (16). handle. A major obstacle is th@(n3) complexity, when

4Although applicable to a wide range of DAES, there are prolslen deallng with the wrapping effect on each Integration step.

which this SA fails; that is, whed is singular at a point at which the DAE ~ Beating this complexity in a genera_l method may be diffi-
is solvable. Examples of such problems are discussed irb462]. cult, but one may develop more efficient methods for classes




of ODEs. For example, the wrapping effect does not oc-
cur when integrating quasi-isotone problems [44]. The DE-
TEST C3 (Subsection 4.5) is such a problem, but it was
integrated with a general-purpose ODE solver, which does
not take into account quasi-isotonicity.

Although high-order Taylor series may be reasonably ef-
ficient for mildly stiff ODEs, we do not have an interval
method suitable for stiff ODEs. A major challenge and op-
portunity in this area is to devise an efficient interval noeth
for stiff problems.

The DETEST test set [23] and now the Test Set for IVP
Solvers [36] are standard in assessing and comparing (ap
proximate) IVP ODE solvers. As the area of interval ODE
solving is maturing, and various interval solvers for IVPs

(9]

[10]

[11]

2]

[13]

ODEs are available, we need a sound and comprehensive

methodology for assessing and comparing these solvers.

Finally, building an interval DAE solver of the quality
of existing interval ODE solvers is a challenge, but feasibl
with the recent progress on both theory and implementation
of Taylor series methods for DAEs.
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