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Abstract

We overview the current state of interval methods and
software for computing bounds on solutions in initial value
problems (IVPs) for ordinary differential equations (ODEs).
We introduce the VNODE-LP solver for IVP ODEs, a suc-
cessor of the author’s VNODE package. VNODE-LP is
implemented entirely using literate programming. A ma-
jor goal of the VNODE-LP work is to produce an interval
solver such that its correctness can be verified by a human
expert, similar to how mathematical results are certified for
correctness.

We also discuss the state in computing bounds on solu-
tions in differential algebraic equations.

1. Introduction

We consider the initial-value problem (IVP)

y′(t) = f(y), y(t0) = y0, y ∈ R
n, t ∈ R. (1)

Since interval methods for IVPs for ordinary differential
equations (ODEs) are typically based on Taylor series,
which require the computation of Taylor coefficients (TCs)
for y up to some orderk ≥ 1, we assume thatf is as differ-
entiable as needed.

The initial condition can be in an interval vectory0, that
is, y0 ∈ y0. If we denote the solution of (1) byy(t; t0, y0),
we denote byy(t; t0, y0) the set of solutions originating
from each initial condition iny0:

y(t; t0, y0) =
{
y(t; t0, y0) | y0 ∈ y0

}
.

Given tend > t0, we wish to compute interval vectors that
are guaranteed to contain the solution to (1) at pointstj for
which t0 < t1 < t2 < · · · < tN = tend. Namely, we want
to findyj such that

y(tj ; t0, y0) ⊆ yj for all j.

When computing theseyj , we use interval methods to
enclose roundoff and truncation errors in the computed
bounds, thus obtaining rigorous bounds on the true solution
of the ODE [24, 44].

When describing the theory of these methods, it is con-
venient to work with an autonomous ODE. However, this
is not a restriction, as the theory can be applied to non-
autonomous systems, or a non-autonomous system can be
converted into an autonomous one. Also for convenience,
we require thattend > t0, but in generaltend may be less
thant0.

Section 2 lists software packages for computing bounds
on the solution of (1) and lists various applications. Sec-
tion 3 outlines some of the theory behind interval methods
for IVP ODEs. Section 4 gives an overview of VNODE-
LP, elaborates on literate programming (LP), and presents
numerical results to illustrate some of the issues in these
methods. Section 5 outlines Pryce’s [52] structural anal-
ysis for solving systems of differential algebraic equations
(DAEs) and summarizes work to date on Taylor series meth-
ods for DAEs. Conclusions are in the last Section 6.

In this paper, we assume knowledge of interval arith-
metic and basic interval techniques (see for example [2,
37]). Intervals, interval vectors, and interval matrices will
be in bold font.

2. Software and applications

In Table 1, we list packages for computing bounds on
the solution of an IVP ODE. We refer to the methods im-
plemented in the packages AWA [33], ADIODES [54], VN-
ODE [43], VNODE-LP [40], and VODESIA [18] as “tradi-
tional” interval methods for IVP ODEs. The COSY VI [9]
solver is based on Taylor models [48], and VSPODE [32]
can be viewed as a mixture of traditional methods and Tay-
lor models.1 All require computing TCs, while ValEncIA-
IVP [4] needs only the Jacobian off .

1To the author’s knowledge, VODESIA is not publicly available, and
VSPODE is available by request from the authors.



package year language
AWA 1988 Pascal-XSC
ADIODES 1997 C++
COSY VI 1997 Fortran

C++ interface
VNODE 2001 C++
VODESIA 2003 Fortran-XSC
VSPODE 2005 C++
ValEncIA-IVP 2005 C++
VNODE-LP 2006 C++

Table 1. Packages for computing bounds in
IVP ODEs.

A notable contribution to this area are the automatic dif-
ferentiation (AD) packages FADBAD [7] and TADIFF [8],
and now FADBAD++ [55]. They have been instrumental in
VNODE, VNODE-LP, and VSPODE for computing TCs of
an ODE solution and TCs of the solution to the associated
variational equation, and in ValEncIA-IVP for evaluating
the Jacobian off .

In general, traditional methods produce tight bounds on
solutions in linear ODEs and in nonlinear problems, when
the computed enclosures remain sufficiently small. If the
overestimations in the computed bounds start growing, then
these bounds typically blow up quickly. In particular, on
nonlinear ODEs, if the initial condition set is not very small,
or long integration is desired, these methods usually break
down because of overestimations on the computed solution
sets.

Taylor model integration is more effective than tradi-
tional methods at producing tight enclosures on a solution
to a nonlinear ODE, with an initial condition set that is not
very small and over longer integration intervals. However,
Taylor models become expensive computationally on larger
problems (more than 5–10 equations), while a traditional
method, from the author’s experience, can deal with a few
hundred equations.

While applications of interval methods for ODEs were
scarce ten years ago, we see a variety of applications in the
last few years; in particular, after the VNODE solver be-
came available, and COSY VI with its Taylor models be-
came popular.

Application of these methods include rigorous computa-
tion of asteroid orbits [11], studying long-term stabilityof
large particle accelerators [12], global optimization forpa-
rameter estimation in chemical engineering [31], and simu-
lation of wastewater treatment processes [26]. The VNODE
package has been employed in rigorous multibody simula-
tions [3], reliable surface intersection [38, 50], robust eval-
uation of differential geometry properties [29], computing
bounds on eigenvalues [14], parameter and state estimation
[25, 53], rigorous shadowing [21, 22], and theoretical com-
puter science [1].

3. Theory

We outline the theory of a traditional interval method
for IVP ODEs (Subsection 3.1), discuss briefly Taylor mod-
els (Subsection 3.2), and show how they work in VSPODE
(Subsection 3.3).

3.1. Traditional methods

Suppose that we have computedyj at tj such that

y(tj ; t0, y0) ⊆ yj .

We advance to the next point in time in two phases.
ALGORITHM I tries to find an interval[tj , tj+1] and an

a priori enclosurẽyj such thaty′ = f(y), y(tj) = yj has a
unique solution for allyj ∈ yj and allt ∈ [tj , tj+1], and

y(t; tj , yj) ⊆ ỹj for all t ∈ [tj , tj+1]. (2)

Proving existence and uniqueness, and finding[tj , tj+1]
andỹj , is usually based on applying a fixed-point theorem
[19, 33, 39]. In practice, if the stepsizehj+1 = tj+1 − tj
(determined in this phase) is smaller than a value for the
smallest allowable stepsize, then normally the integration
cannot proceed [40]. That is, we cannot validate existence
and uniqueness.

ALGORITHM II usesỹj to enclose the truncation error of
the method and computes a tighter enclosureyj+1 at tj+1

such that

y(tj+1; t0, y0) ⊆ yj+1 ⊆ ỹj . (3)

Figure 1 depicts bounds produced in these two phases.2
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Figure 1. A priori and tight bounds.

Methods for implementing the above two phases are usu-
ally based on Taylor series. One reason for their popularity

2For this visualization, the tight bounds are connected withlines, which
do not necessarily enclose the true solution.



is that it is relatively easy to enclose the truncation errorof
the method; see also [44]. Before we describe how these
two algorithms work, we introduce convenient notation for
TCs.

Taylor coefficients.Denote

f [0](y) = y,

f [i](y) =
1

i

(
∂f [i−1]

∂y
f

)
(y) for i ≥ 1.

Given the IVPy′(t) = f(y), y(tj) = yj, we have for the
ith TC of its solution

y(i)(tj)

i!
= f [i](yj).

Such coefficients can be computed through source-code
translation [15] or operator overloading, as in TADIFF and
FADBAD++, for example. These packages can compute
TCs with a user-supplied data type. In particular, given an
interval as an input, they can generate interval TCs.

We note that to computek coefficients, we requireO(k2)
work. Given a stepsizeh, one can generate scaled TCs di-
rectly, that ishif [i](yj), instead of computing firstf [i](yj)
and then multiplying it byhi.

Computing a priori bounds. In VNODE, VNODE-LP,
and VSPODE, Algorithm I implements the High-Order En-
closure (HOE) method [45]. It is based on the following
result: ifyj is in the interior of̃yj , and

yj +

k−1∑

i=1

(t − tj)
if [i](yj) + (t − tj)

kf [k](ỹj) ⊆ ỹj (4)

(k ≥ 1) for all t ∈ [tj , tj+1] and allyj ∈ yj , then there
exists a unique solution toy′ = f(y), y(tj) = yj for all
yj ∈ yj and

y(t; tj, yj) ∈ yj +

k−1∑

i=1

(t− tj)
if [i](yj) + (t− tj)

kf [k](ỹj)

for all t ∈ [tj , tj+1] and allyj ∈ yj .
Whenk = 1, we obtain the method in AWA, but it re-

stricts the stepsizes similarly to Euler’s method. An advan-
tage of the HOE method is that it allows larger stepsizes
compared to AWA. Moreover, a good stepsize control can
be conveniently incorporated in the HOE method. Details
are in [40, 45].

Computing tight bounds. Usingỹj , we wish to compute a
tighter enclosureyj+1 such that (3) holds. A basic approach
is to use Taylor series. Writing a Taylor series expansion,
we can compute

yj+1 := yj +

k−1∑

i=1

hi
jf

[i](yj) + hk
j f [k](ỹj)

(hj = tj+1 − tj), which contains the true solution, but the
width of yj+1 is

w(yj+1) ≥ w(yj), and usuallyw(yj+1) > w(yj),

even if the solutions are contracting—“naive” method.
To obtain a scheme that could follow contracting solu-

tions, we apply the mean-value evaluation: for anyyj , ŷj ∈
yj ,

yj +

k−1∑

i=1

hi
jf

[i](yj) + hk
j f [k](ỹj)

⊆ ŷj +

k−1∑

i=1

hi
jf

[i](ŷj) + hk
j f [k](ỹj)

+

{
I +

k−1∑

i=1

hi
j

∂f [i]

∂y
(yj)

}
(yj − ŷj),

(5)

whereI is then × n identity matrix. The above Jacobians
can be evaluated through AD by generating TCs for the so-
lution to the associated variational equation [33, 39]. The
FADBAD++ [55] package can readily evaluate these Jaco-
bians [40, 43].

ŷj

tj tj+1 t

true solutions

uj+1 + zj+1yj

yj+1

Figure 2. The enclosure at tj+1 is formed from
an approximate point solution, an enclosure
on the local excess, and an enclosure on the
propagated global excess.

Based on (5), we can form an enclosureyj+1 consisting
of (see also Figure 2)
(a) a point approximationuj+1 = ŷj +

∑k−1
i=1 hi

jf
[i](ŷj);

(b) an enclosurezj+1 = hk
j f [k](ỹj) of the truncation error;

this enclosure can be viewed as the excess introduced on the
current integration step over the true solution set, orlocal
excess[39]; and
(c) an enclosureSj(yj − ŷj), where

Sj = I +

k−1∑

i=1

hi
j

∂f [i]

∂y
(yj),



of the propagatedglobal excess[39] to tj+1. One can view
yj − ŷj as an enclosure of the global excess attj .

Thus,

yj+1 := uj+1 + zj+1 + Sj(yj − ŷj). (6)

Since we also enclose roundoff errors in the above compu-
tations, when executed in machine interval arithmetic, we
have a rigorous enclosure on the true solution of (1).

There are two major sources of overestimation in (6).
First, we have a high-order Taylor series expansion in time,
but only a first-order Taylor series expansion in space. In
general, we cannot expect to compute tight bounds for non-
linear ODEs when the initial set, hereyj , is not sufficiently
small. For linear ODEs, we do not have overestimations in
the Jacobian evaluations, as they do not depend onyj .

Second, there is typically wrapping effect [37, 42] origi-
nating from the productSj(yj − ŷj). Because of the wrap-
ping effect, the scheme (6) can follow contracting solutions
in a few special cases only [42].

Wrapping effect. For simplicity in the illustration that fol-
lows, Figure 3.1, assumen = 2, Sj ∈ Sj is a2 × 2 point
matrix, and denoteaj = yj − ŷj. We are interested in the
set{Sja | a ∈ aj}, cf. (6), but we compute in interval arith-
metic the boxSjaj , which can introduce significant over-
estimation over the parallelepiped{Sja | a ∈ aj}. Then,
we have to work with this box on the next step, may have
another overestimation, and so on. Such overestimations
can quickly accumulate, leading to the wrapping effect and
a blow up in the computed bounds.

Lohner’s QR factorization method [33] for reducing the
wrapping effect puts a box in a moving orthogonal coor-
dinate system, and this box matches one of the edges of
the enclosed parallelepiped. We can always “match” the
longest edge, and intuitively, introduce a smaller overesti-
mation.

Reducing the wrapping effect. Instead of working with
box enclosuresyj , we can also represent an enclosure on
the solution in the form

yj ∈ { ŷj + Ajrj | rj ∈ rj},

whereŷj ∈ R
n, Aj ∈ R

n×n is nonsingular, andrj ∈ IR
n.

(IRn denotes the set ofn-dimensional interval vectors.)
Instead of computing with (6), we proceed as follows.

We set initially

A0 = I, ŷ0 = m(y0), and r0 = y0 − ŷ0,

where m(·) denotes componentwise midpoint. Then on
each step, we find

yj+1 = uj+1 + zj+1 + (SjAj)rj ,

ŷj+1 = uj+1 + m(zj+1),

{Sja | a ∈ aj}

(a) (b)

(d)

Sjaj

(c)

aj

Figure 3. (a) aj = yj − ŷj; (b) wrapping in the
original coordinate system; (c) and (d) wrap-
ping in a moving orthogonal coordinate sys-
tems that matches one of the edges of the
enclosed set.

select a nonsingularAj+1, and form

rj+1 =
{
A−1

j+1(SjAj)
}
rj + A−1

j+1

{
zj+1 − m(zj+1)

}
.

The selection ofAj+1 is crucial for the performance of
this scheme. IfAj+1 = m(SjAj), we have theparal-
lelepipedmethod [19, 33]. It frequently breaks down be-
cause theAj become ill conditioned, and the computed
bounds become too wide.

In Lohner’s QR method, we selectAj+1 = Qj+1 from
the QR factorizationQj+1Rj+1 = m(SjAj). We enclose
in a moving orthogonal coordinate system, and we can al-
ways “match” the longest edge of the enclosed set by a suit-
able permutation of the columns of m(SjAj), [33]. An
eigenvalue-type analysis shows that the QR method pro-
vides good stability for the underlying interval method [42].

3.2. On Taylor models

The above approach uses a parallelepiped to enclose a
solution set, which may not be convex. Inherently, methods
of this type cannot follow accurately complicated solution
sets and can produce large overestimations.

An integration based on Taylor models [10, 35] repre-
sents a solution enclosure as a multivariate polynomial in
y0, wherey0 ∈ y0, plus a small remainder interval. As a



result, such enclosures are not necessarily convex and can
describe a solution set much more accurately than a paral-
lelepiped.

Let F be the set of continuous functions onx ∈ IR
n to

R, let p : R
n → R be a polynomial of orderm, and letr be

an interval. A Taylor model is (cf. [48,§2.3])

{
f ∈ F | f(x) ∈ p(x) + r for all x ∈ x

}
.

Arithmetic operations and elementary functions can be im-
plemented on Taylor models such that each of these opera-
tions results in a Taylor model [10, 34].

In practice, given a sufficiently differentiableg on x ∈
IR

n and x0 ∈ x, one can apply a (multivariate) Taylor
expansion ofg aroundx0 to construct a polynomial ap-
proximationp(x − x0) to g(x) and enclose the error term
(for all x ∈ x) in this expansion in an intervalr. Then
g(x) ∈ p(x−x0)+r for all x ∈ x. We refer top(x−x0)+r

as a Taylor modelTg of g.
Figure 4 illustrates a Taylor model of a function. If its

range is enclosed by an interval, we would propagate a box
through a computation. With Taylor models, we propagate
a Taylor modelTg, a much tighter enclosure ofg than an
interval enclosure.

x

Tg
g(x)

Figure 4. Function and its Taylor model en-
closure.

In this paper, we show how Taylor models are incorpo-
rated in VSPODE. A good exposition of how “full” Taylor
model integration works is in [48].

3.3. Taylor models in VSPODE

Lin and Stadtherr [32] consider the IVP

y′ = f
(
y(t), θ

)
, y(t0) = y0 ∈ y0, θ ∈ θ, (7)

wheret ∈ R, y ∈ R
n, y0 ∈ IR

n, θ ∈ IR
l, θ is a parameter,

andf is assumed sufficiently differentiable, so TCs fory up
to some orderk ≥ 1 can be computed.

The goal is to enclose the solution to (7) for ally0 ∈ y0

and allθ ∈ θ. The method implemented in VSPODE works

as follows. Initially, set Taylor models

y0 ∈ Ty0
= m(y0) +

(
y0 − m(y0)

)
+ [0, 0]n and

θ ∈ Tθ = m(θ) +
(
θ − m(θ)

)
+ [0, 0]p,

where [0, 0]n denotes then vector with all components
[0, 0].

We denote the solution to (7) byy(t; t0, y0, θ). Assume
that, attj ,

y(tj ; t0, y0, θ) ∈ pj(y0, θ) + vj , (8)

wherepj : R
n+l → R

n is a polynomial iny0 andθ of some
degree, saym, andvj ∈ IR

n. That is, we have a Taylor
model attj .

Then attj+1, for anyyj ∈ pj(y0, θ)+vj and anyθ ∈ Tθ,

y(tj+1; t0, y0, θ) ∈

k−1∑

i=0

hi
jf

[i](yj , θ) + hk
j f [k](ỹj , θ)

⊆

k−1∑

i=0

hi
jf

[i](pj + vj , Tθ) + wj+1, (9)

where thef [i] are functions of bothy andθ, and

wj+1 = hk
j f [k](ỹj , θ),

in which ỹj is an a priori enclosure over[tj , tj+1].
The termwj+1 is computed with the HOE method. The

TCsf [i], for i = 1, . . . , k − 1, can be enclosed by perform-
ing Taylor model arithmetic through a TC computation.
That is, suppose we have a program for computing TCs that
works with a generic data type (TADIFF and FADBAD++
allow user-defined types). If we have a Taylor model class
with overloaded arithmetic operations and elementary func-
tions, we can execute TC computation with our program
and objects of this class. Hence, we can enclose thef [i], and
thereforey(tj+1; t0, y0, θ), for all y0 ∈ y0 and allθ ∈ θ.
However, since intervals are involved in evaluating the code
list of eachf [i] in (9), the widths of the enclosures that we
would compute using (9) grow similarly to the widths in
the naive Taylor series method described earlier (but likely
much slower).

Applying the mean-value theorem to thef [i] and evalu-
ating them withpj andTθ, we have

y(tj+1; t0, y0, θ) ∈

k−1∑

i=0

hi
jf

[i](pj , Tθ) + wj+1

+

(
k−1∑

i=0

hi
j

∂f [i]

∂y
(yj , θ)

)
vj.

(10)

When evaluating
∑k−1

i=0 hi
jf

[i](pj , Tθ), we can construct a
polynomialpj+1(y0, θ) of degreem, enclose the resulting



higher order terms, and include this enclosure andwj+1 in
an interval (vector)uj+1 [32]. That is, we have

k−1∑

i=0

hi
jf

[i](pj , Tθ) + wj+1 ⊆ pj+1(y0, θ) + uj+1. (11)

Denoting

V j =

k−1∑

i=0

hi
j

∂f [i]

∂y
(yj , θ),

we have from (10) and (11) that

y(tj+1; t0, y0, θ) ∈ pj+1(y0, θ) + uj+1 + V jvj . (12)

If we implement a scheme based on (12), the product
V jvj would typically give rise to the wrapping effect. To
reduce it, instead of (8), VSPODE uses the representation

{
pj(y0, θ) + Bjs | y0 ∈ y0, θ ∈ θ, s ∈ sj

}
,

whereBj ∈ R
n×n is nonsingular, andsj ∈ IR

n, as an
enclosure on the solution set attj . Then (12) becomes

y(tj+1; t0, y0, θ) ∈ pj+1(y0, θ) + uj+1 + (V jBj)sj .

For the next step,Bj+1 and sj+1 are computed as in
Lohner’s method.

We evaluate Jacobians off [i] overyj (and in this case
θ) as in traditional methods and deal with the wrapping ef-
fect as in Lohner’s method. Hence, propagating the global
excess in VSPODE is similar to propagating global excess
in traditional methods. However, due to the more elaborate
enclosures of TCs, this excess often remains smaller (and
the enclosures tighter) in VSPODE compared to the excess
in traditional methods; see for comparison the numerical re-
sults in [32].

4. VNODE-LP

4.1. Motivation

In general, interval methods produce results that can
have the power of a mathematical proof. As shown in the
previous section, when computing an enclosure of the so-
lution of an IVP ODE, an interval method first proves that
there exists a unique solution to the problem and then pro-
duces bounds that contain it. When solving a nonlinear
equation, an interval method can prove that a region does
not contain a solution or compute bounds that contain a
unique solution to the problem.

However, if such a method is not implemented correctly,
it may not produce rigorous results. Furthermore, we can-
not claim mathematical rigor if we miss to include even a
single roundoff error in a computation. Therefore, it is of

paramount importance to ensure that an interval algorithm
is encoded correctly in a programming language.

In the author’s opinion, interval software should be pro-
duced in a form such that program correctness can be cer-
tified in ahuman peer-review process, like a mathematical
proof is checked for correctness. This is in contrast to me-
chanical software verification, when a proof tool is applied
to verify code against given specifications.

A major goal of the VNODE-LP work is to implement
and document an interval solver for IVPs for ODEs such
that its correctness can be verified by a reviewer.

4.2. Literate programming

To accomplish our goal, we have chosen the LP ap-
proach. The author has found LP particularly suitable for
ensuring that an implementation of a numerical algorithm is
a correct translation of its underlying theory into a program-
ming language. With LP, theory, code, and documentation
are interwoven in LATEX-like webfiles.3 The source code is
extracted in atangleprocess, and the documentation is cre-
ated in aweaveprocess. With VNODE-LP, we have used

w e b fi l e ( s ) s o u r c ec o d e
l a t e x fi l e

c t a n g l e
c w e a v e

Figure 5. Producing C++ and LATEX files from
web files

the CWEB package [28]. The LP document [40], which
contains theory, code, examples, user guide, etc., is gener-
ated by executingcweave [28] on VNODE-LP’s web files;
see Figure 5. The C++ code of VNODE-LP and all the ex-
amples in [40] are generated by executingctangle [28]
on those files (Figure 5).

Some of the benefits of using LP follow.

• We can combine theory, source code, and documenta-
tion in a single document.

• With LP, we can produce nearly “one-to-one” trans-
lation of the mathematical theory of a method into a
computer program. In particular, we can split the the-
ory into small pieces, translate each of them, and keep
mathematical expressions and the corresponding code
close together in a unified document. This facilitates

3“web” is unrelated to the World Wide Web.



verifying the correctness of smaller pieces and of a
program as a whole.

• Since theory and implementation are in a single doc-
ument, it is easier to keep them consistent, compared
to having separate theory, source code, and documen-
tation.

Finally, if the correctness of the manuscript [40] is con-
firmed by reviewers in a peer-review-like process, we may
trust in the correctness of the implementation of VNODE-
LP, and accept the bounds it computes as rigorous. When
claiming rigor, we presume that the operating system, com-
piler, and the packages VNODE-LP uses do not contain er-
rors.

4.3. Overview

In its basic usage, VNODE-LP attempts to compute
bounds on the solution of

y′ = f(t, y), y(t0) ∈ y0

at a given pointtend 6= t0. (Here,y0 ∈ IR
n, andt0, tend ∈

R.) If VNODE-LP cannot reachtend, for example if the
bounds are too wide, bounds on the solution at somet∗ be-
tweent0 andtend are returned.

This package is applicable to ODE problems for which
derivatives of the solution exist to some order. Hence, the
code list off should not contain functions such asabs or
min.

When integrating fromt0 to tend, VNODE-LP can also
return on each step an enclosureyj on the solution at point
tj such that (3) holds, and an enclosureỹj on the solution
over [tj , tj+1] such that (2) holds. Examples of how such
enclosures are obtained are given in [40].

The HOE method (cf. Section 3) is implemented in Algo-
rithm I, and the interval Hermite-Obreschkoff method [39]
is implemented in Algorithm II. (The latter can be viewed
as a generalization of a Taylor series method.) VNODE-LP
features variable stepsize control and constant order. The
stepsize is varied such that an estimate of the size of the lo-
cal excess per unit step in Algorithm I is below a tolerance.
Namely,hj is selected such that

hk
j

∥∥w(f [k](ỹj))
∥∥ / hj

(
atol + rtol ·

∥∥yj

∥∥),

whereatol andrtol are absolute and relative tolerances, re-
spectively, with default values of10−12, and‖ · ‖ is the
infinity norm.

Typical values for the order can be between 20 and 30
(cf. Subsection 4.5), and a default order is set to 20. There
is also improved wrapping effect control compared to VN-
ODE [43] by combining the parallelepiped and QR factor-
ization methods [40].

4.4. Packages and platforms

VNODE-LP compiles with either of the interval arith-
metic (IA) packages PROFIL/BIAS [27] or FILIB++
[30]. The interface to an IA package is encapsulated in
about 25 short wrapper functions that call functions from it
[40]. In principle, one should be able to incorporate a differ-
ent IA package without major difficulties by implementing
these wrapper functions.

The automatic differentiation is done through FAD-
BAD++ [55], and the necessary (non-rigorous) linear al-
gebra is done through LAPACK and BLAS.

To date, VNODE-LP has installed successfully with the
GNU C++ compiler as shown below:

IA OS Architecture
FILIB++ Linux x86

Solaris Sparc
PROFIL Linux x86

Solaris Sparc
Mac OSX PowerPC
Windows with Cygwin x86

4.5. Performance

We report numerical results to illustrate some of the is-
sues in this area. The computations are performed on a
3 GHz dual-core Pentium with 2GB RAM and 4MB L2
cache. The operating system is Linux (Fedora), the com-
piler is gcc version 4.1.1, and the IA package is PRO-
FIL/BIAS. VNODE-LP and the supporting packages are
compiled with option-O2 .

Work versus order

We integrate the Lorenz system

y′

1 = 10(y2 − y1)

y′

2 = y1(28 − y3) − y2

y′

3 = y1y2 − 8/3 y3

(13)

with

y(0) = (15, 15, 36)T , t ∈ [0, 20]

andatol = rtol = 10−7, 10−9, 10−11, and10−13. In Fig-
ure 6, we plot the user CPU time (in seconds) taken by
VNODE-LP versus the order of the method. As can be seen
from this figure, choosing the optimal value for the order
is not crucial for the efficiency of the integration: any or-
der around 20 yields good performance. Experience shows
that, in general, the value for the order that results in the
least amount of work is located in a rather flat minimum.
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Figure 6. Work versus order for the Lorenz
system.

Work versus problem size

We give the DETEST [23] problem C3

y′ =




−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0

...
0 · · · 1 −2 1
0 · · · 0 1 −2




y

with y(0) = (1, 0, . . . , 0)T to VNODE-LP.
We integrate with problem sizesn = 40, 60, . . . , 300 for

t ∈ [0, 5]. In this and the remaining examples, we use the
default order 20 andatol = rtol = 10−12. In Figure 7, we
plot in a log-log scale the CPU time per step versusn; for
eachn, VNODE-LP takes 8 steps.
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Figure 7. CPU time versus n for the DETEST
C3 problem.

On this problem, the linear algebra contributes the most
in the total amount of work. From Section 3 (and this plot),
it is obvious that this work grows liken3. TheO(n3) com-
plexity comes from the matrix operations in reducing the

wrapping effect, and this complexity is a serious obstacle
towards solving larger problems.

Remark. To keep the dependence on an IA package as
minimal as possible, the author has implemented the in-
terval linear algebra through the C++ standard template li-
brary, not exploiting PROFIL’s matrix and vector opera-
tions, which are optimized in terms of minimizing rounding
mode switches. The present implementation of VNODE-LP
does not attempt to minimize the number of these switches
in matrix and vector operations. If such optimizations are
taken into account, the running time would be reduced, but
it will be still O(n3).

Stiff problems

We integrate Van der Pol’s equation (written as a first-order
system)

y′

1 = y2

y′

2 = µ(1 − y2
1)y2 − y1

with y(0) = (2, 0)T andtend = 200. We varyµ and report
the number of steps and CPU time used by VNODE-LP in
Table 2.

µ steps CPU time (s)

101 2377 0.8
102 11697 3.6
103 126459 36.1
104 1180844 336.4

Table 2. Number of steps and CPU time when
integrating the Van Der Pol system.

As µ increases, the stiffness of this problem increases,
and VNODE-LP is forced to take very small stepsizes, re-
sulting in an inefficient integration. For an efficient integra-
tion of stiff problems, we need a scheme that would allow
much larger stepsize, and no such scheme is available to
date.

In passing we note that, for the same order of the trun-
cation error, an interval Hermite-Obreschkoff method al-
lows larger stepsizes than an interval Taylor series method
[39, 41]. However, as shown in [39], these methods have
a restriction on the stepsize due to the associated formula
for the truncation error. As a consequence, their stabilityis
determined not only by the stability function of the under-
lying formula, as in a standard ODE method, but also by the
associated formula for the truncation error.



Interval initial conditions

We illustrate how the bounds behave when integrating the
Lorenz system with

y(0) ∈




15 + [−10−4, 10−4]
15 + [−10−4, 10−4]
36 + [−10−4, 10−4]



 . (14)

In Figure 14, we plot the bounds ony1 versust. In the
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Figure 8. Bounds on y1 versus t for the Lo-
renz system (13) with (14).

second plot, we show the computed bounds and their mid-
points. Clearly, one should expect a divergence of these
bounds. Once they start growing, typically they explode in
size very soon. Here, a Taylor model integrator, such as
COSY VI, may be able to compute tighter bounds over a
longer time interval.

5. On solving DAEs

While several interval solvers for IVPs for ODEs are
publicly available, no software is available for computing
rigorous bounds on the solution of IVP DAEs. A promising
approach for building an interval method (and a solver) for
DAEs is Pryce’s structural analysis [52] combined with a
Taylor series expansion of the solution of a DAE. We out-
line this analysis and summarize work to date.

5.1. Pryce’s structural analysis

We consider an IVP for a DAE system withn equations
fi in n dependent variablesxj = xj(t). We write infor-
mally

fi

(
t, thexj and derivatives of them

)
= 0 (15)

(1 ≤ i ≤ n). Thefi are assumed sufficiently smooth. They
can be arbitrary expressions built from thexj andt using
+,−,×,÷, other standard functions, and the differentiation
operatordp/dtp.

A common measure of the numerical difficulty of a DAE
is its differentiation indexνd [13], the number of times the
fi must be differentiated (w.r.t.t) to obtain equations that
can be solved to form an ODE system for thexj . As shown
in [46, 47], a method based on Pryce’s SA and Taylor series
does not find high index inherently hard.

The steps of this SA are summarized below.

1. Form then × n signature matrixΣ = (σij), where

σij =

{
order of derivative ofxj in fi, or
−∞ if xj does not occur infi.

2. Find a Highest Value Transversal (HVT), which isn
positions(i, j) in Σ with one entry in each row and
column such that

∑
σij is maximized.

3. Find the smallest “offsets”ci, dj ≥ 0 satisfying

dj − ci ≥ σij for all i, j = 1, . . . , n and

dj − ci = σij on the HVT.

Steps 2 and 3 are equivalent to a linear assignment
problem and its dual.

4. Form the system JacobianJ, where

Jij =





∂fi

∂x
(σij)
j

if dj − ci = σij

0 otherwise.

Example. Consider the simple pendulum,

0 = f = x′′ + xλ

0 = g = y′′ + yλ − G

0 = h = x2 + y2 − L2,

which is an index-3 DAE. The dependent variables arex,
y, andλ; G (gravity) andL (length) are constants. The
signature matrix and the offsets are

Σ =

x y λ ci( )
f 2◦ −∞ 0∗ 0
g −∞ 2∗ 0◦ 0
h 0∗ 0◦ −∞ 2

dj 2 2 0



There are two HVTs, which are marked by∗ and◦. The
system Jacobian is

J =




∂f
∂x′′

0 ∂f
∂λ

0 ∂g
∂y′′

∂g
∂λ

∂h
∂x

∂h
∂y

0


 .

If J is nonsingular at aconsistent point, then the SA suc-
ceeds, and the DAE is solvable in a neighborhood of this
point [51, 52]; see also [46].4 Provided that the SA suc-
ceeds, it derives astructural index

νs = max
i

ci +

{
1 if somedj = 0

0 otherwise,

which is the same as that found by the method of Pantelides
[49]. It is shown in [52] thatνd ≤ νs; often they are the
same.

In the pendulum example,J is nonsingular for any values
of x andy, and the index isνs = νd = 3.

To solve (15) by Taylor series, one can use AD to gener-
ate functions for evaluating TCs of the equationsfi. Equat-
ing these coefficients to zero gives equations that are solved
for the TCs of the solution componentsxj(t). The off-
sets prescribe how to organize the computation of TCs
[46, 51, 52] for the solution components of (15); that is,
what equation to solve and for which TCs of the solution.

We believe that the computation of TCs described in [46]
(in the point, approximate case) can be extended to comput-
ing interval enclosures of such coefficients. Hence, Algo-
rithm I and Algorithm II could be carried out in the DAE
case. A key issue is to ensure that the initial values on the
first and subsequent integration steps are consistent with the
DAE. That is, they must satisfy the constraints of the DAE,
which can include hidden constraints. Pryces’s SA identi-
fies the constraints of the DAE using the offsetsci. Namely,

f ′

i , f ′′

i , . . . , f
(ci−1)
i = 0

must hold for alli = 1, . . . , n, from which we can deter-
minexj , x′

j , . . . , x
(dj−1)
j for j = 1, . . . , n.

For example, for the simple pendulum the values forx,
x′, y, andy′ must satisfy the obvious and hidden constraints

x2 + y2 − L2 = 0 and

xx′ + yy′ = 0,
(16)

respectively. In an interval setting, given intervals enclos-
ing x andx′, one may apply an interval Newton method to
enclosey andy′, or given intervals forx, x′, y, y′, one may
verify that they contain a point satisfying (16).

4Although applicable to a wide range of DAEs, there are problems on
which this SA fails; that is, whenJ is singular at a point at which the DAE
is solvable. Examples of such problems are discussed in [46,51, 52].

5.2. Work to date

Chang and Corliss [15] show how to generate Taylor se-
ries for the simple pendulum DAE. Then Corliss and Lod-
wick [17] show how to use interval techniques to obtain
bounds on the solution of a simple linear DAE with AWA.
They assume that consistent initial conditions are given, and
consistency on subsequent steps is a result of AWA’s vali-
dation algorithm. In [16], they investigate the role of con-
straints in an interval method for DAEs when applied to the
simple pendulum, and in particular, how to use these con-
straints to verify consistency of user-supplied initial condi-
tions; to suggest consistent initial conditions if necessary;
and to tighten initial conditions (on first and subsequent
steps) by a Gauss-Seidel iteration or intersecting with the
constraints.

Hoefkens [14] uses Pryce’s structural analysis to convert
a DAE into a generalized ODE, which is then solved in a
rigorous way using Taylor models and the COSY package
[5]. We note that transforming a DAE into an ODE usu-
ally increases the size of the problem to be solved and may
destroy its original sparsity pattern.

The rest of this summary includes work on computing
approximate DAE solutions using Taylor series. The au-
thor has developed a C++ package DAETS for solving high-
index, fully-implicit, arbitrary order DAEs in the form (15).
This package takes a C++ description of the DAE, generates
Σ through operator overloading, finds the problem offsets,
and computes TCs using FADBAD++. Then an approx-
imate solution is obtained by summing these coefficients
(with appropriate stepsize) and projecting it to satisfy the
constraints of the DAE. Theory, algorithmic details, and ex-
amples produced by DAETS are given in [46, 47].

Walther and Griewank [20] report of a similar imple-
mentation (to DAETS) of a Taylor series method based on
Pryce’s analysis, but using the ADOL-C package.

Finally, Barrio [5] uses MATHEMATICA to computeΣ,
set up an ODE system, and then generate FORTRAN 77
code for evaluating TCs for the ODE system. In [6], he
studies the applicability of Taylor series methods for sensi-
tivity analysis of ODEs and DAEs, where DAEs are solved
using Pryce’s SA and very high-order Taylor series.

6. Conclusion

In the area of interval methods for IVPs for ODEs, we
would like to be able to compute efficiently tight bounds on
solutions of much larger problems than the current tools can
handle. A major obstacle is theO(n3) complexity, when
dealing with the wrapping effect on each integration step.
Beating this complexity in a general method may be diffi-
cult, but one may develop more efficient methods for classes



of ODEs. For example, the wrapping effect does not oc-
cur when integrating quasi-isotone problems [44]. The DE-
TEST C3 (Subsection 4.5) is such a problem, but it was
integrated with a general-purpose ODE solver, which does
not take into account quasi-isotonicity.

Although high-order Taylor series may be reasonably ef-
ficient for mildly stiff ODEs, we do not have an interval
method suitable for stiff ODEs. A major challenge and op-
portunity in this area is to devise an efficient interval method
for stiff problems.

The DETEST test set [23] and now the Test Set for IVP
Solvers [36] are standard in assessing and comparing (ap-
proximate) IVP ODE solvers. As the area of interval ODE
solving is maturing, and various interval solvers for IVPs
ODEs are available, we need a sound and comprehensive
methodology for assessing and comparing these solvers.

Finally, building an interval DAE solver of the quality
of existing interval ODE solvers is a challenge, but feasible
with the recent progress on both theory and implementation
of Taylor series methods for DAEs.
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