
Daets User Guide
Version 1.1

Nedialko S. Nedialkov

McMaster University
Canada

John D. Pryce
Cranfield University

United Kingdom

c© Copyright 2008–2009 N. S. Nedialkov and J. D. Pryce

i

Preface

Daets, Differential-Algebraic Equations by Taylor Series, is a C++ package that
integrates an Initial Value Problem (IVP) for a differential-algebraic equation (DAE)
system of arbitrary index and order over a range, using a Taylor series method. It can
report detailed information about the structure of the DAE, as well as the numerical
solution of an IVP either at the end of the range or step-by-step.

We believe the first report of solving a DAE by Taylor series, in an ad-hoc way,
is in the work of Y.F. Chang with G.F. Corliss on the ATOMFT code c. 1994. John
Pryce (JDP) learned of this on a visit to Corliss in 1996, during which, between them,
they found the basic principles underlying the structural analysis approach. JDP
soon developed these into a systematic method, and wrote a proof-of-concept code in
Matlab in 1996, an introductory paper in 1997 and a basic theory paper [19] in 2001.

There was little progress until the collaboration with Ned Nedialkov (NSN) began
after JDP acted as external examiner for NSN’s PhD thesis [13] on the Vnode vali-
dated ODE solver in 1999. Vnode’s architecture strongly influenced that of Daets.

We started work on theory and code of Daets in 2002 with papers [14, 15, 16]. Ex-
perience over several years with coding DAE problems, and performance tests, resulted
in many improvements to the user interface and the algorithms. The first version 1.0
of the code and user guide were released in June 2008. An improved version 1.1 was
released in May 2009.

We acknowledge with thanks the support given to JDP by the Leverhulme Trust
and the Engineering and Physical Sciences Research Council, both of the UK, and
to NSN by the Canadian Natural Sciences and Engineering Research Council. We
thank the Fields Institute in Toronto, in whose stimulating environment we had the
discussions that committed us to this project.

We acknowledge the help of friends and colleagues: George Corliss, for having
provided the original idea and for having carefully read and constructively criticized our
writings over many years, including this guide; Ole Stauning for providing assistance
with his Fadbad++ automatic differentiation package, which was instrumental in the
development of both Vnode and Daets; Wanhe Zhang for working on the design and
many numerical experiments with an early version of Daets; Andreas Wächter for
assistance with Ipopt; Andrea Walther and Andreas Griewank for helpful discussion
on automatic differentiations and their Adol-C package; Rob Corless, Wayne Enright
and Silvana Ilie for insightful discussions on theory, especially on methods for numerical
error estimation and control; Emil Sekerinski for his input on object-oriented design;
Bingzhou Zheng for extensive testing of version 1.0.

Nedialko S. Nedialkov
Department of Computing and
Software
McMaster University
Hamilton, Ontario

L8S 4K1, Canada
ned.nedialkov@reliablenumerics.com

John D. Pryce
Department of Information Systems
Cranfield University
Shrivenham Campus
Swindon

SN6 8LA, UK
j.d.pryce@ntlworld.com

May 25, 2009

ned.nedialkov@reliablenumerics.com
j.d.pryce@ntlworld.com

Contents

Preface i

1 Basic Usage 1
1.1 Description . 1
1.2 Quick start guide . 3

1.2.1 An example program . 3
1.2.2 Offsets, initial values, quasilinearity, consistency 6

1.3 Basic classes and methods . 7
1.3.1 Defining the DAE system . 7
1.3.2 DAEsolver class . 8
1.3.3 DAEsolution class . 10
1.3.4 SolverExitFlag type . 12
1.3.5 Fixed and free initial values . 13

2 All Other Methods 16
2.1 Controlling integration: the DAEsolver class 16

2.1.1 Access to structural analysis data 17
2.1.2 Reporting structural analysis data 18
2.1.3 Accuracy control . 20
2.1.4 Controlling the Taylor series order 22
2.1.5 Controlling the stepsize . 23
2.1.6 Passing data to a DAE function 25

2.2 Solution path properties: the DAEsolution class 25
2.2.1 Access . 26
2.2.2 Copying . 28
2.2.3 State control . 29
2.2.4 Reporting during integration . 29
2.2.5 Statistics . 30
2.2.6 Printing . 31

2.3 Arithmetic on solutions: the DAEpoint class 32
2.3.1 Constructors . 32
2.3.2 Access . 32
2.3.3 Assignment . 34
2.3.4 Arithmetic . 34
2.3.5 Comparison . 35
2.3.6 Norm . 35

ii

CONTENTS iii

2.4 Daets default settings . 35

3 Examples of Daets Code 37
3.1 Handling an unfamiliar DAE . 37
3.2 Chemical Akzo Nobel problem . 39
3.3 One-step mode. Passing data to a problem 41
3.4 A continuation problem . 45
3.5 A golf putting problem . 48
3.6 Setting an output function . 53
3.7 Summary . 53

4 Installation 56
4.1 Obtaining Daets . 56

4.1.1 Demo version. 56
4.1.2 Full version. 56

4.2 Installation . 57
4.2.1 Third-party components . 57
4.2.2 Creating executables . 59
4.2.3 Running the examples . 59

5 Further theory. FAQs 61
5.1 Structural analysis . 61
5.2 Frequently asked questions . 64

A Revision History 70
A.1 Version 1.1, May 2009 . 70

Functions index 71

Bibliography 73

In the electronic version of this document, every cross-reference is a hyperlink. For

instance you can click on the entry “Obtaining Daets” above, to jump to that section.

This also applies to page numbers in the Index, and, in the body of the text, to chapter

and section references and to equation numbers. To return to where you just were, use

your PDF reader’s “Back” command.

Chapter 1

Basic Usage

Daets is a C++ package for the numerical solution of initial value problems (IVPs)
for differential-algebraic equation systems (DAEs). This guide assumes knowledge of
basic theory of DAEs as covered for instance in the texts [2, 7]: what DAEs are; why
they are in certain ways harder to solve than ordinary differential equations (ODEs);
and the notion of index as a measure of a DAE’s difficulty.

If you are unfamiliar with the area, but still wish to read further, consult first the
brief explanation of DAEs in FAQ 5.2.12 and FAQ 5.2.13.

Section 1.1 of this chapter gives a short overview of the code’s purpose and numer-
ical methods, with references to fuller explanations later in this guide and in published
work. Section 1.2 introduces the Daets user interface via a simple complete program.
Section 1.3 is a reference guide to the classes and methods used in this program.

The rest of the guide is organized as follows. Chapter 2 is a reference guide to
all other user-callable features. Chapter 3 gives some more substantial applications of
Daets. Chapter 4 is about installation. Chapter 5 summarizes in §5.1 the theory of
Daets, based on Pryce’s structural analysis of DAEs, and gives answers in §5.2 to
some frequently asked questions. Appendix A records changes in each new version of
Daets.

1.1 Description

Daets advances the solution of a DAE system over a range using a variable-step
Taylor series (TS) method. The system has the form

fi(t, the xj and derivatives of them) = 0, i = 1, . . . , n, (1.1)

in terms of the unknown state variables xj(t), j = 1, . . . , n. It is defined by a user-
supplied function that evaluates the functions fi.

Many DAE solvers are limited by the index of the system, a non-negative integer
that generally indicates how “difficult” the system is to solve numerically: see [2, 7] and
Chapter 5. Daets uses a different approach that is not inherently limited by the index.
It interprets the user’s function code symbolically and uses automatic differentiation
[6] to expand the solution in Taylor series to as many terms as required. This implies

1

1.1. Description 2

that the function code must be built of functions that are analytic along the solution
path. See §1.3.1 for more details.

Unlike an ODE, a DAE usually does not have a solution through each point in the
solution space, but only through initial values (IVs) that are consistent (§5.1). Daets

has a structural analysis stage (§5.1) that finds the underlying structure of the system
and tells it just what variables and derivatives must be specified to define consistent
IVs. This may not be obvious to the user, who must set up this data before calling
the integrate method of Daets. If the user gets this wrong, Daets prints an error
message, listing missing and/or superfluous IVs.

Finding a consistent initial point can be the hardest part of the solution task for
highly non-linear DAEs. Many DAE solvers require exactly consistent values to be
given. This is desirable but difficult, e.g. the value of a Lagrange multiplier or an
acceleration is often not known a priori. Daets allows guesses to be given, mixed
with fixed values. For instance one may specify “The IVs are x1 = 2, x2 = 0 (fixed)
and x′

2 = 5, x3 = 0 (guessed)”. Daets treats computation of consistent data as an
optimization problem and passes this to the optimization code IPOPT [22]. During
this computation, guessed values are allowed to be altered, while fixed values are left
unchanged. Subject to this, the consistent point that is found is the one that is closest
to the point given by the user in a least-squares sense.

The main work of Daets is done by the integrate method (§1.3.2), which ad-
vances the solution, step by step, from the found consistent point x at the initial
t=t, up to a final t=tend. Each step generates and sums a Taylor series and then
does a projection stage to preserve consistency within the specified accuracy tolerance.
Assuming one reaches tend successfully, one can efficiently integrate to further tend

values as required. The TS order is chosen as a function of the tolerance, or may be
set by the user, but is fixed during one call to integrate.

The following block diagram shows the basic order of events in solving a problem,
as illustrated by the example program below.

Structural
Analysis

Set
Initial
Values

integrate

Find
Consistent

Point
Step Project Report

Event location — finding a t where some function of the solution becomes zero —
is not currently provided. However the integrator can be put into “one-step” mode,
allowing event location to be coded in the calling program. See §3.4 for an example.

Auxiliary functions to control the integration are described in Chapter 2. For
instance, the TS order may be changed, as may the tolerance and the type of accuracy
control (relative, absolute, or mixed), the number of solution components printed, etc.

1.2. Quick start guide 3

1.2 Quick start guide

1.2.1 An example program

A simple program is shown in Figure 1.2. It can be adapted to solve other simple
problems. As given, it solves a problem with the simple pendulum system, a DAE of
differential index 3, defined by the equations

0 = f = x′′ + xλ

0 = g = y′′ + yλ − G

0 = h = x2 + y2 − L2,

(1.2)

see Figure 1.1. Here gravity G, and the length L of the pendulum, are constants. The
independent variable is time t. The dependent (state) variables are the coordinates
x(t), y(t) of the pendulum bob, and the Lagrange multiplier λ(t).

(x,y)

L

x

y

G

Figure 1.1: Simple pendulum.

The program computes the motion on 0 ≤ t ≤ 100
with IVs (x, y) = (−10, 0) and (x′, y′) = (0, 1) at t = 0,
taking G = 9.8 and L = 10, and displays solution
values at the end of the integration.

The interface to Daets is defined by the header
file DAEsolver.h (code line 2). The source code of
Daets is in namespace daets, hence the line 3.

Lines 4–11 are the function that defines the DAE.
Its name is fcn here, but this is arbitrary, as are the
names of the arguments t,z,f,param. Input argu-
ment t represents the independent variable t. Argu-
ment z is an array of a templated type T, representing
the state variable vector z = (x, y, λ). The code com-
putes the corresponding values of the functions f, g, h
in (1.2) and puts them in the array f, which also has type T. The type T is interpreted
as several actual types at compile time—one of them is the basis for the numerical
computation with Taylor series, and the others support symbolic manipulation of the
fcn code during the preliminary structural analysis process. Arrays are indexed the
C++ way, from zero, so z[0] means x, f[0] means f , etc. The operation Diff(·, q)
means dq/dtq, so Diff(z[0],2) means x′′, i.e., d2x/dt2.

Argument param is explained in §1.3.1. Its use is illustrated in the Van Der Pol
example of §3.3 and the continuation example of §3.4.

The main program is in lines 12–27. Lines 15–16 construct the two key objects for
problem solution: Solver, an object of the DAEsolver class, which “understands” the
DAE, and x, of the DAEsolution class, which may be viewed as a point moving along
the solution path. DAE_FCN in line 15 is a macro, explained in §1.3.2.

x records the current values, not only of z = (x, y, λ) (the contents of z in fcn),
but also of the independent variable t. Thus if, as here, t represents time, and z is
loosely thought of as space, then x represents a point (z, t) in space-time.

Lines 17–19 give x its IVs. Method setT initializes the independent variable com-
ponent, and setX initializes the state variable components, including their deriva-
tives. We use the name setX because the state variables are called xj in the general

1.2. Quick start guide 4

1 // file pendulumsimple.cc in daets/examples

2 #include "DAEsolver.h"

3 using namespace daets;

4 template <typename T>

5 void fcn(T t, const T *z, T *f, void *param) {

6 // z[0], z[1], z[2] are x, y, λ.

7 const double G = 9.8, L = 10.0;

8 f[0] = Diff(z[0] ,2) + z[0]*z[2];

9 f[1] = Diff(z[1] ,2) + z[1]*z[2] - G;

10 f[2] = sqr(z[0]) + sqr(z[0]) + sqr(z[1]) - sqr(L);

11 }

12 int main() {

13 const int n = 3; // size of the problem

14 double t0 = 0.0, tend = 100.0;

15 DAEsolver Solver(n, DAE_FCN(fcn)); // create a solver, analyse DAE

16 DAEsolution x(Solver); // create a DAE solution object

17 x.setT(t0) // initial value of t

18 .setX(0 ,0 , -10.0).setX(1,0, 0.0) // .. and of x and y

19 .setX(0,1, 0.0). setX(1,1, 1.0); // .. and of x′ and y′

20 SolverExitFlag flag;

21 Solver.integrate(x, tend , flag); // integrate until t =tend

22 Solver.printDAEtableau();

23 i f (flag!=success)

24 printSolverExitFlag(flag); // check the exit flag

25 x.printSolution(); // display solution

26 return 0;

27 }

Figure 1.2: Program for simple pendulum problem.

DAE definition (1.1). The components are numbered 0, 1, . . . , as in fcn above, and
setX(j,d,v) sets the dth derivative of the jth variable to v. Thus x.setX(1,1, 1.0)

initializes the first derivative of the 1’th variable to 1, i.e., y′ = 1 at t = 0, here.
Line 21 does the real work of solving the IVP, using the integrate method of

the DAEsolver class, which moves x along the solution path to the desired end-point
at t = 100. Usually, integrate accounts for most of the CPU time of the solution
process. Since it is a numerical method, there are accuracy tolerances involved. For
the default tolerance values, how to change them, and the choice between absolute,
relative and mixed accuracy control, see §2.1.3.

If the integration failed to reach the end-point, this is reported by lines 23–24 using
the variable flag, which is of an enumeration type described in §1.3.4.

The solution at t = 100 (or at the last t successfully reached in case of failure) is
reported by the printSolution method (line 25). Its output is shown in Figure 1.31.
The dth column of the jth row of the display shows the dth derivative of the jth
variable with j counting from 0 as previously. Thus row 0 shows the final values of x
and x′; row 1 shows those of y and y′; while no data about λ is shown. This is because
the offsets dj of the variables (see §1.2.2) are 2, 2 and 0 respectively, and the behavior
of printSolution is to display up to the (dj−1)th derivative of the jth variable for
each j, in case the DAE is quasilinear, as it is here—see §1.2.2.

1The program also displays a few lines of “splash screen” of the IPOPT package.

1.2. Quick start guide 5

TABLEAU

| 0 1 2 |c_i

0| 2 - 0* | 0

1| - 2* 0 | 0

2| 0* 0 - | 2

d_j| 2 2 0 |

Index = 3, DOF = 2

SOLUTION

t = 1.000000e+02

x x’

x0 5.683109e+00 4.563114e+00

x1 5.950172e+00 -8.716614e+00

x2

Figure 1.3: Output of the program from Figure 1.2
.

Some programming points follow.

1. The problem size n = 3 (line 13) and integration endpoints t0 = 0, tend = 100
(line 14) need not be given names. For instance one could delete line 13 and replace
line 15 by

DAEsolver Solver(3, DAE_FCN(fcn));

2. Setting the IVs in lines 17–19 is done by a single statement containing “chained”
calls to setX. This could be done by separate statements such as x.setT(0.0);

followed by x.setX(0,0, -10.0); etc.—the choice is a matter of taste.

3. To access individual solution components, e.g., for finer control of output than
offered by the convenience function printSolution, use getT and getX, see §2.2.

4. The IVs given in lines 17–19 happen to be consistent—the initial position (x, y) =
(−10, 0) exactly satisfies the “obvious” constraint 0 = h = x2 + y2 − L2, and the
initial velocity (x′, y′) = (0, 1) exactly satisfies the “hidden” constraint 0 = h′ =
2xx′ + 2yy′, which means the velocity is tangential to the circle. Consistency is
explained in §1.2.2 and in Chapter 5.

When inconsistent IVs are given, Daets does not automatically report the initial
consistent point it found. If this is desired, do a first call to integrate with
tend equal to t, which just sets x to a consistent point and returns. Report x by
printSolution, and call integrate a second time to solve up to the desired tend.

5. Daets has data protection features that ensure a correct set of IVs is provided
(see §1.2.2), and make it impossible to inadvertently corrupt x in the middle of an
integration (see start of §2.2).

1.2. Quick start guide 6

1.2.2 Offsets, initial values, quasilinearity, consistency

In the program of Figure 1.2, how do we know—apart from physical knowledge that
a pendulum requires an initial position and velocity to be given—that x, y, x′ and y′

are the correct set of IVs to specify? This comes from the offsets mentioned above,
which are crucial to the use of Daets. We explain them briefly here and more fully
in §5.1, see also [16].

The offsets are 2n nonnegative integers computed in the structural analysis phase.
dj is the offset of variable xj , and ci is the offset of equation fi. One way to see their
role is as follows. If one differentiates the ith equation ci times w.r.t. t, (i = 1, . . . , n),
one gets n equations that in principle, by the Implicit Function Theorem, should be
solvable for the djth derivative of xj (j = 1, . . . , n) in terms of lower derivatives, thus
converting the DAE to an ODE. This involves an n × n matrix, the System Jacobian

J. Broadly, the numerical method succeeds if this is found to be nonsingular.

The djth derivatives x
(dj)
j are the leading derivatives of the DAE. If they occur in

a jointly linear way in the original (undifferentiated) fi then the DAE is called quasi-

linear. Given the same offsets, a quasilinear problem needs fewer IVs than one that is
not quasilinear. Counter-intuitively, a leading derivative need not occur anywhere in
the DAE—see FAQ 5.2.6.

To recognize quasilinearity, ask “Can the DAE be written in matrix form Ax+b = 0
where x is the column vector of leading derivatives, and the matrix A and vector b
are independent of x?”

Example. For the pendulum system (1.2), the offsets of (x, y, λ) are (2, 2, 0), so
the leading derivatives are x′′, y′′ and λ. In this example, we have





f
g
h



 =





1 0 x
0 1 y
0 0 0









x′′

y′′

λ



 +





0
−G

x2 + y2 − L2



 ,

so the answer is Yes, and the DAE is quasilinear. If, say, the first equation is replaced
by 0 = f = (x′′)3 + xλ or 0 = f = x′′y′′ + xλ, the system ceases to be quasilinear.

The rule for specifying IVs can now be stated. For the reason behind it, see §5.1.

• If the DAE is quasilinear, IVs for each xj and its derivatives up to but not including
the djth must be given. (So a variable whose offset is zero needs no IVs.)

• Otherwise, IVs for each xj and its derivatives through the djth must be given.

Example. The pendulum DAE is quasilinear, and (x, y, λ) have offsets (2, 2, 0), so
IVs must be given for (x, x′, y, y′). If it is changed to be not quasilinear then Daets

recognizes this, and IVs must be given for (x, x′, x′′, y, y′, y′′, λ).
One needs to know what the definition of consistent values, as follows.

• If the DAE is quasilinear, the IVs must satisfy each fi = 0 and its derivatives up to
but not including the cith. (So a function whose offset is zero imposes no constraint.)

• Otherwise, the IVs must satisfy each fi = 0 and its derivatives up to and including
the cith.

1.3. Basic classes and methods 7

Example. For the pendulum DAE, (f, g, h) have offsets (0, 0, 2) so the consistency
equations for (x, x′, y, y′) are 0 = (h, h′), that is 0 = x2 + y2 −L2 and 0 = 2xx′ + 2yy′.
If it is changed to be not quasilinear, the enlarged set of variables (x, x′, x′′, y, y′, y′′, λ)
must satisfy the extra consistency equations 0 = f , 0 = g and 0 = h′′ = 2(xx′′+(x′)2 +
yy′′ + (y′)2.

As a consequence, the numerical solution values held in a solution object, such as
x in the example program, are not a flat vector as they are with an ODE. Daets uses
an “irregular array” such as (for the pendulum)

0 1

0 x x′

1 y y′

2

if quasilinear, or

0 1 2

0 x x′ x′′

1 y y′ y′′

2 λ

if not.

Method setX (§1.3.3) is used to initialize such arrays; see also updatePoint (§2.2.2).

1.3 Basic classes and methods

The classes, constructors and methods required for the simplest use are described here.
All other methods are described in Chapter 2.

1.3.1 Defining the DAE system

Function fcn defines the fi in the system (1.1). It is a templated function that is
instantiated with several different actual types T, to support the automatic differenti-
ation and structural analysis. For coding purposes, T can be thought of as denoting
type double, with some restrictions described below. The specification of fcn is:

1.3. Basic classes and methods 8

template <typename T> void fcn(T t, const T *x, T *f, void *param)

t

Input: denotes the variable t.

x

Input: Array of length n, where x[j−1] denotes the variable xj for j = 1, . . . , n.

f

Output: Array of length n, where f[i − 1] must be set to the value of fi for
i = 1, . . . , n.

param

Input, optional: pointer to a user-defined object of arbitrary type that passes
parameters to the definition of the DAE.

The code of fcn can use the following operations on variables of type T.

• The arithmetic operations + - * / .

• Assignment = and the shortcut operators += -= *= /= .

• Assigning a double or a literal numeric constant value, as in
T sum = 0;

• These analytic standard functions:

sin cos tan sqr sqrt exp pow log asin acos atan

(sqr(y) computes y2).

• Differentiation (to any non-negative integer order), done by the Diff function.
For instance, Diff(x[j-1],2) represents x′′

j , that is, d2xj/dt2.

Notes. The code should not contain any branches, that is if or switch statements.
Functions that are defined using these are not covered by the current theory.

The code may freely declare other variables. These will normally be of type int
or double or T. Any intermediate variable that depends directly or indirectly on the
inputs x or t must be of type T.

1.3.2 DAEsolver class

The constructor and the integrate method are described here. They are the only
DAEsolver methods used by the program in §1.2.1. A DAEsolver object has many
attributes describing the DAE system—the fcn code, the offsets, etc.—and holding
strategy parameters of the integration—accuracy tolerance, Taylor series order, max-
imum allowed stepsize, etc. For the methods related to these see §2.1.

1.3. Basic classes and methods 9

Constructor

DAEsolver(int n, T1 fcn1, T2 fcn2, T3 fcn3, T4 fcn4,

void *param = NULL);

n

Input: the value n, as above.

fcn1 – fcn4

Input: All four must be the same, namely the function fcn defining the DAE,
as in §1.3.1, with the signature

<typename T> void fcn(T t, const T *x, T *f, void *param)

The repetition is due to C++ language limitations. See the Note below.

The types T1, T2, T3, T4 do not concern the user.

param

Input, optional: pointer to a user-defined object of arbitrary type that passes
parameters to the definition of the DAE. See §2.1.6 and §3.3 for details.

Result: This constructor does much work behind the scenes. It performs the struc-
tural analysis of the DAE and stores the offsets, and determines whether the
system is quasilinear. Thus the constructed object knows the scheme for gener-
ating the Taylor series, including what set of xj and their derivatives comprise
valid IVs, and the equations they must satisfy for consistency.

Note. For convenience, the macro DAE_FCN is introduced to simplify a call to this
constructor as, e.g.,

DAEsolver Solver(n, DAE_FCN(fcn));

and the user is recommended to call it in this way.

Ill-posed DAEs. This constructor recognizes when a DAE is ill posed; see §5.1 for
a definition. If such a DAE is encoded, a solver object is still created, but it is in an
“illposed” state. This can be detected by a call to the isIllPosed method; see §2.1.2.

1.3. Basic classes and methods 10

integrate method

void integrate(DAEsolution &x, double tend, SolverExitFlag &flag);

x

Input: contains the initial t and the initial values of the solution.
Output: contains the reached t and the computed values of the solution at t.

tend

Input: the desired final value of t. If tend < t, integration proceeds in the
negative direction.
If tend = t, the code uses the supplied x to compute a consistent initial point
(if x is not already consistent), and returns this in x leaving t unchanged.

flag

Output: reports the success of failure or the computation, see §1.3.4.

Result: This does the main work in solving the problem by advancing the integration
of the DAE over a range.

1.3.3 DAEsolution class

A DAEsolution object x holds a “point” comprising the current values of the indepen-
dent variable t, and of the xj and their derivatives at t, as described in §1.2.2; for more
details see Chapter 5. It also stores various data related to the state of the integration.

Constructor

DAEsolution(const DAEsolver &Solver) throw(std::logic_error);

Solver

Input: a DAEsolver object.

Result: A DAEsolution object associated with the given Solver. It is in the Initial
state, see start of §2.2. Before it can be used by the integrate method, it must
be given initial values by means of its setT and setX methods.

If Solver is constructed from an ill-posed DAE, an exception std::logic_error

results.

1.3. Basic classes and methods 11

setT method

DAEsolution & setT(double t) throw(std::logic_error);

t

Input: scalar. x.setT(t) sets t = t in a DAEsolution object.

Returns: a reference to the updated DAEsolution object.

Constraint: x must be in the Initial state, see start of §2.2. If x is not in this
state, an exception std::logic_error results.

setX method

DAEsolution & setX(int index, int order, double value,

VarType type=Free) throw(std::logic_error,std::out_of_range);

index, order, value

Input: such that x.setX(j−1, k, v) sets the entry of x representing x
(k)
j , the kth

derivative of the jth variable, equal to v.

Constraint: (j, k) must be in the index set J of (2.5). Otherwise, an exception
std::out_of_range results.

type

Input: optional, default Free; specifies, only for the initial computation of a
consistent point, whether the value in question must be kept unchanged (Fixed)
or may be altered (Free); see also §2.2.

Constraint: There are limits on how many IVs can be made Fixed. This is
explained in §1.3.5.

Returns: A reference to the updated object.

Constraint: x must be in the Initial state, see start of §2.2. If x is not in this
state, an exception std::logic_error results.

Notes. Returning a reference lets one “chain” calls, as in

x.setT(...).setX(...)...

For instance, to specify “The initial t is 1 and the IVs are x1 = 2 (fixed) and x2 = 0,
x′

2 = 5 (guessed)”, the calling program could do

x.setT(1.0).setX(0,0, 2.0,Fixed).setX(1,0, 0.0).setX(1,1, 5.0);

The following is equivalent, but displays the setting of each xj separately:

x.setT(1.0);

1.3. Basic classes and methods 12

x.setX(0,0, 2.0,Fixed);

x.setX(1,0, 0.0);

x.setX(1,1, 5.0);

A DAEsolution object knows which initial values it requires. If a value is set for
an unnecessary (index,order) pair, setX displays an error message to this effect. If a
required value is left unset, integrate detects this when called and displays an error
message.

WARNING: If a value for the third parameter, value, is not given, the corresponding
x

(k)
j may not be set correctly. For example, in

x.setX(0,0,Free);

x0 is set to 2. The reason is that Free is an enumerated constant with value 2 (see
the definition of VarType in §2.2), C++ converts enumerated values to int, and this
call sets x0 to 2.

printSolution method

void printSolution(ostream &s=cout) const;

s

Input: output stream, default is cout.

x.printSolution(s) prints the t and x components into the output stream s.

t is displayed first. Then for j = 1, . . . , n on separate lines, labeled 0 to n−1 to
match C++ indexing, the derivatives x

(k)
j are displayed. k runs from 0 to dj−1

if the DAE is quasilinear, and from 0 to dj if not.

1.3.4 SolverExitFlag type

This enumerated data type provides an error indicator for the integrate method of
DAEsolver.

1.3. Basic classes and methods 13

Definition

typedef enum SolverExitFlag

{success, toofewdof, nonconsistentpt, uninitializedpt, htoosmall};

success The integration has completed successfully.
toofewdof More IVs were specified “fixed” than the number of degrees of

freedom of the DAE.
nonconsistentpt Daets was unable to find an initial consistent point.
uninitializedpt setT is not called on the input x of integrate, or setX is not

called for all the required components of x.
htoosmall The stepsize during integration became too small to make

progress.

printSolverExitFlag method

void printSolverExitFlag(SolverExitFlag state, ostream &s = cout);

state

Input: Usually, the value returned by a call to the integrate method.

s

Input: output stream, default is cout.

Result: printSolverExitFlag outputs into s a message describing the meaning of
state.

1.3.5 Fixed and free initial values

Clearly, there must be limits on how many IVs one can specify as “fixed”. For instance
in the pendulum system, one cannot give random values to both x and y and fix both
of them, because the constraint x2 + y2 = L2 generally will not be satisfied.

The rules for what one can fix are entirely determined by the offsets. One has to
explain at this point that the irregular array X of values that define a consistent point,
see (2.5), divides into disjoint parts that are computed in stages, and have a natural
indexing by “stage numbers” k in the range −d ≤ k ≤ α, where d = maxj dj, and α is
−1 if the DAE is quasilinear, 0 otherwise.

Namely, at stage k, to have consistent values, one must solve the equations

f
(k)
i = 0 for those i = 1, . . . , n for which k + ci ≥ 0

for the unknowns

x
(k)
j for those j = 1, . . . , n for which k + dj ≥ 0.

1.3. Basic classes and methods 14

We illustrate with the pendulum, assuming it has been changed to be non-quasilinear.
The figure below shows the situation. Irregular array X consists of (x, y, x′, y′, x′′, y′′, λ).

k = −2 −1 0 1 . . .

dj Unknowns
2 x x′ x′′ x′′′ . . .
2 y y′ y′′ y′′′ . . .
0 λ λ′ . . .

ci Equations
0 f = 0 f ′ = 0 . . .
0 g = 0 g′ = 0 . . .
2 h = 0 h′ = 0 h′′ = 0 h′′′ = 0 . . .

Fixable 2 − 1 = 1 2 − 1 = 1 3 − 3 = 0 . . .

(The figure also shows the reason for the term “offset”—each list of derivatives is
shifted left by the relevant offset, relative to the k=0 column.) The process starts at
stage k = −2 because the largest dj is 2. At stage k = −2, one must find x and y
that satisfy h(x, y) = 0. This is one equation for two unknowns, so there is 2 − 1 = 1
degree of freedom (DOF) at this stage, which is how many of x and y one is allowed
to specify as fixed (the “Fixable” row in the table).

At stage k = −1, one must find x′ and y′ that satisfy h′(x′, y′) = 0. (Actually h′

involves x and y also, but these have been solved for, and are no longer unknowns.)
Again there is one equation for two unknowns, so again 2− 1 = 1 DOF, which is how
many of x′ and y′ one is allowed to specify as fixed.

At stage k = 0, one has three equations for three unknowns (x, y, x′, y′ also occur
in the equations, but are no longer unknowns), so there are no DOF, and one cannot
specify any of the unknowns x′′, y′′, λ of this stage as fixed. In fact it is clear, whether
the DAE is quasilinear or not, that stage k = 0 always has n equations for n unknowns,
so none of its unknowns can be fixed.

The general rule is that only stages k < 0 are relevant to “fixing”: the number of
equations at stage k is mk = (the number of i for which k + ci ≥ 0); the number of
unknowns at stage k is nk = (the number of j for which k + dj ≥ 0); and the number
of unknowns that can be fixed at stage k (−d ≤ k < 0) is the difference nk − mk.

Consider the pendulum example, and suppose its length L = 10. One can fix x,
or y, or neither, but not both. If one fixes x to be 8, say, there are two roots for y,
namely y = −6 and y = 6. Hence an appropriate guess for y should be given, and
Ipopt should then find the root that is nearest it. Clearly, one can not necessarily
impose an arbitrary fixed value: if we fix x at a value > 10, then no solutions exist.

If one fixes neither x nor y, then Ipopt will find an approximation to the consistent
point nearest to the given guess of (x, y). For instance if guesses (x, y) = (4,−3) are
given, the found consistent values will be close to (8,−6).

This happens similarly on each stage k < 0.

1.3. Basic classes and methods 15

Summary

This chapter has described enough of the Daets methods, and of their underlying
theory, to let you write a simple program like that in Figure 1.2. The next chapter doc-
uments all the remaining methods, organized by the three Daets classes—DAEsolver,
DAEsolution and DAEpoint—that are visible to the user. If you are more interested in
examples of code using Daets, see Chapter 3. For installation matters, see Chapter 4.

Chapter 2

All Other Methods

Sections 2.1, 2.2 and 2.3 of this chapter describe the remaining methods of DAEsolver
and DAEsolution, and the methods of DAEpoint, which is a base class of DAEsolution.
If a method is not found here, it is in §1.3. The final Section 2.4 gives a list of default
parameter values, for reference.

There are frequent forward references to Chapter 5. They tell you where to go if

you want to look up an item of structural analysis theory. You can understand the
gist of this chapter without doing so.

2.1 Controlling integration: the DAEsolver class

The method descriptions in this section assume a DAEsolver object, call it Solver,
has been constructed from a DAE function called fcn, and that the DAE’s functions
and variables are fi and xj respectively, as in equation (1.1).

Structural analysis, touched on in §1.2.2 and detailed in §5.1, is done during ex-
ecution of the DAEsolver constructor. Subsections 2.1.1 and 2.1.2 describe methods
that get results of this analysis or display them on standard output.

During integration the stepsize h changes from step to step. The Taylor series (TS)
order p is fixed over one call to integrate. Either it is chosen by the code on entry
to integrate, as a function of the tolerance, or the user program sets it before calling
integrate. Subsections 2.1.3 onward outline aspects of the integration algorithm,
alongside the methods by which the user can tune its behavior by changing “strategy
parameters” to do with h, p and the accuracy tolerance.

These parameters are attributes of a DAEsolver object, call it Solver. If one wants
to solve the same problem using, say, different Taylor orders p, one may either use one
Solver and change its p between integrations, or use several Solvers, each having a
p that does not change. The choice is a matter of convenience.

16

2.1. Controlling integration: the DAEsolver class 17

2.1.1 Access to structural analysis data

The first three methods use the vector class of the C++ standard library.

getSigmaMatrix method

void getSigmaMatrix(vector< vector<int> > & s, int neginfval=-1)

throw(std::logic_error);

s

Output: A matrix, which must be n×n. If not, an exception std::logic_error

results.

neginfval

Input: Optional, the value that encodes −∞. −1, because int does not have an
“infinity” value and the alternative of using a large negative number looks ugly
in printed output.

If neginfval ≥ 0 an exception std::logic_error results.

Result: Stores in s the signature matrix Σ = (σij) of the DAE, defined in equation
(5.1).

getCVector method

void getCVector(vector<int> & c) const;

c

Output: A vector, which must be of length n. If not, an exception
std::logic_error results.

Result: Stores in c the vector of offsets ci of the functions fi.

getDVector method

void getDVector(vector<int> & d) const;

d

Output: A vector, which must be of length n. If not, an exception
std::logic_error results.

Result: Stores in d the vector of offsets dj of the variables xj .

2.1. Controlling integration: the DAEsolver class 18

getNumDegsOfFreedom method

int getNumDegsOfFreedom() const;

Returns: The number of degrees of freedom of the DAE, given by equation (5.3).

getStructuralIndex method

int getStructuralIndex() const;

Returns: The structural (or Taylor) index of the DAE, given by equation (5.6).

isIllPosed method

bool isIllPosed() const;

Returns: true if fcn describes an ill-posed DAE (see §5.1), else false .

isQuasilinear method

bool isQuasilinear() const;

Returns: true if the DAE is deemed to be quasilinear (see §1.2.2), else false .

2.1.2 Reporting structural analysis data

printDAEinfo method

void printDAEinfo(ostream &s=cout) const;

s

Input: output stream, default is cout.

Result: Outputs into s

– whether the problem is quasilinear;

– size of DAE;

– index of DAE.

For the pendulum example, this method prints:

2.1. Controlling integration: the DAEsolver class 19

DAE

quasilinear

size3

index3

printDAEtableau method

void printDAEtableau(ostream &s=cout) const;

s

Input: output stream, default is cout.

Result: Outputs into s

– signature matrix of the DAE indicating the positions of a highest-value
transversal (HVT);

– offsets of the problem;

– index;

– number of degrees of freedom (DOF).

For definitions of these items, see Chapter 5.

For the pendulum example, this method prints:

TABLEAU

| 0 1 2 |c_i

0| 2 - 0* | 0

1| - 2* 0 | 0

2| 0* 0 - | 2

d_j| 2 2 0 |

Index = 3, DOF = 2

2.1. Controlling integration: the DAEsolver class 20

printDAEpointStructure method

void printDAEpointStructure(ostream &s = cout) const;

s

Input: output stream, default is cout.

Result: Outputs into s

– the structure of a solution point, indicating which variables and derivatives of
them need to be initialized.

For the pendulum example, this method prints:

POINT STRUCTURE

variable derivatives

x0 0 1

x1 0 1

x2 -

2.1.3 Accuracy control

There is an accuracy tolerance, tol, and a type of accuracy control, esttype. At each

step in the numerical solution, an estimate est
(k)
j of the local error in x

(k)
j is computed

internally, for each (j, k) in the set J as in (2.5). For the current step to be accepted,
the following condition must be satisfied:

r ≤ 1, where r = max
(j,k)∈J

∣

∣est
(k)
j

∣

∣

τr ×
∣

∣x
(k)
j

∣

∣ + τa

, (2.1)

and τr and τa are defined by the table:

esttype τr τa Description
Abs 0.0 tol absolute accuracy control
Rel tol ǫ relative accuracy control

AbsRel tol tol mixed accuracy control

.

Here ǫ is a modest multiple of the machine precision. Error theory for TS methods is
less developed for DAEs than for ODEs, but there are good reasons to expect this to
give a robust accuracy control.

If (2.1) is not satisfied, the stepsize is reduced, and the solution is recomputed on
the current step. If the user wishes to measure the error in the computed solution in
terms of the number of correct decimal places, then esttype should be set to Abs on
entry, whereas if the error requirement is in terms of the number of correct significant
digits, then esttype should be set to Rel. For a mixed accuracy test, esttype should
be set to AbsRel. The default value AbsRel should be chosen unless there are good
reasons for a different choice.

2.1. Controlling integration: the DAEsolver class 21

setTol method

This method lets the program alter the accuracy tolerance and the type of accuracy
control from the default of a “mixed” test with tolerance 10−8.

Calling setTol(); with no arguments resets the working values to their defaults.

void setTol(double tol=1e-8, ErrorEstType esttype=AbsRel)

throw(std::logic_error);

tol

Input: the accuracy tolerance; default 10−8.
Constraint: tol ∈ [10−16, 10−1]. If tol is outside this range, an exception
std::logic_error results.

esttype

Input: The type of accuracy control; default is a mixture of absolute and relative
accuracy control. esttype must be one of the three values of the enumeration
type:

typedef enum ErrorEstType {Abs, Rel, AbsRel};

getTol method

double getTol() const;

Returns: the current tolerance.

getRTol method

double getRTol() const;

Returns: the current τr in (2.1).

getATol method

double getATol() const;

Returns: the current τa in (2.1).

2.1. Controlling integration: the DAEsolver class 22

getErrorEstType method

ErrorEstType getErrorEstType() const;

Returns: the current type of accuracy control.

2.1.4 Controlling the Taylor series order

We denote the order integrate uses by p. The Taylor series of the jth variable xj is
computed up to the term of order p + dj, where dj is the offset of xj . The minimum
and maximum allowed orders are denoted by pmin and pmax respectively.

Currently, pmin = 1. The maximum number of Taylor coefficients that can be
generated is set to MaxLength = 80. Then the largest allowed value of p, for a given
DAE, is

pmax = MaxLength − 1 − max
j

dj . (2.2)

When the constructor of DAEsolver is executed, it checks that pmax ≥ pmin. If this is
not the case, an exception std::out of range is thrown with a message stating the
smallest value for MaxLength that has to be given when Daets is compiled1.

When integrate is allowed to select the order itself (because setOrder, below, is
not called, or is called with argument 0) it uses a heuristic formula that has usually
performed well:

p = max
{

pmin, min{⌈−0.5 ln(tol) + 1⌉, pmax}
}

, (2.3)

Here tol is the tolerance given to Daets, and ⌈x⌉ is the next integer ≥ x. In the
absence of the limits pmin and pmax, and with the allowed range of tolerances (see
setTol method), this gives values in the range 2 to 18.

Tests on many problems have shown that the CPU time to solve a problem, as a
function of p for fixed tol, usually has a flat minimum, with the best order pbest in the
range 15 to 20, and slowly increasing as tol is decreased. Further, it is much safer to
take p too large rather than too small. A small p like 1 or 2 can increase solution time
by orders of magnitude, while taking p = 2 × pbest, say, typically increases solution
time quite modestly.

1If you would like MaxLength increased, contact N. Nedialkov who can produce a precompiled
library with larger MaxLength.

2.1. Controlling integration: the DAEsolver class 23

setOrder method

void setOrder(int order) throw(std::out_of_range);

order

Input: the order to which Taylor series are generated.
Constraint: pmin ≤ order ≤ pmax or order = 0.

• If order= 0, integrate selects the order by the heuristic (2.3).

• If order is in [pmin, pmax], integrate uses order p = order.

• If order does not satisfy the above constraint, exception std::out of range is
thrown with a message saying that the order must be in [pmin, pmax] or 0.

getOrder method

int getOrder() const;

Returns: the current order, p.

getMinOrder method

int getMinOrder() const;

Returns: pmin.

getMaxOrder method

int getMaxOrder() const;

Returns: pmax.

2.1.5 Controlling the stepsize

On each integration step after the first, integrate computes a trial stepsize h for the
next step, based on the current h and the ratio r in (2.1), such that a prediction of
the estimated error is below a tolerance. The stepsize is restricted by the values of the
largest, hmax, and smallest, hmin, allowed stepsizes.

If the trial h satisfies |h| < hmin, this is a fatal error, and the integration is termi-
nated. If |h| > hmax, h is replaced by ±hmax, with the same sign as h.

2.1. Controlling integration: the DAEsolver class 24

By default, hmax is set to the largest finite double precision number, and can be
set to a smaller value by the user. The usual reason for doing so is that the solution
path is observed to have long smooth stretches during which h builds up, alternating
with short regions of rapid change that may be missed altogether if h is too large. The
continuation problem in §3.4 is an example.

Let τ = max{|t0|, |tend|}, where the integration is from t0 to tend. Then

hmin = 16 · (τ+ − τ), (2.4)

where τ+ is the next double precision number after τ . hmin cannot be changed by the
user.

getHmin method

double getHmin() const;

Returns: current hmin.

getHmax method

double getHmax() const;

Returns: current hmax.

setHmax method

void setHmax(double hmax);

hmax

Input: scalar.

Result: sets hmax to hmax.

If the computed by integrate hmin > hmax, an exception std::logic_error oc-
curs. In this case, hmax should be set to at least hmin.

2.2. Solution path properties: the DAEsolution class 25

2.1.6 Passing data to a DAE function

passDataToDAE method

void passDataToDAE(void *param);

param

Input: pointer to data that need to be passed to the function fcn that specifies
the DAE, through the void *param parameter in fcn.

If param is the NULL pointer, a call to passDataToDAE has no effect. The user
should ensure that data is correctly extracted inside fcn.

For examples illustrating the use of this function see §3.3 and §3.4.

2.2 Solution path properties: the DAEsolution class

In the method descriptions of this section, x denotes a DAEsolution object at the
current point t on the solution path x(t), and X denotes the values of xj and derivatives

that x holds. That is, X is the irregular vector comprising Xjk = x
(k)
j , the computed

value at t of the kth derivative of the variable xj(t), for (j, k) in the index set

J = {(j, k) | j = 1, . . . , n, 0 ≤ k ≤ dj + α}, (2.5)

where α = −1 if the DAE is quasilinear, α = 0 if not—see §1.2.2.
The basic role of an object x of the DAEsolution class is to store the numerical

values t and X that jointly describe the current point on the solution path. However,
x stores other important attributes.

It records its position along the solution path using the enumerated type:

typedef enum SolutionState

{Initial, InitialConsistent, OnPath, EndOfPath};

A newly created x is in state Initial, and Daets deems it an inconsistent point.
Its t, and each component of its X, is flagged “uninitialized”, and integrate will not
accept x until all these values are set. When consistent values at the initial t0 are
found, x moves into state InitialConsistent; this can be seen if integrate is called
with tend = t0 to find a consistent point and then exit. After the first accepted step,
x is in state OnPath and is deemed consistent. It remains in this state until (a) a call
to integrate fails (with a htoosmall or nonconsistentpt error), putting x into the
EndOfPath state, or (b) it is returned to the Initial state by a call to setFirstEntry,
see §2.2.3.

Only in the Initial state can the value of (t,X) be set by the setT and setX

methods, or by the updatePoint method of §2.2.2. In all other states, trying to alter
the t or X values in x results in an exception std::logic_error.

x also records for each element of X whether it has been given an initial value, and
(for the algorithm that finds a consistent point) whether this value was set “fixed” or

2.2. Solution path properties: the DAEsolution class 26

“free” by the relevant setX call. This is recorded through the type of an element of x,
declared as

typedef enum VarType {Uninitialized, Fixed, Free};

(Hence, using setX, one can also mark an entry in x as uninitialized.) Calling integrate
when X is not fully initialized causes an uninitializedpt error.

x also has a “one-stepping” attribute, set by setOneStepMode, see §2.2.3. When
this is true, x is in one-step mode, and integrate returns after each successful step
with x. On the initial step there is a special feature: when returning on the first call, x
contains a consistent point, but t is not changed; when returning on the second call, x
contains a solution at the next selected t. This simplifies writing output to a file—see
§3.3 for an example.

At present, one-step mode is the only way to program event location, or to pro-
duce output at each step for plotting, etc. However, a related feature is provided by
setPrintProgress of §2.2.4, which puts x into a mode where the current t, step size,
etc., are displayed at each step with an optional pause to help one read them. This
can help debug an integration that seems to get “stuck”, without the need to program
a one-step loop in the main program.

Apart from the operations in this section, DAEsolution objects support the arith-
metic operations of their base class DAEpoint, which just holds an irregular array X.
Such operations “strip out” the non-DAEpoint attributes. For instance let x1 and x2

be two computed solutions at tend of the same DAE. We wish to find how different
they are by comparing their X arrays. To do so, form the difference x1-x2, which
is a DAEpoint object, and then (x1-x2).norm(), which returns the max-norm of the
difference,

(x1− x2).norm() = max
(j,k)∈J

∣

∣

∣
x

(k)
1,j − x

(k)
2,j

∣

∣

∣
,

in an obvious notation, where J is the index set in (2.5).
x records statistics such as the number of accepted and rejected steps used so far

in the integration. It also holds the attribute that determines whether the integration
is done in one-step mode.

2.2.1 Access

getT method

double getT() const throw(std::logic_error);

Returns: x.getT() returns the current t stored in x.

Constraint: t must be initialized by a call to setT. Otherwise an exception
std::logic error results.

2.2. Solution path properties: the DAEsolution class 27

getType method

VarType getType(int index, int order) const throw(std::out_of_range);

index, order

Input: such that x.getType(j−1, k) returns the type of the entry of x repre-

senting x
(k)
j , the kth derivative of the jth variable.

Constraint: (j, k) must be in the index set J of (2.5). Otherwise, an exception
std::out_of_range results.

Returns: x.getType(j−1, k) returns the type of the entry of x representing x
(k)
j .

getX method

double getX (int index, int order) const
throw(std::logic_error, std::out_of_range)

index, order

Input: values j and k such that x.getX(j−1, k) returns the current value of the

entry of x representing x
(k)
j , the kth derivative of the jth variable.

Constraint: If x is in Initial state, (j, k) must be in the index set J of (2.5).
Otherwise, index ∈ {0, . . . , n − 1} (i.e., j ∈ {1, . . . , n}) and k ∈ {0, . . . , p + dj},
where p is the order of the Taylor series.

Returns: x.getX(j−1, k) returns the current value of the entry of x representing

x
(k)
j .

An exception std::logic_erorr results if

• x is in an Initial state, and entry (j − 1, k) is not initialized by a call to setX

or

• x is in an Initial state, and (j − 1, k) is not in the index set J . For example,
if x has not been integrated, this exception arises when attempting to access an
entry with indices “outside” J .

An exception std::out_of_range results if variable index j /∈ {1, . . . , n} or derivative
index k /∈ {0, . . . , p + dj}.

2.2. Solution path properties: the DAEsolution class 28

2.2.2 Copying

No assignment operator y = x is provided for this class because copying the entire
contents of x to y could compromise the locking security feature if either object is not
in the Initial state. However, one often wants to use the X contents of an object to
initialize another object. The updatePoint method offers this, without bypassing the
security feature.

updatePoint method

DAEsolution & updatePoint(const DAEpoint &x) throw(std::logic_error);

x

Input: a DAEpoint or a DAEsolution object.

Returns: y.updatePoint(x) has the effect of copying the X part of x into that of
y.

If x is a DAEpoint object:

• if the type of a component of y is Uninitialized, it becomes Free;

• otherwise, the type of a component of y remains unchanged.

If x is a DAEsolution object, the type of each element is also copied.

Constraints: y must be in the Initial state, else an exception std::logic_error

results.

x and y must have the same shape (have the same index set J in (2.5)), else
an exception std::logic_error results. It is not necessary that x and y were
constructed from the same Solver.

This feature is convenient for copying the elements of initialized objects. For ex-
ample, if an integration proves problematic near some t = t1, and one wishes to
experiment with the accuracy control or other parameter settings around this point,
one can do

DAEsolution x(Solver);

/* initialize x

... integrate x from t0 up to some t1 */

DAEsolution y(Solver);

/* copy the values stored in x, and their types */

y.updatePoint(x);

/* ... set t and other values in y, and integrate onward from t1 */

2.2. Solution path properties: the DAEsolution class 29

2.2.3 State control

The rationale of these methods is discussed at the start of §2.2.

setFirstEntry method

void setFirstEntry();

Result: x.setFirstEntry() puts x into the Initial state so it can be (re)-
initialized.

It also resets to zero the variables that gather the statistics of §2.2.5.

setOneStepMode method

void setOneStepMode(bool onestep);

onestep

Input: if onestep==true, integrate returns after it accepts a step.

If onestep==false, integrate attempts to reach tend from current (t,X) stored
in x.

2.2.4 Reporting during integration

setPrintProgress method

The setPrintProgress method switches a DAEsolution object x in and out of a
printprogress mode where the progress of integration is displayed. If x is in this
mode then integrate prints, at each accepted step,

the current t, number of steps (as given by getNumAccSteps in §2.2.5),
stepsize, and local error estimate,

in a fixed position on the screen without scrolling.

void setPrintProgress(double s=0);

s

Input: If s ≥ 0, printprogress mode is switched on. In addition, the integration
pauses for s seconds after each output, to make it easier to read what is displayed.

If s < 0, printprogress mode is switched off.

Note. The operation of this method may be sensitive to your terminal settings.
Please notify the authors in case of problems.

2.2. Solution path properties: the DAEsolution class 30

setOutputFunction method

This method sets a user-defined function, say outfcn, for data output inside the
integrate method, for instance to write solution values to a file for plotting. For an
example, see §3.6. The outfcn function is called at the end of each integration step.

Such a function should be declared as

void outfcn(const DAEsolution &x, void *out_param, void *problem_param)

x

Input: reference to a solution object.

out_param

Input: pointer to a user-defined object of arbitrary type that passes output-
related parameters (e.g. file handles) to this function.

problem_param

Input: pointer to a user-defined object of arbitrary type that passes problem-
related parameters to this function.

To make integrate use outfcn, call on a DAEsolution object

void setOutputFunction(OutputFcn outfcn, void *out_param,

void *problem_param=NULL)

outfcn

Input: pointer to an output function.

out_param, problem_param
Input: pointers to user-defined objects of arbitrary type; see above.

Here OutputFcn is defined as

typedef void (*OutputFcn)(const DAEsolution &, void *, void *);

2.2.5 Statistics

The following statistics are cumulative, starting at zero for an object x in the Initial
state, and added to by each subsequent call to integrate() on x unless reset to zero
by a call to setFirstEntry.

getCPUtime method

double getCPUtime() const;

Returns: user CPU time in seconds used to integrate a DAEsolution object. This is
obtained by a call to the Fortran etime utility, which accesses the high-resolution
clock and is typically accurate to a microsecond or better.

2.2. Solution path properties: the DAEsolution class 31

getNumAccSteps method

int getNumAccSteps() const;

Returns: number of accepted steps.

getNumRejSteps method

int getNumRejSteps() const;

Returns: number of rejected steps.

2.2.6 Printing

printSolutionState method

void printSolutionState(ostream &s = cout) const;

s

Input: output stream, default is cout.

Result: x.printSolutionState(s) outputs into s the current state of x along the
solution path, which is one of the values of SolutionState.

printStats method

void printStats(ostream &s=cout) const;

s

Input: output stream, default is cout.

Result: x.printStats(s) outputs into s the following data related to the integra-
tion of x. Where relevant these are cumulative, as in §2.2.5.

– user CPU time

– total number of steps, number of accepted and number of rejected steps

– values of smallest and largest stepsizes

– current order of the Taylor series

– current tolerances τr and τa, see equation (2.1).

2.3. Arithmetic on solutions: the DAEpoint class 32

2.3 Arithmetic on solutions: the DAEpoint class

The DAEpoint class is a base class for DAEsolution. A DAEpoint object stores an

irregular array, i.e., values representing derivatives x
(k)
j for (j, k) in an index set J , see

(2.5).

2.3.1 Constructors

DAEpoint(const DAEsolver &Solver) throw(std::logic_error);

Solver

Input: a DAEsolver object.

Result: Constructs a DAEpoint object with the correct shape for Solver. If Solver
is constructed from an ill-posed DAE, an exception std::logic_error results.

DAEpoint(const DAEpoint &X);

X

Input: a DAEpoint or a DAEsolution object.

Result: Constructs a DAEpoint object with the same shape as X and copies the
contents of X into it.

2.3.2 Access

setX method

DAEpoint & setX(int index, int order, double value)

throw(std::out_of_range);

index, order, value

Input: such that x.setX(j−1, k, v) sets the entry of x representing x
(k)
j , the kth

derivative of the jth variable, equal to v. This is explained in §1.3.5.

Constraint: (j, k) must be in the index set J of (2.5). Otherwise, an exception
std::out_of_range results.

Returns: A reference to the updated object.

Returning a reference lets one “chain” calls as with the setX method of DAEsolution;
see §1.3.3.

2.3. Arithmetic on solutions: the DAEpoint class 33

getX method

double getX(int index, int order) const
throw(std::out_of_range);

index, order

Input: such that x.getX(j−1, k) returns the current value of the entry of x

representing x
(k)
j , the kth derivative of the jth variable.

Constraint: (j, k) must be in the index set J of (2.5). Otherwise, an exception
std::out_of_range results.

Returns: x.getX(j−1, k) returns the current value of the entry of x representing

x
(k)
j .

getNumVariables method

int getNumVariables() const;

Returns: n, number of variables a DAEpoint object stores.

getNumDerivatives method

int getNumDerivatives(int j) const throw(std::out_of_range);

j

Input: variable number
Constraint: 0 ≤ j ≤ n− 1. If j < 0 or j > n− 1, exception std::out of range

is thrown, which also prints the range for j.

Returns: dj + 1 + α, number of derivatives a DAEpoint object stores for variable j;
cf. (2.5).

Note.When getNumDerivatives(j) returns 0, it implies that variable xj+1 cannot
be accessed by setX and getX methods. In such a case, for example, X.setX(j,0,value)
would result in std::out_of_range exception.

2.3. Arithmetic on solutions: the DAEpoint class 34

2.3.3 Assignment

operator = method

DAEpoint & operator = (const DAEpoint & X);

x

Input: a DAEpoint or a DAEsolution object.

Result: copies the content of X to the object on the left in =, e.g. Y=X.

Returns: reference to the updated DAEpoint object.

DAEpoint & operator = (double a);

a

Input: a double scalar.

Result: X=a sets all entries of X equal to a.

Returns: reference to the updated DAEpoint object.

2.3.4 Arithmetic

In the operators that follow, the arguments must have the same shape, that is the
irregular arrays X that they hold must be indexed over the same J in (2.5). If not,
an exception std::logic error is thrown, which also prints the reason for the “mis-
match”. The symbol • stands for any of +, -, *, and /.

For convenience in the notation below, by X(i, j) we denote the value for x
(j)
i stored

in object X.

operator •= method

DAEpoint & operator •= (const DAEpoint &X)

throw(std::logic_error);

X

Input: a DAEpoint or a DAEsolution object.

Returns: Reference to *this such that (∗this)(j, k) •= X(j, k) for all (j, k) ∈ J .

2.4. Daets default settings 35

operator • method

DAEpoint operator • (const DAEpoint &X, const DAEpoint &Y)

throw(std::logic_error);

X, Y
Input: DAEpoint or DAEsolution objects.

Returns: A DAEpoint object containing X(j, k) • Y(i, j) for all (i, j) ∈ J .

2.3.5 Comparison

operator == method

bool operator == (const DAEpoint &X, const DAEpoint &Y)

throw(std::logic_error);

X, Y
Input: DAEpoint or DAEsolution objects.

Returns: true if X(i,j) == Y(i,j) for all (i, j) ∈ J , false otherwise.

operator != method

bool operator != (const DAEpoint &X, const DAEpoint &Y)

throw(std::logic_error);

Returns: X != Y is equivalent to !(X == Y).

2.3.6 Norm

norm method

double norm() const;

Returns: X.norm() returns max(j,k)∈J |Xjk| where X is the irregular array stored in
X.

2.4 Daets default settings

The table below lists the default values of all parameters that control the operation of
the integration process, or are otherwise relevant to the user.

2.4. Daets default settings 36

tolerance 10−8

accuracy control mixture of relative and absolute
order selected automatically by Daets according to (2.3), or

set by the user
min order 1
max length of TS 80; changeable by recompiling the source
max order determined by (2.2)
stepsize variable, determined by Daets

min stepsize determined by Daets according to (2.4)
max stepsize the largest finite double precision number

Summary

All the user-callable features of Daets have been covered in this chapter and Chap-
ter 1. Many, but by no means all, of them are illustrated in the example programs of
the next chapter.

Chapter 3

Examples of Daets Code

We begin in §3.1 with suggestions for how to handle a DAE whose structure is un-
familiar to you. In §3.2 we show code to solve a small DAE from the Test Set [12],
illustrating a technique to simplify the translation from Fortran, where arrays are usu-
ally indexed from 1, into C++ which indexes them from 0. In §3.3 we solve Van Der
Pol’s ODE, showing how parameters are passed to a DAE function and how one-step
mode may be coded. §3.4 shows how Daets can solve continuation problems. In §3.5
we give code to solve a model of putting a golf ball, originally approximated in [1]
by an ODE. We show a more realistic formulation as an index 3 DAE, though the
problem is really a boundary value problem and our main program does not handle
this aspect. In §3.6, we illustrate how an output function is set, so integrate outputs
data after each accepted step.

All the code shown in this chapter is included in the Daets distribution.

3.1 Handling an unfamiliar DAE

If a DAE is new to you, you probably do not know the offsets and other results of its
structural analysis, nor the index set J in (2.5), i.e. for what j and k must x

(k)
j be

initialized. Even when this is known, it may be unclear what consistent initial values
look like.

To remedy this, you might write first a main program that merely creates a Solver

and calls the reporting functions in §2.1.2. The output, particularly of printDAEpoint-
Structure(), will give the needed structural information. Note printDAEtableau()

displays an n × n matrix, so it should be used with caution when n is large.
For the chemakzo program of §3.2 below, instead of lines 58 onwards one can

initially just write

x.printDAEinfo();

x.printDAEtableau();

x.printDAEpointStructure ();

return 0;

}

which produces:

37

3.1. Handling an unfamiliar DAE 38

DAE

not quasilinear

size6

index1

TABLEAU

| 0 1 2 3 4 5 |c_i

0| 1* 0 0 0 0 - | 0

1| 0 1* - 0 - 0 | 0

2| 0 0 1* 0 0 - | 0

3| 0 - 0 1* 0 - | 0

4| 0 0 0 0 1* 0 | 0

5| 0 - - 0 - 0* | 0

d_j| 1 1 1 1 1 0 |

Index = 1, DOF = 5

POINT STRUCTURE

variable derivatives

x0 0 1

x1 0 1

x2 0 1

With the output from this, you know which components to initialize. Suppose, as
in this problem, you know consistent initial values, or reasonable guesses of them, for
some required components—here, xj for j = 0 to 4 (counting from 0 as in the main
program). The program should set these values suitably, and set the others—here, x5

and x′

0 to x′

4—to an arbitrary value such as zero. (See setInitialValues() at line
73 in the code below.)

If you want to inspect the consistent point that results, call integrate with tend

equal to the initial t0. This computes a consistent point and exits. The result here is

SOLUTION

t = 0.000000e+00

x x’

x0 4.440000e-01 -5.097682e-02

x1 1.230000e-03 -1.372932e-02

x2 0.000000e+00 2.548743e-02

x3 7.000000e-03 -3.916080e-06

If on inspection this appears to be correct, you can continue the integration to the
desired tend. The results are shown in §3.2 below.

3.2. Chemical Akzo Nobel problem 39

3.2 Chemical Akzo Nobel problem

This IVP is a stiff non-linear DAE of size 6 and index 1. It describes a chemical process,
in which 2 species are mixed, while carbon dioxide is continuously added, to produce
a product. It is taken from the Test Set for IVP Solvers [12], which describes more
fully its formulation and origin. We give a basic program to integrate this problem
and check the accuracy of the solution by computing the number of significant correct
digits as defined in [12].

A useful coding technique is shown. The Test Set supplies definitions of the DAEs
in Fortran, with arrays indexed from 1. Using #define statements, we convert between
this style and C++’s style of indexing from 0. Hence, the Fortran code can be adapted
with very little change.

1 // file chemakzo.cc in daets/examples

2 // A program to integrate the Chemical Akzo Nobel DAE problem

3 // from the Test Set for IVP solvers.

4 #include "DAEsolver.h"

5 using namespace daets;

6 /* --------------------- DAE DEFINITION -----------------*/

7 // Function for evaluating f(y) in formulation of Akzo Nobel DAE

8 template <typename T>

9 void fcn0(T t, const T *x, T *f) {

10 // Since we adapt the Fortran code given in this test set , it is

11 // convenient to introduce these two macros:

12 #define f(i) f[i-1]

13 #define y(i) x[i-1]

14 // constants from problem definition

15 double

16 k1 = 18.7e0,

17 k2 = 0.58e0,

18 k3 = 0.09e0,

19 k4 = 0.42e0,

20 kbig= 34.4e0,

21 kla = 3.3e0 ,

22 ks = 115.83e0 ,

23 po2 = 0.9e0 ,

24 hen = 737e0;

25 // intermediate variables

26 T r1 = k1*(pow(y(1),4))*sqrt(y(2)),

27 r2 = k2*y(3)*y(4),

28 r3 = k2/kbig*y(1)*y(5),

29 r4 = k3*y(1)*(sqr(y(4))) ,

30 r5 = k4*(sqr(y(6)))* sqrt(y(2)),

31 fin = kla*(po2/hen -y(2));

32 // the f(y) functions

33 f(1) = -2e0*r1 +r2 -r3 -r4;

34 f(2) = -0.5e0*r1 -r4 -0.5e0*r5 + fin;

35 f(3) = r1 -r2 +r3;

36 f(4) = -r2 +r3 -2e0*r4;

37 f(5) = r2 -r3 +r5;

38 f(6) = ks*y(1)*y(4)-y(6);

39 #undef f

40 #undef y

3.2. Chemical Akzo Nobel problem 40

41 }

42 // fcn evaluates the Akzo Nobel DAE functions.

43 template <typename T>

44 void fcn(T t, const T *y, T *f, void *param) {

45 fcn0(t, y, f);

46 for (int i = 0; i < 5; i++)

47 f[i] -= Diff(y[i], 1);

48 }

49 /* -------------- FORWARD FUNCTION DECLARATIONS ------------*/

50 double compSignificantCorrectDigits(DAEsolution &x);

51 void setInitialValues(DAEsolution &x);

52 /* ---------------------- MAIN PROGRAM --------------------*/

53 int main() {

54 int n = 6;

55 double tend = 180.0;

56 // Create solver and solution point , and set initial values.

57 DAEsolver Solver(n, DAE_FCN(fcn));

58 DAEsolution x(Solver);

59 setInitialValues(x);

60 // Integrate.

61 SolverExitFlag flag;

62 Solver.integrate(x, tend , flag);

63 i f (flag!=success) {printSolverExitFlag(flag); return 1;}

64 // Print solution and statistics about the integration.

65 x.printSolution();

66 x.printStats();

67 // How did it compare with reference solution?

68 printf(" *** Significant correct digits: %5.1f\n",

69 compSignificantCorrectDigits (x));

70 return 0;

71 }

72 /* ------------------ SET INITIAL VALUES ------------------*/

73 void setInitialValues(DAEsolution &x) {

74 double t = 0;

75 x.setX(0, 0, 0.444) .setX(0, 1, 0)

76 .setX(1, 0, 0.00123).setX(1, 1, 0)

77 .setX(2, 0, 0.0) .setX(2, 1, 0)

78 .setX(3, 0, 0.007) .setX(3, 1, 0)

79 .setX(4, 0, 0.0) .setX(4, 1, 0)

80 .setX(5, 0, 0)

81 .setT(t);

82 }

83 /* ------------------- CHECK ACCURACY ----------------------*/

84 // Check solution against reference solution from test set.

85 double compSignificantCorrectDigits(DAEsolution &x) {

86 double y[6];

87 // reference solution from the test set

88 y[0] = 0.1150794920661702e0;

89 y[1] = 0.1203831471567715e-2;

90 y[2] = 0.1611562887407974e0;

91 y[3] = 0.3656156421249283e-3;

92 y[4] = 0.1708010885264404e-1;

93 y[5] = 0.4873531310307455e-2;

94 // Compute max norm of componentwise relative errors.

95 double error_norm = 0;

3.3. One-step mode. Passing data to a problem 41

96 for (int i=0; i < 6; i++) {

97 double r = fabs((x.getX(i,0)-y[i])/y[i]);

98 i f (r>error_norm) error_norm = r;

99 }

100 return -log10(error_norm);// # significant correct digits

101 }

The output is

SOLUTION

t = 1.800000e+02

x x’

x0 1.150795e-01 -2.265538e-04

x1 1.203831e-03 1.358514e-07

x2 1.611563e-01 1.127593e-04

x3 3.656156e-04 -1.036671e-06

x4 1.708011e-02 1.380017e-06

x5 4.873531e-03

STATISTICS

TIME0.201 ORDER11

STEPS133 TOLERANCE

accepted.......132 relative...1.0e-08

rejected.........1 absolute...1.0e-08

%.........0.8

STEPSIZES

smallest.....0.048

largest1.752

*** Significant correct digits: 8.5

3.3 One-step mode. Passing data to a problem

We illustrate how parameters are passed to the function for evaluating the DAE in
Daets. Here, we integrate the Van Der Pol’s equation

0 = −x′′ + µ(1 − x2)x′ − x (3.1)

with (x, x′) = (3, 2) at t0 = 0, values for parameter µ = 1, 10, and 100, and tend =
20, 60, and 500, respectively. We also show how the one-step mode is called. We
report the solution on each step into files and plot x versus t and x′ versus x.

We list and explain the Daets program for integrating this problem.

1 // file vdp.cc in daets/examples

2 // It solves Van Der Pol’s ODE. It illustrates how parameters can be

3 // passed to the DAE and how the one-step mode is called.

4 #include "DAEsolver.h"

5 using namespace daets;

6 /* ------------------------- DAE DEFINITION ---------------*/

3.3. One-step mode. Passing data to a problem 42

7 template <typename T>

8 void fcn(T t, const T *x, T *f, void *param) {

9 // Convert the content at param to double.

10 double mu = *((double*)param);

11 // 0 = −x′′ + µ(1 − x2)x′ − x

12 f[0] = -Diff(x[0] ,2)+mu*(1-sqr(x[0]))* Diff(x[0],1)-x[0];

13 }

14 /* ------------------------- MAIN PROGRAM -----------------*/

15 int main() {

16 double t0 = 0;

17 double mu[] = {1, 1e1, 1e2};

18 double tend[] = {20, 60, 500};

19 double hmax[] = {0.05,0.005,0.001};

20 // Create a solver and pass the address of mu[0] as last parameter.

21 DAEsolver Solver (1, DAE_FCN(fcn), mu);

22 // Create DAEpoint object and store initial point.

23 DAEpoint xp(Solver);

24 xp.setX(0 ,0 ,3).setX(0 ,1 ,2);

25 // Create DAEsolution object

26 DAEsolution x(Solver);

27 // Set one-step mode.

28 x.setOneStepMode(true);

29 // Monitor the integration.

30 x.setPrintProgress();

31 SolverExitFlag flag=success;

32 for (int i=0; i<3; i++)

33 {

34 printf("Integrating VDP with mu=%.1e tend = %.1f\n",

35 mu[i], tend[i]);

36 i f (i>0) {

37 Solver.passDataToDAE(&mu[i]);

38 x.setFirstEntry();

39 }

40 x.updatePoint(xp).setT(t0);

41 // Create file name and open a file for writing.

42 char buf[20];

43 sprintf(buf ,"vdp -%.1e.out", mu[i]);

44 FILE *fd = fopen(buf , "w");

45 // Restrict the stepsize, so the plots appear "smooth".

46 Solver.setHmax(hmax[i]);

47 // Integrate and write t, x, x′ at each step into file vdp-mu.out.

48 while (x.getT()!=tend[i] && flag== success) {

49 Solver.integrate(x, tend[i], flag);

50 fprintf(fd , "%.3e %.6e %.6e\n",

51 x.getT(), x.getX(0,0), x.getX(0 ,1));

52 }

53 fclose(fd);

54 }

55 i f (flag != success) { printSolverExitFlag(flag); return 1;}

56 return 0;

57 }

When passing parameter(s) to fcn, the DAEsolver constructor must be invoked
with a third parameter that is the address of a variable (line 21) that will be passed to
fcn. Since this parameter is of type void *, the user must extract the needed value(s)

3.3. One-step mode. Passing data to a problem 43

inside fcn, line 10. Here, inside fcn, the data at param is converted to double, the
type used in this function.

If integrations with different parameter values are desired, these values should be
passed by calling the passDataToDAE method, line 37. Here, we pass in a loop the
values 10 and 100 for µ.

WARNING:

(a) The DAEsolver constructor and passDataToDAE must be called with the same
type of their corresponding parameters.

(b) The size n of a problem is fixed at the time a DAEsolver object Solver is con-
structed. You can not use passDataToDAE to change n for an existing Solver. If
you attempt this, a segmentation fault or undefined behavior is likely to occur.

An fcn can allow different values of n, as in the continuation example of §3.4, but
to use several values of n in one program run, you must create a different solver
for each n.

We store the initial values (x, x′) in a DAEpoint object, lines 23 and 24. Then we
create a DAEsolution object and activate the one-step mode in line 28. In the for
loop, before x is reinitialized, setFirstEntry must be called, line 38, to unlock x for
further use. Since Daets does not provide continuous output yet, which can be used
for producing “smooth” plots, we restrict the largest stepsize the solver takes, line 46.
(The values in hmax are found by trial and error.)

The plots in Figure 3.3 of x versus t and x′ versus x, for µ = 1, 10, and 100, show
the behavior for which this ODE is famous. From the initial point, the path moves
towards a limit cycle to which it rapidly converges, and which shows abrupt changes
evidenced by the “corners” near (±2, 0). The larger is µ, the sharper are these corners.

The gnuplot file used to produce these plots is

file vdp.gp in daets/examples/ gnuplot

This file plots x vs t and x’ vs x

for the Van Der Pol’s equation

set terminal postscript enh color eps dl 2 "Courier" 28

mu = 1

set t i t l e ’{/Symbol m} = 1’ font "Times ,28"

set output ’vdp0x.eps’

set xlabel "t" font "28"

set ylabel "y" font "28"

plot ’vdp -1.0e+00.out’ u 1:2 notitle with lines lw 3

set output ’vdp0xxp.eps’

set xlabel "y" font "28"

set ylabel "y’" font "28"

plot ’vdp -1.0e+00.out’ u 2:3 notitle with lines lw 3

mu = 10

set t i t l e ’{/Symbol m} = 10’ font "Times ,28"

set output ’vdp1x.eps’

set xlabel "t" font "28"

set ylabel "y" font "28"

3.3. One-step mode. Passing data to a problem 44

-3

-2

-1

 0

 1

 2

 3

 4

 0 5 10 15 20

y

t

µ = 1

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3 4

y
’

y

µ = 1

-3

-2

-1

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60

y

t

µ = 10

-15

-10

-5

 0

 5

 10

 15

-3 -2 -1 0 1 2 3 4
y
’

y

µ = 10

-3

-2

-1

 0

 1

 2

 3

 4

 0 100 200 300 400 500

y

t

µ = 10
2

-150

-100

-50

 0

 50

 100

 150

-3 -2 -1 0 1 2 3 4

y
’

y

µ = 10
2

Figure 3.1: Plots of x(t) versus t and x′(t) versus x(t) for the Van der Pol’s equation.

plot ’vdp -1.0e+01.out’ u 1:2 notitle with lines lw 3

set output ’vdp1xxp.eps’

set xlabel "y" font "28"

set ylabel "y’" font "28"

plot ’vdp -1.0e+01.out’ u 2:3 notitle with lines lw 3

mu = 100

set t i t l e ’{/Symbol m} = 10^{2} ’ font "Times ,28"

set output ’vdp2x.eps’

set xlabel "t" font "28"

set ylabel "y" font "28"

plot ’vdp -1.0e+02.out’ u 1:2 notitle with lines lw 3

set output ’vdp2xxp.eps’

set xlabel "y" font "28"

set ylabel "y’" font "28"

plot ’vdp -1.0e+02.out’ u 2:3 notitle with lines lw 3

3.4. A continuation problem 45

3.4 A continuation problem

This problem comes from Layne Watson [23]. We seek a fixed point, that is a root of
x = g(x), for the nonlinear function g : R

n → R
n defined by

gi(x) = gi(x1, . . . , xn) = exp(cos(i ·

n
∑

k=1

xk)), i = 1, . . . , n. (3.2)

Even for n = 10, this is considered quite difficult. We use the approach of seeking a
fixed point of the parameterized problem x = λg(x), that is a root of

f(λ,x) = 0, (3.3)

where f(λ,x) = x−λg(x). When λ = 0, equation (3.3) has the trivial solution x = 0,
and we hope to track a solution all the way to the desired root at λ = 1.

Daets can handle this directly, taking λ as the independent variable and solving
for x = x(λ). This formulation gives an index 0 system, all the offsets ci and dj are
zero, and the System Jacobian is

J =
∂f

∂x
= I − λ

∂g

∂x
.

For general problems of the form (3.3), this approach works as long as fx = ∂f/∂x
is nonsingular, but typically it has a serious weakness: one reaches values of λ where
fx becomes singular, while the n× (n+1) matrix [fx, fλ] retains full rank n. These are
turning points with respect to λ.

A powerful alternative is to treat all of x1, . . . , xn, λ as on the same footing, instead
of viewing λ as special, and to use arc-length continuation. The system (3.3) may be
rewritten as n equations in n+1 unknowns:

f(y) = 0, (3.4)

where y = (x; λ). “Generically”, fy is always of full row rank, and there is a (unique
except for direction) solution path through any point satisfying (3.4), tangential to
the 1-dimensional null space of fy. Invent a new independent variable s and add to
(3.4) an equation ‖dy/ds‖2

2 = 1, that is

0 = S =
∑

j

y′

j

2
− 1, (3.5)

where ′ means d/ds. This defines s to be Euclidean arc-length along the path; one can
insert weights to scale the components of y if needed.

This formulation gives an index 1 system of n + 1 equations and variables. To
match array indexing in C++ we label these from 0 to n with λ being variable 0 and
(3.5) being equation 0. The offsets are c0 = 0, c1, . . . , cn = 1 and all d0, . . . , dn = 1.
The (n+1)× (n+1) System Jacobian has 2(y′)T as its first row, with fy beneath, and
is nonsingular if fy has full rank, since y′ is orthogonal to the rows of fy.

How does Daets know which direction to take along the path? The code recognizes
the resulting DAE as not quasilinear and thus requires values up to stage k = 0 as an

3.4. A continuation problem 46

initial guess. Since all offsets dj are 1, these values are y1, . . . , yn+1; y′

1, . . . , y
′

n+1 —
not only an initial position, but also an initial direction. This is just what is needed.

Code to solve the Layne Watson problem by arc-length continuation is given below
(at a smaller font size because of its length). The main program uses two loops: to
output solution values in one-step mode, and to locate λ = 1 by a Newton iteration.

1 // file laynewatson .cc in daets/examples
2 #include <cmath >
3 #include "DAEsolver .h"
4 using namespace daets;
5 /* ---------------------- DAE DEFINITION ----------------*/
6 template <typename T>
7 void compDAE (T s, const T *x, T *f, void *param) {
8 // The param argument conveys the problem size :
9 int nplus1 = *((int *) param);

10 int n = nplus1 -1;
11 T lambda = x[0];
12 // Define f[0] = function S that specifies s to be arc length:
13 f[0] = -1.0;
14 for (int k=0; k<nplus1; k++)
15 f[0] += sqr(Diff (x[k] ,1));
16 T sum = 0.0;
17 for (int k=1; k<=n; k++)
18 sum += x[k];
19 // The algebraic equations are f[1] to f[n]
20 for (int i=1; i<=n; i++){
21 f[i] = x[i] - lambda * exp(cos(i*sum));
22 }
23 }
24 /* -----------------FORWARD FUNCTION DEFINITION ------------*/
25 stat ic void outputfcn (FILE *fd , const DAEsolution &x, int nplus1);
26 /* ------------------------- MAIN PROGRAM -----------------*/
27 int main () {
28 int n = 10, nplus1 = n+1;
29 DAEsolver Solver(nplus1 , DAE_FCN(compDAE), &nplus1);
30 DAEsolution x(Solver);
31 double t0 = 0.0, tend ;
32 int order = 15;
33 double tol = 1e-7;
34 // Initial guess has x and x’ all 0
35 // except x(0)’, that is d(lambda)/ds , is +1,
36 // which hopefully gets us going in right direction
37 x.setX (0, 0, 0.0). setX (0, 1, 1.0);
38 for (int i=1; i<=n; i++)
39 x.setX (i, 0, 0.0). setX (i, 1, 0.0);
40 x.setT (t0);
41 Solver.setOrder (order);
42 Solver.setTol(tol);
43 x. setOneStepMode (true);
44 FILE *fd = fopen(" laynewatson2 .out", "w");
45 SolverExitFlag flag = success;
46 while (x.getX (0,0)<1 && flag == success) {
47 // recall x(0,0) is lambda
48 Solver.integrate (x, x.getT ()+1, flag);
49 outputfcn (fd , x, nplus1);
50 }
51 printSolverExitFlag (flag);
52 x.printStats ();
53 // Now we know lambda >=1 at this step and was <1 at previous step .
54 // DAETS doesn’t do event location yet , so hand -code this here .
55 x. setOneStepMode (f a l s e);
56 while (fabs (x.getX (0 ,0) -1.0) > tol && flag == success) {
57 x. setFirstEntry ();
58 tend = x.getT () - (x.getX (0 ,0) -1.0)/ x.getX (0 ,1);
59 Solver.integrate (x, tend , flag);

3.4. A continuation problem 47

60 outputfcn (fd , x, nplus1);
61 }
62 printSolverExitFlag (flag);
63 x.printStats ();
64 x. printSolution ();
65 i f (flag != success) return 1;
66 return 0;
67 }
68 /* ----------------FUNCTION FOR OUTPUT TO FILE -------------*/
69 // This function outputs into a file suitable for GNUPLOT
70 stat ic void outputfcn (FILE *fd , const DAEsolution &x, int nplus1)
71 {
72 fprintf (fd , "%.4e ", x.getT ());
73 for (int i=0; i<nplus1; i++) {
74 fprintf (fd , " ");
75 for (int k=0; k<2; k++)
76 fprintf (fd , "%.7e ", x.getX (i,k));
77 }
78 fprintf (fd , "\n");
79 }

The output of this program to the terminal is

EXIT STATE

SUCCESS : The integration has completed successfuly

STATISTICS

TIME3.387 ORDER15

STEPS513 TOLERANCE

accepted509 relative ...1.0 e-07

rejected4 absolute ...1.0 e-07

%.........0.8

STEPSIZES

smallest ..3.563 e-04

largest0.667

EXIT STATE

SUCCESS : The integration has completed successfuly

STATISTICS

TIME0.016 ORDER15

STEPS1 TOLERANCE

accepted1 relative ...1.0 e-07

rejected0 absolute ...1.0 e-07

%.........0.0

STEPSIZES

smallest0.629

largest0.629

SOLUTION

t = 8.750393 e+01

x x’

x0 1.000000 e+00 6.442725 e -02

x1 1.491914 e+00 1.691229 e -01

x2 5.066654 e-01 7.231676 e -02

x3 3.890434 e-01 4.516114 e -03

x4 9.273171 e-01 -1.377331e -01

x5 2.419807 e+00 -1.464676e -01

x6 2.186966 e+00 5.771084 e -01

x7 7.729182 e-01 3.289186 e -01

x8 3.720929 e-01 4.789042 e -02

3.5. A golf putting problem 48

x9 5.865923 e-01 -2.006262e -01

x10 1.753840 e+00 -6.616551e -01

From the program’s output to a file, the plot in Figure 3.2 was produced.

x
1
,

x
1
0

λ

x1
x10
x1
x10

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1 1.2

Figure 3.2: Layne Watson problem, n = 10. The paths of x1 and x10 are plotted
against the original parameter λ. Many turning points can be seen. The markers show
successive integration points. Points beyond λ = 1 are part of the event location.

Tests showed that for reliable results one should impose a stepsize limit by the
setHmax() method (not done in this code). Otherwise, one may jump from the correct
path to another very close one. A limit of 0.3 worked for all experiments we tried,
namely every value of n from 2 to 40, and several larger n. With many combinations
of order and tolerance, we always found the same solution at λ = 1. Many others exist
(one finds some of them by continuing the path beyond the first one found), but “the
first occurrence of λ = 1 on the path starting from λ = 0” specifies a unique solution.

3.5 A golf putting problem

This problem was presented by S.M. Alessandrini [1] as a motivational example for
teaching numerical methods for two-point boundary value problems (BVPs). With
Daets, we have to treat it as an IVP rather than a BVP, but the program below can
be used to explore solving the BVP by means of a “manual shooting method’.

A golf ball lies on a green, at (x0, y0) (in plan view, ignoring the z co-ordinate for
now) and we wish to hit it to fall into the hole at (0, 0). The green is not necessarily
flat, and its surface is described by a function

0 = g(x, y, z) = z − S(x, y). (3.6)

3.5. A golf putting problem 49

The rolling dynamics of the ball is ignored: it is regarded as a point sliding on a surface
with coefficient of friction µ. It is confined to the surface, so no matter how curved
the green, the ball can never fly into the air. This is a valid assumption if, and only if,
the motion is slow enough and the curvature small enough that the normal reaction
force R of surface on ball has a positive z component.

In [1] the system is modeled as an ODE, via the assumption that the magnitude R
of R equals the component, normal to the surface, of the ball’s weight. This gives a
reasonable approximation, but when one solves it using the Matlab code BVP4C and
does a rotatable 3D plot, its deficiencies are obvious. Where the green is appreciably
curved, the ball spends most of its time in the air or underground! A correct formu-
lation is as a DAE, which is a typical index 3 mechanical system, like (1.2) except for
the presence of friction. The reaction R acts as a Lagrange multiplier, like λ in (1.2).

Let x = (x, y, z) be the position of the ball. Taking the mass of the ball as unity,
one may write the equations of motion as

ẍ = −µRnv + RnS − Gk, (3.7)

where “dot” is d/dt; nv is the unit vector tangential to the surface in the direction of
the velocity ẋ; nS is the unit normal to the surface in the upward direction; G is the
acceleration of gravity; and k is the unit vector vertically upward. Thus

nv =
ẋ

‖ẋ‖
, and nS =

∇g(x)

‖∇g(x)‖
. (3.8)

The DAE consists of (3.6, 3.7) after substituting the formulae (3.8) into (3.7).
It is physically clear there are 4 DOF: the initial (x, y) and (ẋ, ẏ). Formulating

as a BVP, we remove 2 DOF by specifying (x, y) = (x0, y0) at t = 0. Specifying
that the path reach the hole at some chosen time tend would remove the remaining
2 DOF, but this is not realistic: a golfer does not choose tend, but aims to make the
ball’s speed nearly zero at the moment it reaches the hole, so that it does not jump
the hole. So, we treat tend as an extra unknown, and remove the extra DOF by the
condition ‖ẋ(tend)‖ = 0. A Matlab formulation of this (as an ODE system) has been
successfully solved by BVP4C for a number of shapes of green. A difficulty—no doubt
obvious to a golfer—is that if the slope of the green near the hole is so large that
gravity overcomes friction, there may be no solution.

We give a crude program that solves the DAE as an IVP. A difficulty is that nv

in (3.7) creates a singularity when the ball comes to rest. If one takes no precautions
over this the integration oscillates indefinitely—to see why, try solving the one-variable
ODE y′ = −sign(y), y(0) = −1, which shows essentially the same behavior, with any
standard ODE solver.

To overcome this, the program solves in one-step mode and terminates the integra-
tion when it finds (ẋ, ẏ) this step is so different from (ẋ, ẏ) at the last step, that their
dot product is < 0. Another useful technique is shown: output (of t, x, y, z, ẋ, ẏ, ż)
is sent to a file, not at each step but at equal time intervals of δt, so that one can
estimate from a graph how the speed is changing along the path.

1 /* file golfputt .cc in daets/examples
2 This program integrates the "golf putt " problem from Alessandrini 1995.

3.5. A golf putting problem 50

3 Function outputfcn writes to a file .
4 Line 1 contains the parameters that define the green. The rest of the
5 file contains t,x,y,z,x’,y’,z’ values suitable for Gnuplot.
6 */
7 #include "DAEsolver .h"
8 using namespace daets;
9 /* -----------------DEFINE SURFACE OF GREEN & ITS GRADIENT -------------*/

10 template <typename T>
11 void dfgreen (const T &x, const T &y, const T &z,
12 void *param ,
13 T &f, T &dfx , T &dfy , T &dfz) {
14 /* Compute both f and grad f where f(x,y,z)=0 defines the surface
15 of the green. f must be defined so that df/dz is positive .
16 Input: (x,y,z).
17 Output: f holds f(x,y,z),
18 (dfx ,dfy ,dfz) holds grad f.
19 */
20 // This green has the form z - (f1 + f2) = 0 where f1 defines a plane
21 // and f2 defines a Gaussian hump centered at (x,y)=(a,b) of height h
22 // and "width squared" v.
23 double *p = (double*) param;
24 double dgx = p[0], dgy = p[1],
25 a = p[2], b = p[3], h = p[4], v = p[5];
26 T f1 = (dgx*x + dgy*y); // planar part
27 T f2 = h * exp(-(sqr(x-a) + sqr(y-b))/(2*v)); //hump part
28 f = z - (f1 + f2);
29 dfx = - (dgx - (x-a)/v*f2);
30 dfy = - (dgy - (y-b)/v*f2);
31 dfz = 1;
32 }
33 /* ------------------------FCN , DEFINES EQNS OF MOTION -----------------*/
34 template <typename T>
35 void fcn(T t, const T *w, T *f, void *param) {
36 // state variables
37 #define R w[0] // normal reaction force of green on ball.
38 #define x w[1] //]
39 #define y w[2] // |, co-ordinates of ball on surface of green.
40 #define z w[3] //] z points upward.
41 const double // constants from problem definition
42 G = 9.81, // gravity, in SI units
43 mu = 0.04; // coefficient of friction between green and ball
44 // velocity
45 T vx = Diff (x,1);
46 T vy = Diff (y,1);
47 T vz = Diff (z,1);
48 T v = norm2(vx ,vy ,vz);
49 // vector normal to green
50 T fval , dfx , dfy , dfz;
51 dfgreen (x,y,z, param , fval ,dfx ,dfy ,dfz);
52 T normdf = norm2(dfx ,dfy ,dfz);
53 f[0] = fval ;
54 f[1] = -Diff (x,2) + R*dfx/normdf - mu*R*vx/v;
55 f[2] = -Diff (y,2) + R*dfy/normdf - mu*R*vy/v;
56 f[3] = -Diff (z,2) + R*dfz/normdf - mu*R*vz/v - G;
57 #undef R
58 #undef x
59 #undef y
60 #undef z
61 }
62 /* --------------------------AUXILIARY FUNCTIONS -----------------------*/
63 template <typename T>
64 T norm2 (const T x, const T y, const T z) {
65 return sqrt (sqr(x)+sqr(y)+ sqr(z));
66 }
67 void outputfcn (FILE *fd , const DAEsolution & x) {
68 fprintf (fd , "%.4e % .6e % .6e % .6e % .6e % .6e % .6e\n",

3.5. A golf putting problem 51

69 x.getT (), x.getX (1,0), x.getX (2,0), x.getX (3,0),
70 x.getX (1,1), x.getX (2,1), x.getX (3 ,1));
71 }
72 /* ------------------------------MAIN PROGRAM ---------------------------*/
73 int main (int argc , char* argv []) {
74 // Check correct no. of inputs on command line
75 i f (argc !=4) {
76 cout << "\n*** Usage: " << string(argv [0]) << " u0 v0 dt\n"
77 << " where u0 , v0 are initial x and y velocities ,\n"
78 << " dt is time interval for output .\n\n";
79 exit (1);
80 }
81 const int n = 4; // size of the problem
82 // Use atof() to convert real-number literals to double
83 const double
84 t0 = 0.0, // initial time
85 vx0 = atof (argv [1]), // initial x velocity
86 vy0 = atof (argv [2]), // initial y velocity
87 dt = atof (argv [3]); // at intervals of dt, output to file
88 double greenparams [] =
89 {0, 0.035 , // plane, slightly uphill in y direction
90 3, 1.1, // center of hump

91 0.1, 0.25};// height and (width)2 of hump
92 DAEsolver Solver(n, DAE_FCN (fcn), greenparams);//create solver, analyze DAE
93 Solver.printDAEinfo ();
94 Solver.printDAEtableau ();
95 Solver.printDAEpointStructure();
96 DAEsolution x(Solver); // create solution object
97 // initial position (x,y)=(0,0) with a guessed value z=0.
98 // initial velocity (x’,y’)=(vx0,vy0) with a guessed value z’=0.
99 x.setT (t0)

100 .setX (1,0, 0.0, Fixed). setX (2,0, 0.0, Fixed). setX (3,0, 0.0)
101 .setX (1,1, vx0 ,Fixed). setX (2,1, vy0 ,Fixed). setX (3,1, 0.0);
102 // open output file:
103 FILE *fd = fopen("golfputt .out", "w");
104 // Its first line holds parameters defining the surface:
105 for (int i=0; i<6; i++) fprintf(fd , " %.6e", greenparams [i]);
106 fprintf (fd , "\n");
107 // declare variables to record change of direction of motion:
108 double vx , vy;
109 double vxold=vx0 , vyold=vy0 , v_vold =1;
110 // do integration in one-step mode, upper limit 60 seconds:
111 SolverExitFlag flag = success;
112 x. setOneStepMode (true);
113 double tend = t0 + dt;
114 Solver.integrate (x, t0 , flag); // to output initial consistent point
115 outputfcn (fd ,x);
116 while (flag == success && v_vold >0 && tend <60) { // 60 sec time limit!
117 Solver.integrate (x, tend , flag);
118 i f (x.getT ()== tend) {
119 outputfcn (fd ,x);
120 tend = tend + dt;
121 }
122 vx = x.getX (1 ,1); vy = x.getX (2 ,1);
123 v_vold = vx*vxold + vy*vyold;
124 vxold = vx; vyold = vy;
125 }
126 outputfcn (fd ,x);
127 fclose(fd);
128 // output results to screen
129 x.printStats ();
130 x. printSolution ();
131 i f (flag != success) { printSolverExitFlag (flag); return 1;}
132 return 0;
133 }

3.5. A golf putting problem 52

0
2

4
6

0

2

4
−0.1

0

0.1

0.2

x

(a x+b y+h exp(−((x−c) 2+(y−d)2)/(2 v)))

y 0 0.5 1 1.5 2

0

0.5

1

Path in velocity x’,y’ plane

Figure 3.3: Golf putt plots. Markers are at 0.2 sec intervals. Vertical axis not to scale.
(a) Path in x, y, z space. (b) Path in velocity ẋ, ẏ plane.

The program displays the expected structural information:

DAE

quasilinear

size4

index3

TABLEAU

| 0 1 2 3 |c_i

0| - 0 0* 0 | 2

1| 0 2* 1 1 | 0

2| 0* 1 2 1 | 0

3| 0 1 1 2* | 0

d_j| 0 2 2 2 |

Index = 3, DOF = 4

POINT STRUCTURE

variable derivatives

x0 -

x1 0 1

x2 0 1

x3 0 1

The program as given uses SI units. It has a planar green with an uphill slope of
1:20 in the y direction, and a “Gaussian” circular hump of height 10cm and nominal
radius 50cm, centered at the point (3, 1.1)m. The start point (x0, y0) = (0, 0) is hard-

3.6. Setting an output function 53

wired in the code, and the initial (ẋ0, ẏ0) and the interval δt are read from the command
line. The output for the graphs came from the call

./ golfputt 2.2 1.24 .2

Figure 3.3 shows plots of the results, which show the ball being deflected uphill as it
passes near the top of the hump, before it curls round and stops. They strongly suggest
(what theory confirms) that the ball’s velocity is directly downhill at the moment it
comes to rest.

The Matlab script used to produce the plots is given below.

curve=textscan(fid ,’%n %n %n %n %n %n %n’); % read rest

f c l o se (fid);

[a,b,c,d,h,v] = deal(params {:}); % green ’s parameters

[t,x,y,z,xp ,yp ,zp] = deal(curve {:}); % curve data

f i gure (3)

plot(xp,yp,’o-’,’LineWidth’ ,1.1)

set(gca,’FontSize’,20,’FontWeight’,’bold’, ’YTick’ ,0:0.5:2);

axis equal

t i t l e (’Path in velocity x’’,y’’ plane’, ...

’FontSize’ ,18,’FontWeight’,’bold’)

print -depsc golfputt3.eps

f igure (4)

c l f ; hold on

set(gca,’FontSize’,20,’FontWeight’,’bold’ ...

,’CameraPosition’, [-24 -32 2.2] ...

, ’DataAspectRatio’, [15 15 2]);

colormap(autumn);

wid = 3* sqrt (v);

fgreen=@(x,y)(a*x + b*y + h*exp(-((x-c).^2+(y-d).^2)/(2*v)));

ezsurf(fgreen, ...

[min([x;c-wid]) max([x;c+wid]) min([y;d-wid]) max([y;d+wid])], ...

25);

plot3 (x,y,fgreen(x,y)+0.001,’bo -’,’LineWidth’ ,1.1)

print -depsc golfputt4.eps

3.6 Setting an output function

We illustrate how an output function is given to integrate, so it can output solution
data into a file without calling the one-step mode. The example from Figure 1.2 is
augmented in the listing of Figure 3.4, where line 23 sets the output function outfcn,
defined in lines 32–39. On each successful step, integrate passes to this function the
accepted solution and the void* parameters. Here, we output t, x, x′′′, y, y′′′, λ, λ′′′.
Plots of these variables and derivatives versus t are given in Figure 3.6.

3.7 Summary

This chapter has aimed to show typical techniques in the application of Daets. The
authors welcome suggestions for improving these examples, and contributions that
show other useful techniques.

3.7. Summary 54

1 // file pendulumsimple outfcn.cc in daets/examples

2 #include "DAEsolver.h"

3 using namespace daets;

4 template <typename T>

5 void fcn(T t, const T *z, T *f, void *param) {

6 const double G = 9.8, L = 10.0;

7 f[0] = Diff(z[0] ,2) + z[0]*z[2];

8 f[1] = Diff(z[1] ,2) + z[1]*z[2] - G;

9 f[2] = sqr(z[0]) + sqr(z[1]) - sqr(L);

10 }

11 // Forward declaration of output function

12 void outfcn(const DAEsolution &x, void *output_param ,

13 void *problem_param);

14 int main() {

15 const int n = 3;

16 double t0 = 0.0, tend = 20.0;

17 DAEsolver Solver(n, DAE_FCN(fcn));

18 DAEsolution x(Solver);

19 x.setT(t0)

20 .setX(0,0, -9).setX(1,0, 0.0)

21 .setX(0 ,1 ,0.0).setX(1,1, 1.0);

22 FILE *outfile = fopen("pend.out", "w");

23 x.setOutputFunction(outfcn , outfile); // set output function

24 SolverExitFlag flag;

25 Solver.integrate(x, tend , flag);

26 i f (flag!=success)

27 printSolverExitFlag(flag);

28 fclose(outfile);

29 return 0;

30 }

31 // Output function

32 void outfcn(const DAEsolution &x, void *out_param , void *problem_param) {

33 FILE *outfile = (FILE*)out_param; // convert param to FILE* */

34 fprintf(outfile , "%e ", x.getT()); // output t

35 // output each variable and its third derivative

36 for (int j = 0; j < x.getNumVariables(); j++)

37 fprintf(outfile , "%e %e ", x.getX(j,0), x.getX(j,3));

38 fprintf(outfile , " \n");

39 }

Figure 3.4: Setting an output function.
.

3.7. Summary 55

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 5 10 15 20

x

t

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 5 10 15 20

x
’
’
’

t

-2

 0

 2

 4

 6

 8

 10

 0 5 10 15 20

y

t

-40

-30

-20

-10

 0

 10

 20

 30

 40

 0 5 10 15 20

y
’
’
’

t

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20

λ

t

-15

-10

-5

 0

 5

 10

 15

 0 5 10 15 20

λ’
’
’

t

Figure 3.5: Plots of x, x′′′, y, y′′′, λ, and λ′′′ versus t for the simple pendulum.

Chapter 4

Installation

Read this chapter if Daets is not already installed on your system. Section 4.1
describes how Daets can be obtained, §4.2 describes the installation process, and
§4.2.3 explains how the examples can be executed. The lists below show the supported
platforms at the time of writing. Visit the web sites mentioned, for information on the
current status of support.

In our experience, the main obstacles to installation come from the third-party
components, mainly Ipopt. This is not a criticism of Ipopt, which is a powerful
and inevitably somewhat complex optimization package. See if it is already on your
system, in which case it may be possible to link to it instead of re-installing.

4.1 Obtaining Daets

There are demo and full versions of Daets. They are distributed as a set of *.h

files and a precompiled library libdaets.a. These files are stored in zipped files as
described below.

4.1.1 Demo version.

A free, demo version of Daets is available at

http://www.cas.mcmaster.ca/~nedialk/daets

This version is restricted to solving systems of at most 8 equations. It is distributed
as zipped files:

Architecture OS Compiler Zip file

x86
Cygwin

GNU
daets-1.1-demo-x86-cygwin-gcc.zip

Linux daets-1.1-demo-x86-linux-gcc.zip

Mac OSX daets-1.1-demo-x86-osx-gcc.zip

4.1.2 Full version.

The full version is available through Canada’s innovation portal, Flintbox, at

56

http://www.cas.mcmaster.ca/~nedialk/daets

4.2. Installation 57

http://www.flintbox.com

It is distributed in the following zipped files:

Architecture OS Compiler Zip file

x86
Cygwin

GNU
daets-1.1-x86-cygwin-gcc.zip

Linux daets-1.1-x86-linux-gcc.zip

Mac OSX daets-1.1-x86-osx-gcc.zip

x86-64 Linux
GNU daets-1.1-x86-64-linux-gcc.zip

PathScale daets-1.1-x86-64-linux-pathCC.zip

PowerPC Mac OSX GNU daets-1.1-ppc-osx-gcc.zip

For other combinations of OS, architecture, compiler, and suggestions on improving
Daets, please contact

Ned Nedialkov ned.nedialkov@reliablenumerics.com
John Pryce j.d.pryce@ntlworld.com

4.2 Installation

After downloading the corresponding zip file, unzip it by e.g. unzip. This will create
a directory daets with subdirectories:

subdirectory contains
include *.h files
lib libdaets.a

examples source code of the examples in this guide and the
makefile used to produce the executables

The Daets code uses the third-party components Blas [10], Lapack [11], Fad-

bad++ [21], Ipopt [22], and Lap [9]. The LAP program is distributed with the source
code of Daets. We describe how the rest are installed, and show how programs using
Daets are compiled and linked.

We use the GNU make utility.

4.2.1 Third-party components

Lapack and Blas

The Lapack and Blas libraries are likely installed on your machine. If not, you can
download and install them from http://www.netlib.org/lapack and
http://www.netlib.org/blas, respectively.

http://www.flintbox.com
mailto:ned.nedialkov@reliablenumerics.com
mailto:j.d.pryce@ntlworld.com
http://www.netlib.org/lapack
http://www.netlib.org/blas

4.2. Installation 58

Fadbad++

1. Download Fadbad++ from http://www.fadbad.com/fadbad.html.

2. Extract the Fadbad++ files by

unzip FADBAD++-2.1.zip

These files will be stored in subdirectory FADBAD++ of the directory in which you
have executed tar.

Ipopt

1. Download the Fortran version Ipopt-Fortran 2006Oct21.tgz of the Ipopt

package from http://www.coin-or.org/download/source/Ipopt-Fortran/

2. Extract the Ipopt files by

tar -zxvf Ipopt-Fortran 2006Oct21.tgz

This will create a directory Ipopt-Fortran 2006Oct21 containing the Ipopt

files.

3. Download mc19ad.f, ma27ad.f, and ma47ad.f from
http://www.cse.clrc.ac.uk/nag/hsl/ and save them in
Ipopt-Fortran 2006Oct21/OTHERS/HSL.

For an explanation of how to download these files, see
Ipopt-Fortran 2006Oct21/OTHERS/HSL/INSTALL.HSL

4. Download d1mach.f from http://www.netlib.org/blas/d1mach.f and save it
in Ipopt-Fortran 2006Oct21/OTHERS/blas

5. In Ipopt-Fortran 2006Oct21, type

./configure --prefix=DIRECTORY

where DIRECTORY is the directory in which Ipopt is to be installed. For example,
if you wish to install it in subdirectory ipopt of your home directory, you can
type

./configure --prefix=$HOME/ipopt

6. In Ipopt-Fortran 2006Oct21, type

make install

This should install Ipopt in DIRECTORY.

For more information about the configure options type

./configure --help

http://www.fadbad.com/fadbad.html
http://www.coin-or.org/download/source/Ipopt-Fortran/
http://www.cse.clrc.ac.uk/nag/hsl/
http://www.netlib.org/blas/d1mach.f

4.2. Installation 59

4.2.2 Creating executables

Here is the makefile (in daets/examples) used to produce the executables whose
results are reported in this user guide.

file makefile in daets/ examples

This file is used to produce the results in the

DAETS user guide. We use g++ on an x86 MacOSX machine.

SET C++ COMPILER AND FLAGS.

CXX = g++

CXXFLAGS = -g -Wall -ansi

SET DIRECTORIES

directory where DAETS is unpacked.

DAETS = $(HOME)/daets

directory where FADBAD ++ is unpacked.

FADBAD = $(HOME)/ FADBAD ++

IPOPT include directory

IPOPT_INCLUDE = $(HOME)/ipopt/include

IPOPT lib directory , where libipopt.a is located

IPOPT_LIB = $(HOME)/ipopt/lib

CXXFLAGS += -I$(DAETS)/ include -I$(FADBAD) -I$(IPOPT_INCLUDE)

LDFLAGS += -L$(DAETS)/lib -L$(IPOPT_LIB)

LIBRARIES

LDLIBS = -ldaets -lipopt -llapack -lblas -lg2c -lm

IF THE LINKING GIVES UNDEFINED REFERENCES HAVING _gfortran DO

LDLIBS += -lgfortran

FOR MAC OSX , YOU MAY HAVE TO ADD

LDFLAGS += -bind_at_load

all: examples

EXAMPLES = chemakzo chemakzoUnknown golfputt pendulumshow_sa \

pendulumsimple pendulumsimple_outfcn laynewatson vdp

examples : $(EXAMPLES)

clean:

@- rm -rf *.out *.o core* *.bak $(EXAMPLES)

This file is self explanatory. We make the following comments. If the linker cannot
find the Lapack and Blas libraries, you need to add to LDFLAGS the paths to them.

The g2c Gnu Fortran runtime library (in LDLIBS) is normally present on the
systems on which we have compiled Daets. Install it if it is not on your system, and
if you use Gnu compilers. If you compile, e.g. the PathScale C++ [18] compiler,
libg2c.a is not needed.

4.2.3 Running the examples

We recommend that you execute the programs in the examples directory. After you
edit the makefile in this directory, type make. This will create the executable files
pendulumsimple (§1.2), pendulumshow_sa (§2.1.2), chemakzoUnknown (§3.1), chemakzo
(§3.2), vdp (§3.3), laynewatson (§3.4), and golfputt (§3.5).

In subdirectory gnuplot of examples, there are the files vdp.gp and laynewatson.gp,
used to generate the plots in Figures 3.3 and 3.2, respectively. The executable vdp

produces the data files vdp-1.0e+00.out, vdp-1.0e+01.out and vdp-1.0e+02.out

in the current directory, from which you can generate the plots in Figure 3.3 by

4.2. Installation 60

gnuplot gnuplot/vdp.gp

Similarly, laynewatson produces the data file laynewatson2.out, from which the plot
in Figure 3.2 can be generated by

gnuplot gnuplot/laynewatson.gp

Finally, golfputt produces golfputt.out, and you can generate plots using Matlab

and the program given in examples/matlab/golfputtOutStudy.m.

If you encounter discrepancies between the numerical results in this user guide and
the output of your program executions, please contact the authors.

Chapter 5

Further theory. FAQs

This chapter is in two parts. Read Section 5.1 if you need more detail about the
structural analysis theory on which Daets is based, and references to the literature.
Section 5.2 lists some—in our experience—frequently asked questions (FAQs) about
the structural analysis approach, and about DAEs in general. The authors welcome
suggestions for useful additions to the FAQs.

5.1 Structural analysis

Often, DAEs are generated in an exploratory way by simulation software that allows
basic components (mechanical, electrical, etc.) to be connected using a graphical
interface. It may be non-obvious what the resulting DAE requires as initial data,
what its index is, and even whether it is ill-posed because it contains too little, or
contradictory, information.

The structural analysis (SA) performed by Daets helps to resolve such difficulties.
Here we give enough theory that a user can, on small problems, do the analysis by
hand. For further details see [14, 15, 19]. Our method gives essentially the same result
as does, e.g., that of Pantelides [17], but is easier to use. Currently, several simulation
packages offer SA facilities for model checking.

The steps to perform SA are as follows.

1. Form the n × n signature matrix Σ = (σij) of the DAE, where

σij =







order of the derivative to which the jth variable xj

occurs in the ith equation fi; or

−∞ if xj does not occur in fi.
(5.1)

2. A transversal T of Σ is a set of n positions in the matrix with one entry in each
row and each column. That is, these positions can be put on the main diagonal
by suitably permuting the columns (or rows). Its value is the sum of the σij

in those positions. Find a highest value transversal (HVT), one that makes the
value as large as possible.

For a well-posed DAE the value must be finite (hence an integer ≥ 0). Otherwise,
it is −∞, which happens if there does not exist a transversal all of whose σij are

61

5.1. Structural analysis 62

finite. The DAE is then (structurally) ill-posed — there is some error in the
problem formulation.

3. Find the offsets, integer vectors c = (c1, . . . , cn) and d = (d1, . . . , dn), with all
ci ≥ 0, that satisfy

dj − ci ≥ σij for all i, j and (5.2)

with equality holding on the HVT. They are not unique, but there exist canonical
smallest offsets, in the sense of a ≤ b if ai ≤ bi for each i. There is a simple
method to find these:

Algorithm (Finding the offsets).
Input:

Signature matrix Σ, and a transversal T that must be a HVT

1. The initial guess for dj is the largest σij in column j of Σ
Write dj beneath column j, for each j

2. do
3. Set each ci so that dj − ci = σij holds on T

Write ci to the right of row i of Σ, for each i
4. Increase each dj , where needed, by the least amount that makes

dj − ci ≥ σij hold everywhere

5. until nothing changes

The ci and dj can only increase during the loop. The algorithm terminates if,
and only if, T really is a HVT.

We like to show the results by a “signature tableau”, which is Σ annotated with
the offsets ci, dj and the names of the functions and variables and the positions
of a HVT. We like to write −∞ entries as a dash − for readability: in larger
systems typically almost all entries are −∞. Also these are “forbidden” positions:
a HVT of a well-posed DAE cannot have an entry in a −∞ position.

This is illustrated below for the pendulum example, which has two HVTs, marked
• and ◦.

x y λ ci
[]f 2• − 0◦ 0

g − 2◦ 0• 0

h 0◦ 0• − 2

dj 2 2 0 DOF: 2

It is easily seen that the above algorithm only needs one iteration to find the
offsets of this signature matrix.

Also shown is the number F of degrees of freedom (DOF), given by

F = (value of the HVT) =
∑

dj −
∑

ci. (5.3)

5.1. Structural analysis 63

It is the number of independent IVs it requires, which is the same as the maximum
number of IVs that can be specified “fixed”, see setX in §1.3.3.

For n up to about 8, setting up Σ and finding a HVT “by eye” is usually easy.
Otherwise, let Daets do the analysis as suggested in §3.1.

4. Form the n × n System Jacobian matrix

J =
∂

(

f
(c1)
1 , . . . , f

(cn)
n

)

∂
(

x
(d1)
1 , . . . , x

(dn)
n

) , equivalently Jij =











∂fi

∂x
(σij)
j

if dj − ci = σij ,

0 otherwise.

(5.4)

(Here the xj and derivatives thereof are treated as unrelated independent vari-

ables within fi. For instance if f1 is x1x
′

2x
′′

1, then ∂f1/∂x
(2)
1 = ∂f1/∂x′′

1 = x1x
′

2.)

If J, thus defined, is not identically singular, the SA-based method almost cer-
tainly succeeds. To be precise, if there is a consistent point as defined below
where J is nonsingular, a solution to the DAE exists through that point; it is lo-
cally analytic, and the Daets algorithm (in exact arithmetic) can find its Taylor
series to arbitrary order.

For the pendulum, (5.4) gives the system Jacobian

J =







∂f/∂x′′ 0 ∂f/∂λ

0 ∂g/∂y′′ ∂g/∂λ

∂h/∂x ∂h/∂y 0






=





1 0 x
0 1 y
2x 2y 0



 . (5.5)

This is not identically singular since detJ = −2(x2 + y2). Indeed at a consistent
point, from the third equation of (1.2), det J = −2L2 6= 0.

5. The SA method sometimes fails (see FAQ 5.2.3). However, it always succeeds
on various common classes of system. These include: index 0 DAEs (implicit
ODEs); semi-explicit index 1 and index 2 DAEs; DAEs with Hessenberg structure
of arbitrary index of which a particular case is index 3 constrained mechanical
systems Mx′′ + GTλλ = φφ(t); g(x) = 0, where G is the Jacobian of g; purely
algebraic systems f(t,x) = 0 (continuation problems), and the arc-length formu-
lation of these. That is, it succeeds in exact arithmetic; ill-conditioning of the
System Jacobian may cause it to fail in finite precision.

6. An upper bound for the standard differentiation index νd is given by the Taylor

index

νT = max
i

ci +

{

1 if some dj is zero,
0 otherwise.

(5.6)

For the commonest kinds of DAE, νT = νd, but the difference can be arbitrarily
large, see FAQ 5.2.5.

5.2. Frequently asked questions 64

7. It was explained in §1.2.2 that required IVs, which are in fact the values carried
along from step to step throughout the integration process, comprise the vector

X =
(

x1, x
′

1, . . . , x
(d1+α)
1 ; x2, x

′

2, . . . , x
(d2+α)
2 ; . . . ; xn, x′

n, . . . , x(dn+α)
n

)

,

(5.7)

where α = −1 if the DAE is quasilinear, α = 0 otherwise; and, for consistency,
X must satisfy the set of equations

0 = F =
(

f1, f
′

1, . . . , f
(c1+α)
1 ; f2, f

′

2, . . . , f
(c2+α)
2 ; . . . ; fn, f

′

n, . . . , f
(cn+α)
n

)

.

(5.8)

In the quasilinear case, an xj whose dj is zero (it must have σij = 0 for all i and
thus is a “purely algebraic variable”) does not appear in the vector X. Similarly,
an fi with ci = 0 does not appear in F.

f ′

i means dfi/dt treating the variables and their derivatives as (unknown) func-
tions of t, for instance if f1 = x′′

1 − x1x3 then f ′

1 = x′′′

1 − x′

1x3 − x1x
′

3; similarly
for higher derivatives.

The reason for the extra components in the non-quasilinear case is as follows.
Consider a particular independent variable value t. If a set of values X in (5.7)
is consistent with some solution of the DAE at t, then in the linear case that
solution is unique. In the nonlinear case, there may be several solutions consistent
with these values; however, including the next level of derivatives in X restores
uniqueness.

This affects the user at the initial point t = t. The initial conditions you provide
are usually only approximately consistent values, which the code corrects by
a root-finding process. By providing (hopefully good guesses of) these extra
derivatives you make it more likely, in cases of non-uniqueness, that the code
finds the consistent values — hence the DAE solution — that you intended.

An example is the use of Daets to do arc-length continuation (example in §3.4).
Here t is arc-length from an initial point X0 along a path in some R

N . There is
inherent non-uniqueness: from X0 you can traverse the path in either direction.
In this case the extra derivatives Daets forces you to provide turn out to be a
guess of the unit tangent at X0 in the direction you wish to go. In most cases,
you can estimate this a priori.

5.2 Frequently asked questions

5.2.1 How well does the accuracy tolerance control the accuracy?

Our experiments, see for instance [16, Section 5.1], suggest that for most prob-
lems, the error in the solution is roughly proportional to the tolerance, if the
type of control (relative, absolute or mixed) specified by the esttype argument
of setTol is unchanged. Thus the behavior is essentially the same as for an ODE
code. However, this relation between tolerance and accuracy achieved cannot be

5.2. Frequently asked questions 65

guaranteed. The user is strongly recommended to call Daets with more than
one value for tol and to compare the results obtained to estimate their accuracy.
For instance 1e-7 and 1e-8 if 7 digits of accuracy are wanted.

5.2.2 If the method underlying Daets sometimes fails, can the code be

trusted?

Yes. If a nonsingular system Jacobian J is found at a consistent point, in
exact arithmetic this constitutes a proof that the DAE is locally solvable and
the Daets method will work, see [19, Theorem 4.2] and [14, Theorem 4.2].
Then in finite precision, things can only go wrong because J is ill-conditioned,
in which case we suspect any DAE method, given the same equations and the
same precision, would have trouble.

5.2.3 What remedies are there when SA fails?

The SA method relies on the fact that DAEs from applications are typically
sparse—i.e., just a few variables and derivatives occur in each equation. If the
sparsity is destroyed, the signature matrix may not reflect the “underlying math-
ematical structure” of the DAE, and SA gives the wrong result. For a crude
example, if the pendulum system f = 0 is converted to the equivalent Mf = 0
where M is a random nonsingular constant 3 × 3 matrix, all three rows of Σ
become [2, 2, 0] and SA gives the wrong result.

In interesting cases the failure of SA is more subtle. Campbell and Griepentrog
[3] give the DAE of a robot arm that is index 5 but seems to be index 3. The
Ring Modulator in [12], in case Cs = 0, is an index 2 electrical circuit DAE that
seems to be index 1.

In our experience this has always been curable by purely algebraic manipulation
of the equations to make them “more sparse”. For instance, in the robot arm
DAE, one can make SA find the correct index by naming one common subex-
pression in the equations as a new algebraic variable. In the ring modulator
DAE, suitably adding to one equation a linear combination of other equations
“moves the sparsity around” to give the desired effect. We do not at present
know any systematic way to do such things, or any theory about when it can be
done.

5.2.4 The signature matrix is sometimes wrong. Can this spoil the com-

puted solution?

The point here is that the order of derivative of each variable in each equation
is found by a pass through the code list, treating it symbolically but with-
out any “clever” algebraic rearrangement. So for instance if equation 1 is
x1x3 + (tx′

2)
′ − tx′′

2 = 0, the code does not notice that the x′′

2 terms cancel,
and sets σ12 to 2 instead of the correct value 1.

Such an error can overestimate but not underestimate any σij . It is proved in
[14, Theorems 5.1 and 5.2] that this cannot deceive the method. Just one of two
things happens. Either the overestimation is “small”, and the method computes
the correct Taylor series but with some TCs possibly being computed a little
later than they might have been (causing slight inefficiency). Or it is “large”,

5.2. Frequently asked questions 66

and in exact arithmetic J is structurally singular. In the latter case, in finite
precision J will be structurally singular within roundoff, a situation that is easily
detected numerically.

5.2.5 What about Reißig’s example?

Reißig et al. [20] give a family of DAEs for which the structural index can be
an arbitrary ν > 1, though the differentiation index is 1. For ν = 3 the system
is

ẋ2 + ẋ3 + x1 = a(t),

ẋ2 + ẋ3 + x2 = b(t),

ẋ4 + ẋ5 + x3 = c(t),

ẋ4 + ẋ5 + x4 = d(t),

x5 = e(t).

Its signature matrix and system Jacobian are

Σ =













0 1 1 − −
− 1 1 − −
− − 0 1 1
− − − 1 1
− − − − 0













and J =













1 1 1
1 1

1 1 1
1 1

1













.

One easily sees that the SA method succeeds, with ci = (0, 0, 1, 1, 2), dj =
(0, 1, 1, 2, 2), and gives νT = 3. But by inspection, one can write the general so-
lution explicitly in a form involving no derivatives of the driving terms: sufficient
proof that the index is 1.

In fact, using two new variables x6 = x2 + x3 and x7 = x4 + x5 to eliminate the
common subexpressions ẋ2 + ẋ3 and ẋ4 + ẋ5, one obtains a system on which SA
succeeds. It has all ci = 0, and all dj = 0 except d6 = d7 = 1.

This raises a different issue from either FAQ 5.2.3 or FAQ 5.2.4, but the “cure”
by defining new variables can be seen as an illustration of the former.

5.2.6 How can a leading derivative not actually occur in the DAE?

Consider the classic example of Linda Petzold

0 = x1 − g(t),

x′

1 = x2,

x′

2 = x3,

where g(t) is an arbitrary given function. The offsets are dj = 2, 1, 0 and ci =
2, 1, 0. Thus x′′

1 is a leading derivative, though it does not occur in the system. By
adding extra equations x′

3 = x4, . . . one can make an arbitrarily large discrepancy
between the leading derivative order and the order that occurs in the equations.

5.2.7 Not many standard functions are allowed in fcn. Are more planned?

These have sufficed for the examples we have done so far. If you need more, let
us know.

5.2. Frequently asked questions 67

5.2.8 Have you plans for an event-location facility?

Yes, and efficient step-by-step output or plotting without using one-step mode,
and banded/sparse linear algebra, and other features that modern ODE solvers
have. Please show us some real applications and say what your needs are, so we
can set our priorities.

5.2.9 Can Daets handle diagnostics silently?

That is, can it be put in a mode where it handles exceptional conditions, not
by printing a diagnostic message, but by returning a diagnostic data structure
so that the calling program can take appropriate action? This allows the code
to be used as a numerical “engine” at the heart of some application.

This will be in the next version. The exception-handling mechanism of C++

provides most of the needed features.

5.2.10 Have you tips for debugging code that uses Daets?

One of us (JDP) is a C++ beginner. He has found that most of his troubles
solving problems with Daets have been C++ ones (like forgetting the namespace
line at the start of a program). For specific DAE difficulties, the suggestions given
in §3.1 have worked quite well. If you find some typical difficulties or traps in
using Daets, we shall welcome tips on how to avoid them, for possible inclusion
in these FAQs.

5.2.11 Can I have more derivatives printed?

We plan this in the next version. One tip is that if you have a quasilinear
problem, so the code only prints out derivatives up to order dj−1, and you
would like it to do so up to order dj, you can do so by fooling the code into
thinking it is not quasilinear. For instance, in the simple pendulum DAE you
could add λ2 − λ2 (or 10−300 × λ2) to one of the equations.

5.2.12 How is the simple pendulum DAE derived?

Let the pendulum be made of a light rigid rod of length L with a bob, which is a
point of mass m, at the end. Let it be suspended from the origin O and take axes
with x horizontal and y vertically downward. Let (x, y) be the position of the
bob. Let T be the force in the rod, with tension being positive and compression
negative. Let θ be the angle between the rod and the y axis, in the direction of
positive x. Let G be gravity. Then Newton’s second law gives the equations of
motion:
Resolving horizontally,

mx′′ = −T sin θ.

Resolving vertically,

my′′ = −T cos θ + mG.

Now sin θ = x/L and cos θ = y/L.

5.2. Frequently asked questions 68

Substituting these into the the equations of motion, and defining λ = T/(mL),
gives

x′′ + λx = 0,

y′′ + λy − g = 0.

The final equation is the rigidity constraint x2 + y2 = L2.

5.2.13 I’m new to DAEs, why are they so different from ODEs?

No short explanation will be useful to everyone, but here’s a try. Take the
typical case where the independent variable t is time, and the dependent (=state)
variables x1(t), x2(t), . . . describe how the state of some physical system evolves
in time.

With an ODE, the rate of change of each state variable is explicitly given in
terms of the state variables, and possibly t. If there is just one (scalar) state
variable x, so that the ODE can be written dx/dt = f(t, x), one can draw a
picture in the (t, x) plane. Through any point, say (t0, x0), draw a line segment
whose gradient is f(t, x). This line is along the tangent to the solution of the
ODE that passes through (t0, x0).

Drawing enough of these segments produces a direction field for the ODE, which
gives a good feel for the shape of the solutions. One can join the segments up
by eye to sketch solutions quite accurately. This is illustrated in Figure 5.1 for
the ODE

dx

dt
= −

t

x
.

It is clear from the direction field that the solutions are circles, and, indeed, the
general solution of this ODE is easily seen to be x2+t2 = c, where c is a constant.

The same goes for an ODE with several state variables xj(t), except that the line
segments are now drawn in a multi-dimensional space. Most numerical methods

−10 −5 0 5 10

−10

−5

0

5

10

Figure 5.1: Direction field of dx/dt = −t/x.

5.2. Frequently asked questions 69

for ODE initial value problems are essentially sophisticated ways of joining up
little line segments.

DAEs are not like that, or rather, only partly like that. It may help to look at
this from the physical, rather than the mathematical, viewpoint, by considering
the derivation of the simple pendulum equations in FAQ 5.2.12.

There, it is clear that x and y are ODE-like variables—two equations define
their acceleration, which governs their change in velocity, which governs their
change in position. However, λ, which is a constant factor times the force T of
tension/compression in the rod, is physically quite different. The value of T is
not specified by a rate-of-change, but rather is an instantaneous response to the
current position and velocity of the bob.

Thus it is not surprising that the mathematics shows x′′, y′′ and λ entangled,
in that they are, at any instant, the solution of three simultaneous equations in
which the known values of x, y, x′, y′ appear as constants.

It may help to think of the rod as being ever so slightly elastic. Thus, at any
instant it stretches or compresses infinitesimally, to produce that precise force
T on the bob which keeps it going in an exact circle. Were we to model the
dynamics of this elasticity, the equations of motion would be an ODE. The DAE
is the limiting, and simpler, case where the elasticity goes to zero.

For a purely mathematical illustration why DAEs are not ODEs, see the example
DAE in FAQ 5.2.6. It has no degrees of freedom: its unique solution is x1 = g(t),
x2 = g′(t), x3 = g′′(t). But if the zero on the left of the first equation is replaced
by ǫx′

3, for a nonzero ǫ, it is a normal (but unpleasant when ǫ is small) ODE
with three degrees of freedom, requiring three IVs to specify a unique solution.

The pendulum also has a well known description by an ODE:

d2θ

dt2
= −

G

L
sin(θ),

where θ is as in FAQ 5.2.12. Many more complex mechanical systems, such as
robotic arms, can be modeled by ODEs, typically involving angles of rotation.

Why use a DAE when an ODE is available? One good reason is that as the size
of the system increases it becomes increasingly harder to formulate such ODE
models, whereas the algorithm to formulate the DAE form typically remains
straightforward. This is true in other application areas, such as electrical circuit
modeling. For simulation packages that let one define a system interactively,
and that then set up its governing equations automatically, this gives the DAE
form a decided advantage.

Appendix A

Revision History

In this appendix, we report changes in the Daets code since version 1.0 of June 2008.

A.1 Version 1.1, May 2009

This version has been extensively tested using the CppUnit [4] testing framework,
and the code has been analyzed with the gcov [5] test coverage tool. This work
is reported in [24]. As a result, we have fixed several minor bugs in the code and
inaccuracies in the user guide.

Changes in functionality compared to version 1.0 are as follows.

1. The getX method of the DAEsolution class can now return derivatives of an xj

up to p + dj, that is x
(k)
j for any k ∈ {0, . . . , p + dj}, where p is the order of the

Taylor series; see p. 27.

2. We have added a mechanism for data output inside the integrate function.
This allows, for example, one to generate a file with solution data suitable for
plotting. See p. 30 and §3.6.

3. The constant in the formula for computing hmin (2.4) is changed from 10 to 16.

70

Index

Enumerated types
ErrorEstType, 21

SolutionState, 25

VarType, 26

SolverExitFlag, 13

Functions
printSolverExitFlag, 13

Macros
DAE_FCN, 9

Methods
getATol, 21

getCPUtime, 30

getCVector, 17

getDVector, 17

getErrorEstType, 22

getHmax, 24

getHmin, 24

getMaxOrder, 23

getMinOrder, 23

getNumAccSteps, 31

getNumDegsOfFreedom, 18

getNumDerivatives, 33

getNumRejSteps, 31

getNumVariables, 33

getOrder, 23

getRTol, 21

getSigmaMatrix, 17

getStructuralIndex, 18

getTol, 21

getType, 27

getT, 26

getX, 27, 33

integrate, 10

isIllPosed, 18

isQuasilinear, 18

norm, 35

operator !=, 35

operator •=, 34

operator •, 35

operator ==, 35

operator =, 34

passDataToDAE, 25

printDAEinfo, 18

printDAEpointStructure, 20

printDAEtableau, 19

printSolutionState, 31

printSolution, 12

printStats, 31

setFirstEntry, 29

setHmax, 24

setOneStepMode, 29

setOrder, 23

setOutputFunction, 30

setPrintProgress, 29

setTol, 21

setT, 11

setX, 11, 32

updatePoint, 28

DAEpoint

getNumDerivatives, 33

getNumVariables, 33

getX, 33

norm, 35

operator !=, 35

operator •=, 34

operator •, 35

operator ==, 35

operator =, 34

setX, 32

DAEsolution

getCPUtime, 30

getNumAccSteps, 31

getNumRejSteps, 31

getType, 27

getT, 26

getX, 27

71

INDEX 72

printSolutionState, 31

printSolution, 12

printStats, 31

setFirstEntry, 29

setOneStepMode, 29

setT, 11

setX, 11

updatePoint, 28

DAEsolver

getATol, 21

getCVector, 17

getDVector, 17

getErrorEstType, 22

getHmax, 24

getHmin, 24

getMaxOrder, 23

getMinOrder, 23

getNumDegsOfFreedom, 18

getOrder, 23

getRTol, 21

getSigmaMatrix, 17

getStructuralIndex, 18

getTol, 21

integrate, 10

isIllPosed, 18

isQuasilinear, 18

passDataToDAE, 25

printDAEinfo, 18

printDAEpointStructure, 20

printDAEtableau, 19

setHmax, 24

setOrder, 23

setOutputFunction, 30

setPrintProgress, 29

setTol, 21

Bibliography

[1] S. Alessandrini, A motivational example for the numerical solution of two-point

boundary-value problems, SIAM Review, 37 (1995), pp. 423–427.

[2] K. Brenan, S. Campbell, and L. Petzold, Numerical Solution of Initial-

Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia, sec-
ond ed., 1996.

[3] S. L. Campbell and E. Griepentrog, Solvability of general differential alge-

braic equations, SIAM J. Sci. Comput., 16 (1995), pp. 257–270.

[4] CppUnit project. http://sourceforge.net/projects/cppunit/

[5] Gcov—a test coverage program. http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

[6] A. Griewank, Evaluating Derivatives: Principles and Techniques of Algorithmic Dif-
ferentiation, Frontiers in applied mathematics, SIAM, Philadelphia, PA, 2000.

[7] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and
Differential– Algebraic Problems, Springer Verlag, Berlin, 1991.

[8] Intel Corp., Intel C++ compiler for Linux web page.
http://support.intel.com/support/performancetools/c/linux.

[9] R. Jonker and A. Volgenant, A shortest augmenting path algorithm for dense and
sparse linear assignment problems, Computing, 38 (1987), pp. 325–340.

[10] LAPACK Project, BLAS — Basic Linear Algebra Subprograms.
http://www.netlib.org/blas/.

[11] LAPACK project, LAPACK — Linear Algebra PACKage.
http://www.netlib.org/lapack/.

[12] F. Mazzia and F. Iavernaro, Test set for initial value problem solvers,
Tech. Rep. 40, Department of Mathematics, University of Bari, Italy, 2003.
http://pitagora.dm.uniba.it/~testset/.

[13] N. S. Nedialkov, Computing Rigorous Bounds on the Solution of an Initial Value
Problem for an Ordinary Differential Equation, PhD thesis, Department of Computer
Science, University of Toronto, Toronto, Canada, M5S 3G4, February 1999.

[14] N. S. Nedialkov and J. D. Pryce, Solving differential-algebraic equations by Taylor
series (I): Computing Taylor coefficients, BIT, 45 (2005), pp. 561–591.

73

http://sourceforge.net/projects/cppunit/
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://support.intel.com/support/performancetools/c/linux
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://pitagora.dm.uniba.it/~testset/

BIBLIOGRAPHY 74

[15] , Solving differential-algebraic equations by Taylor series (II): Computing the Sys-
tem Jacobian, BIT, 47 (2007), pp. 121–135.

[16] , Solving differential-algebraic equations by Taylor series (III): The DAETS code,
J. Numerical Analysis, Industrial and Applied Mathematics, 3 (2008), pp. 61–68.

[17] C. C. Pantelides, The consistent initialization of differential-algebraic systems,
SIAM. J. Sci. Stat. Comput., 9 (1988), pp. 213–231.

[18] PathScale compiler suite. http://www.pathscale.com.

[19] J. D. Pryce, A simple structural analysis method for DAEs, BIT, 41 (2001), pp. 364–
394.

[20] G. Reissig, W. S. Martinson, and P. I. Barton, Differential–algebraic equations
of index 1 may have an arbitrarily high structural index, SIAM J. Sci. Comput., 21
(2000), pp. 1987–1990.

[21] O. Stauning and C. Bendtsen, FADBAD++ web page. FADBAD++ is available
at http://www.fadbad.com.

[22] A. Wächter, An Interior Point Algorithm for Large-Scale Nonlinear Optimization
with Applications in Process Engineering, PhD thesis, Carnegie Mellon University, Pitts-
burgh, PA, 2002.

[23] L. T. Watson, A globally convergent algorithm for computing fixed points of C2 maps,
Appl. Math. Comput., 5 (1979), pp. 297–311.

[24] B. Zheng, Testing scientific computing software. A case study of a DAE solver, MSc
thesis (in preparation), Dept. of Computing and Software, McMaster University, Hamil-
ton, Ontario, Canada, L8S 4K1, 2009.

http://www.pathscale.com
http://www.fadbad.com

	Preface
	Basic Usage
	Description
	Quick start guide
	An example program
	Offsets, initial values, quasilinearity, consistency

	Basic classes and methods
	Defining the DAE system
	DAEsolver class
	DAEsolution class
	SolverExitFlag type
	Fixed and free initial values

	All Other Methods
	Controlling integration: the DAEsolver class
	Access to structural analysis data
	Reporting structural analysis data
	Accuracy control
	Controlling the Taylor series order
	Controlling the stepsize
	Passing data to a DAE function

	Solution path properties: the DAEsolution class
	Access
	Copying
	State control
	Reporting during integration
	Statistics
	Printing

	Arithmetic on solutions: the DAEpoint class
	Constructors
	Access
	Assignment
	Arithmetic
	Comparison
	Norm

	Daets default settings

	Examples of Daets Code
	Handling an unfamiliar DAE
	Chemical Akzo Nobel problem
	One-step mode. Passing data to a problem
	A continuation problem
	A golf putting problem
	Setting an output function
	Summary

	Installation
	Obtaining Daets
	Demo version.
	Full version.

	Installation
	Third-party components
	Creating executables
	Running the examples

	Further theory. FAQs
	Structural analysis
	Frequently asked questions

	Revision History
	Version 1.1, May 2009

	Functions index
	Bibliography

