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Abstract

This paper considers optimal supervisory control of probabilistic discrete event systems (PDESs).

PDESs are modeled as generators of probabilistic languages. The probabilistic supervisors employed

enable/disable events with certain probabilities. We consider the case when there exists no probabilistic

supervisor to match the behaviour of a plant to a probabilistic requirements specification. First, we define

a notion of distance between two probabilistic generators.Then, given a plant and a desired probabilistic

behaviour, we present an algorithm that minimizes the distance between the desired behaviour and the

behaviour of the controlled plant achievable under probabilistic control.
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I. INTRODUCTION

In order to model stochastic behaviour of a plant, many models of stochastic behavior of dis-

crete event systems have been proposed (e.g., Markov chains[1], Rabin’s probabilistic automata

[2], stochastic Petri nets [3]). We follow the theory of probabilistic DES that was developed

in [4], [5] using an algebraic approach. A stochastic discrete event system is represented as an

automaton with transitions labeled with probabilities. Asopposed to the model of [4], [5], our

probabilistic automaton is deterministic in the followingsense: for each state of the automaton

and any event, there is at most one next state to which the automaton can move. The probabilities

of all the events in a certain state add up to at most one. With Rabin’s probabilistic automata

[2], on the other hand, the sum of the transition probabilities of an event at a state is one. Also,

unlike the Markov chains [1], the emphasis of the approach of[4], [5] is on event traces rather

than state traces.

The control of different models of stochastic discrete event systems has been investigated in

[6], [7], etc. Rabin’s probabilistic automata are used in [6] as the underlying model, while [7]

investigates the optimal control theory of Markov chains. Adeterministic supervisory control

framework for stochastic discrete event systems was developed in [8] using the model of [4], [5].

Controllable events are disabled dynamically as first suggested in [9], so that the probabilities of

their execution become zero, and the probabilities of the occurrence of other events proportionally

increase. The control objective considered in [8] is to construct a supervisor such that the

controlled plant does not execute specified illegal traces,and occurrences of the events in the

system are greater or equal to specified values. The paper gives necessary and sufficient condition

for the existence of a supervisor. Further, in [10], a technique to compute a maximally permissive

supervisor on-line is given. In [11], [12], the probabilistic generators introduced in [4], [5] are

used. The requirements specification is given by weights assigned to states of a plant and the

control goal is, roughly speaking, to reach the states with more weight (more desired states)

more often. A deterministic control is synthesized for a given requirements specification so that

a measure based on the specification and probabilities of theplant is optimized.

In [9], PDESs are modeled as probabilistic generators adopted from [4], [5], and deterministic

supervisors for DES are generalized toprobabilistic supervisors. The probabilistic supervisors

are so named because they employ the control method ofrandom disablement: after observing a



string s, the probabilistic supervisor enables an eventσ with a certain probability. Standard

(deterministic) control can deterministically enable/disable controllable events. As shown in

[9], a plant under probabilistic control can generate a larger class of probabilistic languages

than deterministic control. The supervisory control problem considered is to find, if possible,

a supervisor under whose control the behaviour of a plant is identical to a given probabilistic

specification. The necessary and sufficient conditions for the existence of a supervisor for a class

of PDESs are given in [9]. A formal proof of the necessity and sufficiency of the conditions and

an algorithm for the calculation of the supervisor are presented in [13], [14].

Controller synthesis for probabilistic systems has also attracted attention in the formal methods

community. E.g., [15], [16] consider different control policies: deterministic or randomized

(probabilistic) on one hand; memoryless (Markovian) or history-independent on the other. The

systems considered are finite Markov decision processes, where the state space is divided into

two disjoint sets: controllable states and uncontrollablestates. In [15], the controller synthesis

problem for a requirements specification given as a probabilistic computation tree logic (PCTL)

formula is shown to be NP-hard, and a synthesis algorithm forautomata specification is presented.

Controller synthesis was considered in [16] for requirements specification given as a formula

of PCTL extended with long-run average propositions. It is shown that the existence of such

a controller is decidable, and an algorithm for the synthesis of a controller, when it exists, is

presented. Further, controller robustness with respect toslight changes in the probabilities of the

plant is discussed. The paper shows that the existence of robust controllers is decidable and the

controller, if it exists, is effectively computable.

Deterministic control is easier to deal with than probabilistic control, both from the viewpoint

of analysis, and practice. However, probabilistic controlis much more powerful. It has been

shown in [9] that probabilistic supervisory control can generate a much larger class of probabilis-

tic languages than deterministic control. In the sense of the supervisory control problem discussed

in this paper, the use of deterministic control might be too restrictive for a designer. Hence, [9]

and [13] investigate probabilistic supervisory control: conditions under which a probabilistic

control can generate a prespecified language, and, if the supervisor exists, the algorithm for its

synthesis.

Analogous to a problem in classical supervisory control theory, it can happen that, given a

plant to be controlled and a probabilistic specification language, no supervisor exists such that



the plant under control generates the pre-specified language. In this case, when the exact solution

is not achievable, a designer tries to find a supervisor such that the plant generates the behavior

closest to the desired behaviour. The measure of proximity in our case will be a pseudometric

on the states of probabilistic transition systems.

In Section II we present PDES as generators of probabilisticlanguages, and introduce the

probabilistic control of PDES. The proposed pseudometric is presented in Section III. Its char-

acterization as the greatest fixed point of a function (as presented in [17]) is used for the derivation

and proof of the correctness of two algorithms for the calculation of the distances between the

states of a PDES in this pseudometric. Section IV presents the algorithm for finding the closest

approximation to within a prespecified accuracy. Section V concludes with avenues for future

work.

Results of this research were first published in [18], lacking much of informal reasoning or

formal proofs of algorithms presented. In this paper we givea more formal and detailed version

of that work.

II. PRELIMINARIES

In this section, we present PDES modeled as generators of probabilistic languages. Then, we

introduce the probabilistic control of PDESs, the probabilistic supervisory problem, and the main

results of [9], [13].

A. Modeling PDES

The probabilistic DES can be modeled as a probabilistic generator G = (Q, Σ, δ, q0, Qm, p)

[9], where Q is the nonempty set of states (at most countable),Σ is a finite alphabet whose

elements we will refer to as event labels,δ : Q × Σ → Q is the (partial) transition function,

q0 ∈ Q is the initial state,Qm ⊆ Q is the set of marking states, which represent the completed

tasks, andp : Q × Σ → [0, 1] is the statewise event probability distribution. The statetransition

function is traditionally extended by induction on the length of strings toδ : Q × Σ∗ → Q:

δ(q, ǫ) = q,

δ(q, sσ) = δ(δ(q, s), σ), q ∈ Q, s ∈ Σ∗, σ ∈ Σ



wheneverδ(q, s) andδ(δ(q, s), σ) are both defined. For a stateq, and a strings, the expression

δ(q, s)! will denote thatδ is defined for the strings in the stateq.

The probability that the eventσ ∈ Σ is going to occur at the stateq ∈ Q is p(q, σ). For the

generatorG to be well-defined,(i) p(q, σ) = 0 should hold if and only ifδ(q, σ) is undefined,

and (ii) ∀q
∑

σ∈Σ p(q, σ) ≤ 1. The probabilistic generatorG is nonterminating if, for every

reachable stateq ∈ Q,
∑

σ∈Σ p(q, σ) = 1. Conversely,G is terminating if there is at least one

reachable stateq ∈ Q such that
∑

σ∈Σ p(q, σ) < 1. The probability that the system terminates

at stateq is 1 −
∑

σ∈Σ p(q, σ). Throughout the sequel, we will mostly consider nonterminating

generators.

The languageL(G) generated by a probabilistic DES automatonG = (Q, Σ, δ, q0, Qm, p) is

L(G) = {s ∈ Σ∗ | δ(q0, s)!}. The marked language ofG is Lm(G) = {s ∈ Σ∗ | δ(q0, s) ∈ Qm},

whereas the probabilistic language generated byG is defined as:

Lp(G)(ǫ) = 1

Lp(G)(sσ) =











Lp(G)(s) · p(δ(q0, s), σ) if δ(q0, s)!

0 otherwise

Informally, Lp(G)(s) is the probability that the strings is executed inG. Also, Lp(G)(s) > 0

iff s ∈ L(G).

For each stateq ∈ Q, we define the functionρq : Σ × Q → [0, 1] such that for anyq′ ∈ Q,

σ ∈ Σ, we haveρq(σ, q′) = p(q, σ) if q′ = δ(q, σ), and 0 otherwise. The functionρq is a

probability distribution on the setΣ×Q. Also, for a stateq, we definethe set of possible events

to bePos(q) := {σ ∈ Σ|p(q, σ) > 0}.

B. Probabilistic Supervisors: Existence and Synthesis

As in classical supervisory theory, the setΣ is partitioned intoΣc andΣu, the sets of control-

lable and uncontrollable events, respectively. Deterministic supervisors for DES are generalized

to probabilistic supervisors. The control technique used is calledrandom disablement. Instead of

deterministically enabling or disabling controllable events, probabilistic supervisors enable them

with certain probabilities. This means that, upon reachinga certain stateq, the control pattern is

chosen according to supervisor’s probability distributions of controllable events. Consequently,

the controller does not always enable the same events when inthe stateq.



For a PDESG = (Q, Σ, δ, q0, Qm, p), aprobabilistic supervisoris a functionVp : L(G)×Σ →

[0, 1] such that

(∀s ∈ L(G))(∀σ ∈ Σ)Vp(s, σ) =







1 if σ ∈ Σu

xs,σ ∈ [0, 1] otherwise.

Therefore, after observing a strings, the supervisor enables the eventσ with probabilityVp(s, σ).

After a set of controllable events to be enabled has been decided upon (uncontrollable events

are always enabled), the system acts as if supervised by a deterministic supervisor.

The goal is to match the behaviour of the controlled plant with a given probabilistic speci-

fication language. We call this problem theProbabilistic Supervisory Control Problem (PSCP).

More formally:

Given a plant PDESG1 and a specification PDESG2, find, if possible, a probabilistic supervisor

Vp such thatLp(Vp/G1) = Lp(G2).

We now present the conditions for the existence of a probabilistic supervisor for PSCP (that

were first presented in [9]), and an algorithm for the computation of the supervisor which is the

main result of [13].

For notational convenience, instead ofx(σ) (x(σ) ∈ R, σ ∈ Σ), we will write xσ.

Theorem 1:Let G1 = (Q, Σ, δ1, q0, Qm, p1) andG2 = (R, Σ, δ2, r0, Rm, p2) be two nontermi-

nating PDESs with disjoint state setsQ andR. There exists a probabilistic supervisorVp such

that Lp(Vp/G1) = Lp(G2) iff for all s ∈ L(G2) there existsq ∈ Q such thatδ1(q0, s) = q and,

letting r = δ2(r0, s), the following two conditions hold:

(i) Pos(q) ∩ Σu = Pos(r) ∩ Σu, and for allσ ∈ Pos(q) ∩ Σu,

p1(q, σ)
∑

α∈Σu

p1(q, α)
=

p2(r, σ)
∑

α∈Σu

p2(r, α)

(ii) Pos(r) ∩ Σc ⊆ Pos(q) ∩ Σc, and, if Pos(q) ∩ Σu 6= ∅, then for allσ ∈ Pos(q) ∩ Σc,

p2(r, σ)

p1(q, σ)

∑

α∈Σu

p1(q, α) +
∑

α∈Pos(q)∩Σc

p2(r, α) ≤ 1.

Conditions (i) and (ii) together are necessary and sufficient for the existence of a probabilistic

supervisor solving the PSCP. The first part of both conditions corresponds to controllability as

used in classical supervisory theory (namely, the condition Pos(q) ∩ Σu = Pos(r) ∩ Σu of (i),

and Pos(r) ∩ Σc ⊆ Pos(q) ∩ Σc of (ii)). The remaining equations and inequalities correspond

to the conditions for probability matching.



Theorem 2:Assume that the conditions (i) and (ii) of Theorem 1 are satisfied. Let Γ =

Pos(q) ∩ Σc if Pos(q) ∩ Σu 6= ∅, andΓ = (Pos(q) ∩ Σc)\{γ} otherwise, whereγ ∈ Pos(q) is

such that for everyσ ∈ Pos(q), p2(r,γ)
p1(q,γ)

≥ p2(r,σ)
p1(q,σ)

is satisfied. Letx0
s ∈ [0, 1]Γ andf : R

Γ → R
Γ.

For x0
s = 0, the sequence

xk+1
s = f(xk

s), k = 0, 1, . . . , where

fσ(xs) =
p2(r, σ)

p1(q, σ)hσ(xs)
, σ ∈ Γ where

hσ(xs) =
∑

Θ∈P(Γ\{σ})

1

1 −
∑

α∈Θ

p1(q, α)

∏

α∈Θ

(1 − xs,α)
∏

α∈Γ\{σ}\Θ

xs,α

converges to the control inputx∗
s (i.e., Vp(s, σ) = x∗

s,σ for σ ∈ Γ).

The following results are for prefix closed probabilistic specification languages so in the sequel

we simplify the probabilistic generatorG = (Q, Σ, δ1, q0, Qm, p) to G = (Q, Σ, δ1, q0, p).

III. T HE METRIC FOR THE CLOSEST APPROXIMATION

In this section, we roughly describe the problem of optimal supervisory control, introduce

research done on metrics on states of probabilistic systems, and present the chosen metric.

A. Formulation of the Problem

In the case when the conditions for the existence of a solution to the probabilistic supervisory

control problem are not satisfied, we search for a suitable approximation. Assume that the

plant is given asG1 = (Q, Σ, δ1, q0, p1) and the specification isG2 = (R, Σ, δ2, r0, p2). If

there is no probabilistic supervisorVp such thatLp(Vp/G1) = Lp(G2), we seekVp such that

Lp(Vp/G1) = Lp(G3), whereG3 = (S, Σ, δ1, s0, p3) and G3 is closest toG2 according to a

certain criterion. As a criterion, we choose apseudometricon the initial states of generators as

explained in the sequel.

B. Literature review

Probabilistic bisimulationis commonly used to define an equivalence relation between proba-

bilistic systems. However, probabilistic bisimulation ishardly a robust relation: roughly speaking,

two states of probabilistic systems are bisimilar if and only if they have the same transitions with

exactly the same probabilities to states in the same equivalence classes. The formal definition

follows and represents a modified version of the definition ofbisimulation given in [19].



Definition 1: Let G = (Q, Σ, δ, q0, p) be a PDES. Probabilistic bisimulation onQ is the binary

relation≡ such that for anyq1 ≡ q2 andσ ∈ Σ, the following holds:

1) For everyq′1 such thatδ(q1, σ) = q′1, there isq′2 such thatδ(q2, σ) = q′2, p1(q1, σ) =

p1(q2, σ), andq′1 ≡ q′2.

2) For everyq′2 such thatδ(q2, σ) = q′2, there isq′1 such thatδ(q1, σ) = q′1, p1(q1, σ) =

p1(q2, σ), andq′1 ≡ q′2.

Statesq1 andq2 are probabilistic bisimilar if there exists a probabilistic bisimulation≡ such that

q1 ≡ q2.

Note that we did not use the definition of probabilistic bisimulation for reactive systems as

given in [20] or the definition of probabilistic bisimulation for generative systems given in [21].

Since our model is deterministic, we found the straightforward modification of [19] sufficient

for our needs.

As a more flexible way to compare probabilistic systems, a notion of pseudometricis intro-

duced. Apseudometric on a set of statesQ is a functiond : Q×Q → R that defines a distance

between two elements ofQ, and satisfies the following conditions:d(x, y) ≥ 0, d(x, x) = 0,

d(x, y) = d(y, x), andd(x, z) ≤ d(x, y) + d(y, z), for any x, y, z ∈ Q. If all distances are not

greater than 1, the pseudometric is1-bounded. In the sequel, we will use the terms metric and

pseudometric interchangeably.

The first paper that discussed the use of a metric as a way to measure the distance between

two probabilistic processes is [22]. This early work considers deterministic probabilistic systems.

The distance between processes is a number between0 and 1, and represents a measure of a

behavioral proximity between the processes: the smaller the number, the smaller the distance.

Labeled Markov chains are considered in [23]. The motivation of the paper is to explore the

possibility of substituting one process with another that is sufficiently close in a metric space.

The pseudometric is given via a real-valued logic that is motivated by the well-known result that

the Hennessy-Milner logic is complete for bisimulation [24]. Further, this metric is inspired by

the Kantorovich metric [25] which is used in transport problems, and more recently has been

used by Hutchinson in his theory of fractals [26]. Two statesare at distance0 in this metric if

and only if they are probabilistic bisimilar.

More concretely, the ideas of [27] are used to generalize logic so that reasoning about

probabilistic systems is supported. A functionf ∈ F evaluated at a state takes truth values



in the interval [0, 1], instead of{0, 1}. Then, the distance between two states is defined as a

pseudometric:

d(qq, qr) = sup{|f(qq) − f(qr)|f ∈ F}.

This paper also offers an algorithm to calculate a distance between two systems in the introduced

metric with a prespecified accuracy. The algorithm runs in exponential time. Further, asymptotic

metrics have been considered as a side topic. An extension of[23] is given in [28]. It considers not

only discrete probabilistic systems (labeled Markov chains), but also continuous systems (labeled

Markov processes). In [29] only continuous-time labeled Markov processes are considered. The

paper also shows that a small perturbation in a system events’ probabilities results in a system

that is close to the original one. A pseudometric analogue toweak bisimulation is presented in

[30] for labeled concurrent Markov chains where the set of states is divided into two disjoint

sets of probabilistic and nondeterministic states. The transitions from probabilistic states are not

labeled, while the transitions from nondeterministic states are. The metric is given a fixed-point

characterization that allows for coinductive definition.

The systems considered in [31] are reactive nonlabeled probabilistic systems, but the results

can be easily generalized to labelled systems [32]. The paper suggests a pseudometric as a

measure of behavioral similarity between the systems similar to the one presented in [23]. The

pseudometric is coalgebraic as opposed to that of [23]. The paper further presents an algorithm

to calculate the distance between two systems in the presented pseudometric with a prespecified

accuracy. Comparison of this metric with a number of metrics(e.g., [33], [34]) is given in [35].

Also, the metric can be recovered from the metric of [23] by adding negation to the logic of

[23] (see [35]).

The work of [17] is closely related to [23], [30], [31]. It introduces a pseudometric on states for

a large class of probabilistic automata, including reactive and generative probabilistic automata.

The pseudometric is based on Kantorovich metric on distributions and is characterized as the

greatest point of a function. The metric to be used in the solution of our problem is based on

this metric. It intuitively matches our notion of the distance between PDESs, and accounts for all

differences between corresponding transition probabilities, as opposed to e.g., that of [22] that,

roughly speaking, considers only the maximum of the differences between the corresponding

probabilities. Furthermore, as the metric is suggested fora large class of systems, it allows for



an extension of our work to e.g., nondeterministic systems.Also, as it turns out, there is a simple

algorithm to compute distances in this metric for our generative, deterministic model.

C. The metric

Let G = (Q, Σ, δ, q0, p) be a nonterminating PDES, whereQ = {q0, q1, . . . qN−1} (if a plant is

terminating, it can easily be transformed into a nonterminating one using the technique described

in [9]). This is the system we shall be using throughout the sequel. Next, we introduce some

useful notation. Letqq, qr ∈ Q and letρqq
and ρqr

be the distributions onΣ × Q induced by

the statesqq and qr, respectively. Assume0 ≤ i, j ≤ N − 1 and Ψ = Pos(qq) ∪ Pos(qr). For

notational convenience, we will writeρσ,i instead ofρqq
(σ, qi), and, similarly,ρ′

σ,j instead of

ρqr
(σ, qj).

Next, we present the pseudometric suggested in [17] for a large class of automata which

includes our generator. This pseudometric is also based on Kantorovich metric on probability

measures.

First, [17] introduces the classM of 1-bounded pseudometrics on states with the ordering

d1 � d2 if ∀s, t d1(s, t) ≥ d2(s, t) (1)

as was initially suggested in [30]. It is proved that(M,�) is a complete lattice.

Then, letd ∈ M, and let the constante ∈ (0, 1] be adiscount factorthat determines the degree

to which the difference in the probabilities of farther transitions is discounted: the smaller the

value of e, the greater the discount on future transitions. We assume that the total mass ofρqq

is greater or equal to the total mass ofρqr
:

∑

σ∈Ψ
0≤i≤N−1

ρσ,i ≥
∑

σ∈Ψ
0≤i≤N−1

ρ′σ,i.

This assumption is not needed for nonterminating automata.Then, the distance between the

distributionsρqq
andρqr

, d(ρqq
, ρqr

) (note a slight abuse of notation) for our generators is given

as:



Maximize e ·







∑

σ∈Ψ
0≤i≤N−1

aσ,iρσ,i −
∑

σ∈Ψ
0≤i≤N−1

aσ,iρ
′
σ,i







subject to 0 ≤ aσ,i ≤ 1, σ ∈ Ψ, 0 ≤ i ≤ N − 1

aσ,i − aα,j ≤ cσα
ij , σ, α ∈ Ψ, 0 ≤ i, j ≤ N − 1

where

cσα
ij =







d(qi, qj) if σ = α

1 otherwise

(2)

If the total mass ofρqq
is less than the total mass ofρqr

, d(ρqq
, ρqr

) is defined to bed(ρqr
, ρqq

).

This extension to distributions is also pseudometric, and is consistent with the ordering (1) (see

[30]).

The pseudometric on states,dd, is, then, given as the greatest fixed-point of the functionD

on M (here we give a simplified version of that in [17]):

D(d)(qq, qr) = d(ρqq
, ρqr

), d ∈ M, qq, qr ∈ Q (3)

The proofs that the function defined by (3) is monotone onM, that it does have the greatest fixed

point, and that its closure ordinal isω, originate from [30]. Furthermore, since the pseudometric

dd is a fixed-point of (3), the distances indd are between 0 ande. In order to scale the

distances with the factor1/e so that they can be between0 and 1, we define a pseudometric

dm for nonterminating generators to be the greatest fixed-point of the function (3) onM, where



d(ρqq
, ρqr

) is redefined to be:

Maximize
∑

σ∈Ψ
0≤i≤N−1

aσ,iρσ,i −
∑

σ∈Ψ
0≤i≤N−1

aσ,iρ
′
σ,i

subject to 0 ≤ aσ,i ≤ 1, σ ∈ Ψ, 0 ≤ i ≤ N − 1

aσ,i − aα,j ≤ cσα
ij , σ, α ∈ Ψ, 0 ≤ i, j ≤ N − 1

where

cσα
ij =







e · d(qi, qj) if σ = α

1 otherwise

(4)

Given the aforementioned difference between our definitionof the distance between distributions

and that of [17], it is obvious that the the distances betweenstates in our pseudometric are by

the factor1/e larger than theirs.

At this point we recall the fact that our generators are deterministic: for an eventσ and a

stateq, there is at most one stateq′ such thatq′ = δ(q, σ). For the purposes of the following

analysis of our nonterminating deterministic generators,we rewrite the objective function of the

optimization problem of (4) as:

∑

σ∈Ψ

(aσ,i(qq ,σ)ρσ,i(qq ,σ) − aσ,j(qr,σ)ρ
′
σ,j(qr ,σ)) (5)

wherei(qq, σ) = i such thatqi = δ(qq, σ) if δ(qq, σ)!, andi(qq, σ) = 0, otherwise. We arbitrarily

choosei(qq, σ) to be 0 when δ(qq, σ) is not defined although we could have chosen any other

i ∈ {1, . . . , N − 1}. This is because whenδ(qq, σ)! does not hold, thenρσ,i(qq ,σ) = 0 for any

i(qq, σ) ∈ {1, . . . , N − 1}. Similarly, j(qr, σ) = j such thatqj = δ(qr, σ) if δ(qr, σ)!, and

j(qr, σ) = 0, otherwise. For readability purposes, we will writei instead ofi(qq, σ), and j

instead ofj(qr, σ).

Also, since our generators are nonterminating, we do not need the first constraint in (4);

we keep it, however, as it will be useful later. Further, the objective function of this linear

programming problem can be maximized by maximizing each of its summands separately. In

order to explain this observation, we consider a summandaσ,iρσ,i−aσ,jρ
′
σ,j . Due to the generator’s

determinism, there is no other nonzero summand containingaσ,k, 0 ≤ k ≤ N − 1, k 6= i, k 6= j.



Therefore, the last constraint of (4) for any two coefficients aσ,i and aα,j (0 ≤ i, j ≤ N − 1)

from different summands becomesaσ,i − aα,j ≤ 1. This constraint is already implied by the

first constraint, so we can independently pick the coefficients a in different summands, and,

consequently, independently maximize the summands in order to maximize the sum.

In order to maximize a summand of the objective function (5),we solve the following linear

programming problem forσ ∈ Ψ:

Maximize (aσ,iρσ,i − aσ,jρ
′
σ,j)

subject to 0 ≤ aσ,i, aσ,j ≤ 1,

aσ,i − aσ,j ≤ cij

(6)

where i and j are defined as in (5), andcij = ed(qi, qj) as before. Also, note that the set of

constraints does not contain the inequalityaσ,j − aσ,i ≤ cji. In order to maximize the given

function, the coefficientaσ,i is to be chosen to be greater thanaσ,j since the given constraints

allow it. In that case, sincecij = cji, if aσ,i − aσ,j ≤ cij , thenaσ,j − aσ,i ≤ cji follows, so the

latter constraint is redundant. Further, it is not hard to see that the solution of the given linear

programming problem forρσ,i ≥ ρ′
σ,j is equal toρσ,i − ρ′

σ,j + cijρ
′
σ,j . We can solve this problem

using graphical method, simplex method or using the following line of reasoning. In order to

maximize the given function, we can either chooseaσ,i to be 1 and then pickaσ,j so that it has

the minimal value for the given constraints, or we chooseaσ,j to be 0, and then pickaσ,i so

that it has the maximal value under the given constraints. Inthe first case, we pickaσ,i to be 1,

aσ,j to be1− cij, and value of the objective function isρσ,i − ρ′
σ,j + cijρ

′
σ,j . In the second case,

sinceaσ,j is 0, thenaσ,i is equal tocij, and the objective function becomescijρσ,i. Sincecijρσ,i

is never greater thanρσ,i−ρ′
σ,j +cijρ

′
σ,j (for ρσ,i ≥ ρ′

σ,j andcij ∈ [0, 1]), the latter is our solution.

Using the same reasoning, forρσ,i < ρ′
σ,j , the maximum is reached at(ai, aj) = (cij, 0) and its

value iscijρσ,i.

Now, we put together the presented solution of the linear programming problem (4) and the

aforementioned reasoning. The distance between the distributionsρqq
andρqr

is then:



d(ρqq
, ρqr

) =
∑

σ∈Ψ
f(qq, qr, d, σ), where

f(qq, qr, d, σ) =















ρσ,i − ρ′
σ,j + cijρ

′
σ,j if ρσ,i ≥ ρ′

σ,j

cijρσ,i otherwise

or, equivalently,

f(qq, qr, d, σ) = max(ρσ,i − ρ′
σ,j + cijρ

′
σ,j , cijρσ,i),

(7)

wherecij = e·d(qi, qj) as before, andi andj denotei(qq, σ) andj(qr, σ), respectively, as defined

as in (5).

To summarize, the functionD(d) for our model is given as:

D(d)(qq, qr) =
∑

σ∈Ψ

max(ρσ,i − ρ′
σ,j + cijρ

′
σ,j , cijρσ,i) (8)

where, again,cij = e · d(qi, qj) as before, andi and j denotei(qq, σ) and j(qr, σ), respectively,

as defined in (5).

D. Calculating the Pseudometric: Algorithms

For e ∈ (0, 1), we will prove that, for our model, the functionD as given in (8) has only one

fixed point. Then, we suggest two algorithms for calculatingthe distances in the pseudometric

that represents the fixed point of this function.

First, we introduce some useful definitions and results fromlinear algebra.

A real n × n matrix A = (aij) defines a linear mapping fromRn to R
n , and we will write

A ∈ L(Rn) to denote either the matrix or linear function, as we shall make no distinction

between the two.

Definition 2: For any complexn × n matrix A, the spectral radius ofA is defined as the

maximum of|λ1|, · · · , |λn|, whereλ1, · · · , λn are the eigenvalues ofA.

The spectral radius ofA, denotedϕ(A), satisfiesϕ(A) ≤ ||A||, where ||A|| is an arbitrary

norm on R
n. During the course of the following proof, we will make use ofinfinity norm

||A||∞ = max
1≤i≤n

∑n
j=1 |aij |.



Definition 3: An operatorG : D ⊆ R
n → R

n is called aP -contractionon a setD0 ⊆ D if

there exists a linear operatorP ∈ L(Rn) such thatP ≥ 0, ϕ(P ) < 1 and

|G(x) − G(y)| ≤ P |x − y| for all x, y ∈ D0 (9)

Now, let d ∈ M. Next, we define the functionV on M:

V(d) = (d(q0, q0), d(q0, q1), . . . , d(qN−1, qN−1))
T .

Therefore,V(d) = (V1(d),V2(d), · · · ,VK(d))T , whereVk(d) for k ∈ {1, . . . , K} is given as:

Vk(d) = d(qi, qj), i = k div (N + 1), j = (k − 1) mod N.

Now, we extend the functionD in a natural way to the functionD(V(d)) = (D1(V(d)), . . . ,DK(V(d)))T ,

where for anyk ∈ {1, . . . , K}:

Dk(V(d)) = d(ρqi
, ρqj

), i = k div (N + 1), j = (k − 1) mod N. (10)

Further, letD0 = {V(d)|d ∈ M}.

Lemma 1:The functionD is a P -contraction onD0.

Proof: Let d′, d′′ ∈ M, andd
′ = V(d′), andd

′′ = V(d′′). Let k ∈ {1, . . . , K}, and leti and

j (0 ≤ i, j ≤ N − 1) be given as in (10). Further, assumeΨ = Pos(qi) ∪ Pos(qj). Also, let

t(i, σ) = t such thatδ(qi, σ) = qt if δ(qi, σ)!, and t(i, σ) = 0, otherwise. Similarly,l(j, σ) = l

such thatδ(qj, σ) = ql if δ(qj, σ)!, andl(j, σ) = 0, otherwise. Again, for notational convenience,

we will write t instead oft(i, σ), and l instead ofl(j, σ). Also, we will write ρσ,t instead of

ρqi
(σ, qt), and, similarly,ρ′

σ,l instead ofρqj
(σ, ql) for qt, ql ∈ Q. Then:

|Dk(d′) −Dk(d′′)| =
∣

∣d′(ρqi
, ρqj

) − d′′(ρqi
, ρqj

)
∣

∣

=

∣

∣

∣

∣

∣

∑

σ∈Ψ

max(ρσ,t − ρ′σ,l + ed′(qt, ql)ρ
′
σ,l, ed

′(qt, ql)ρσ,t) −
∑

σ∈Ψ

max(ρσ,t − ρ′σ,l + ed′′(qt, ql)ρ
′
σ,l, ed

′′(qt, ql)ρσ,t)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

σ∈Ψ

e(d′(qt, ql) − d′′(qt, ql))min(ρσ,t, ρ
′
σ,l)

∣

∣

∣

∣

∣

≤
∑

σ∈Ψ

emin(ρσ,t, ρ
′
σ,l) |d

′(qt, ql) − d′′(qt, ql)| (11)

≤
∑

σ∈Ψ
m=tN+l+1

emin(ρσ,t, ρ
′
σ,l) |d

′
m − d

′′
m| . (12)

Note that ast = t(i, σ) and l = l(j, σ) are also functions ofk (sincei andj are functions ofk).

Now, without the explicit construction of the matrixP , we can see from (12) that there exists



P such that|D(d′) −D(d′′)| ≤ P |d′ − d
′′| where

||P ||∞ = max
k

∑

σ∈Ψ

emin(ρσ,t, ρ
′
σ,l)

≤ e

(since
∑

σ∈Ψ
t∈{0,...,N−1}

ρσ,t =
∑

σ∈Ψ
l∈{0,...,N−1}

ρ′
σ,l = 1)

< 1 (sincee ∈ (0, 1))

Therefore,ϕ(P ) < 1 and, since, obviously,P ≥ 0, thenD is P -contraction.

Lemma 2:Let d′, d′′ ∈ M, andd
′ = d(d′), andd

′′ = d(d′′). For anyk ∈ {1, . . . , K}, there

existsm ∈ {1, . . . , K} such that:

|Dk(d
′) −Dk(d

′′)| ≤ e |d′
m − d

′′
m|

Proof: We use the notation from the previous lemma.

|Dk(d′) −Dk(d′′)|

≤
∑

σ∈Ψ

emin(ρσ,t, ρ
′
σ,l) |d

′(qt, ql) − d′′(qt, ql)| (from (11))

≤
∑

σ∈Ψ

emin(ρσ,t, ρ
′
σ,l) max

(t,l)∈

{(t(σ,i),l(σ,j))|σ∈Ψ}

{|d′(qt, ql) − d′′(qt, ql)|}

≤
∑

σ∈Ψ

emin(ρσ,t, ρ
′
σ,l) |d

′(qr, qs) − d′′(qr, qs)| for somer, s ∈ {0, . . . , N − 1}

≤ e|d′(qr, qs) − d′′(qr, qs)| (since
∑

σ∈Ψ
t∈{0,...,N−1}

ρσ,t =
∑

σ∈Ψ
l∈{0,...,N−1}

ρ′σ,l = 1)

≤ e |d′m − d
′′
m| for somem ∈ {1, . . . , K}

Theorem 3:For anyd
0 ∈ D0, the sequence

d
n+1 = D(dn), n = 0, 1, . . .

converges to the only fixed point ofD in D0, d
∗, and the error of convergence is given

componentwise (k ∈ {1, . . . , K}) as:

|dn
k − d

∗
k| ≤ (1 − e)−1en, n = 1, 2, . . . (13)



Proof: Note that this is a variant of the contraction-mapping theorem extended toP -

contractions ([36], Theorem 13.1.2.). We employ a similar proof technique. Letn, m ≥ 1.

Then:

|dn+m
k − d

n
k | ≤

m
∑

t=1

|dn+t
k − d

n+t−1
k |

≤
m
∑

t=1

et|dn
i(t) − d

n−1
i(t) | (applying Lemma 2t times,i(t) ∈ {1, . . . , K})

≤
m
∑

t=1

etmax
i(t)

{|dn
i(t) − d

n−1
i(t) |}

≤

(

m
∑

t=1

et

)

|dn
j − d

n−1
j | (for somej ∈ {1, . . . , K})

≤ (1 − e)
−1

e|dn
j − d

n−1
j | (since

m
∑

t=0

et ≤ (1 − e)−1 for m ≥ 0)

≤ (1 − e)−1en|d1
l − d

0
l | (for somel, by applying Lemma 2(n − 1) times)

≤ (1 − e)−1en (14)

Therefore, the sequence{dn
k}n≥0 is a Cauchy sequence and hence converges to somed

∗
k, and,

consequently, the sequence{dn}n≥0 converges tod∗ ∈ D0. Also, we have:

|d∗ −D(d∗)| ≤ |d∗ − d
n+1| + |D(dn) −D(d∗)| ≤ |d∗ − d

n+1| + P |dn − d
∗|

When we letn → ∞, we see thatd∗ = D(d∗). Also, if we let n → ∞ in (14), we get the

componentwise error estimate of (13).

At last, we prove thatd∗ is the only fixed point inD0. Assume that there is another fixed

point of D in the same intervalD0, d
+. Then,

|d∗ − d
+| = |D(d∗) −D(d+)| ≤ P |d∗ − d

+|

Hence,(I − P )|d∗ − d
+| ≤ 0. However, sinceϕ(P ) < 1, (I − P )−1 =

∑∞
i=0 P i ≥ 0, then

|d∗ − d
+| ≤ 0. Therefore,d∗ = d

+.

Now, using the presented analysis, we suggest the followingtwo algorithms for the calculation

of the distances between the states of PDESs in the chosen pseudometric.

Algorithm 1 Theorem 3 proves that the system of equations

d = D(d) (15)



has a unique solution. The equations are linear. Therefore,the system (15) can be rewritten into

the standard formAd = b, whereA is a K × K matrix andb is a column vector of dimension

K. Therefore, the distances in our pseudometric can be calculated by solving this system of

linear equations. The distances found are exact solutions (if we disregard the round-off error).

Algorithm 2 Theorem 3 suggests an iterative algorithm to calculate distances between the

states of a probabilistic generator. The algorithm is a straightforward modification of that of [31]

that calculates distances in a pseudometric suggested for adifferent kind of probabilistic system

and derived by using terminal coalgebras. Letd0(qq, qr) = 0 for any two statesqq, qr ∈ Q. As

before, letρqq
andρqr

be the distributions induced by the statesqq andqr, respectively. Assume

0 ≤ i, j ≤ N − 1 andΨ = Pos(qq)∪Pos(qr). Then-th iteration of the algorithm calculates the

distancedn between each two statesqq, qr ∈ Q:

dn(qq, qr) =
∑

σ∈Ψ

max(ρσ,i − ρ′
σ,j + cijρ

′
σ,j , cijρσ,i) (16)

wherecij = e · dn−1(qi, qj), andi = i(qq, σ) andj = j(qr, σ) are defined as in (5). The accuracy

of the solution found inn-th iteration is(1 − e)−1en.

The iterative method can be useful for systems with largeK, where the direct method can

be rather expensive. Furthermore, the mathematical apparatus used to reach the iterative method

will be reused in the solution of the closest approximation problem.

IV. FINDING THE CLOSEST APPROXIMATION

In this section we first characterize the closest approximation and then give the algorithm to

minimize the distance between the required behaviour of a system and its achievable behaviour.

All the results in the sequel are applicable fore ∈ (0, 1).

A. Characterizing The Closest Approximation

First, we repeat the formulation of the nearest approximation problem. Assume that the plant

is given as PDESGp = (Qp, Σ, δp, qp0
, pp), and the requirements specification is given asGr =

(Qr, Σ, δr, qr0
, pr). If there is no probabilistic supervisorVp such thatLp(Vp/Gp) = Lp(Gr),

we seek the optimal (closest) solution and characterize it as follows. As mentioned before, the

conditions (i) and (ii) of the Theorem 1 for the existence of probabilistic supervisor consist of



two parts. The first part of both conditions corresponds to controllability as used in classical

supervisory theory (namely, the conditionPos(q)∩Σu = Pos(r)∩Σu of (i), andPos(r)∩Σc ⊆

Pos(q) ∩ Σc of (ii)). The remaining equations and inequalities correspond to the conditions for

probability matching. Hence, before we start looking for the closest approximation in the sense

of probability matching, we resort to the classical supervisory theory of supremal controllable

languages. We first findL(Gp) ∩ L(Gr), and then the supremal controllable sublanguage of

L(Gp)∩L(Gr) (with respect toGp), K. Then, the DES that represents this languageK, further

equipped withpp distribution (appropriately normalized) becomes the modified plant PDESG1,

and the same DES (corresponding to the supremal controllable languageK) equipped with the

distribution pr appropriately normalized becomes the desired behaviour PDES G2. Formally,

let (reachable and deadlock-free) DESG = (Q, Σ, δ, q0) represent the supremal controllable

languageK. We define a PDESG1 = (Q, Σ, δ, q0, p), where the distributionp : Q×Σ → [0, 1],

for any q ∈ Q, σ ∈ Σ, is defined as:

p(q, σ) =
pp(qp, σ)
∑

σ∈{σ∈Σ|δ(q,σ)!}
pp(qp, σ)

(17)

where qp = δp(qp0
, s) for s ∈ L(G) such thatq = δ(q0, s). Similarly, we define a PDES

G2 = (Q, Σ, δ, q0, p2) where the distributionp2 : Q × Σ → [0, 1], where, for anyq ∈ Q, σ ∈ Σ:

p2(q, σ) =
pr(qr, σ)
∑

σ∈{σ∈Σ|δ(q,σ)!}
pr(qr, σ)

(18)

whereqr = δr(qr0
, s) for s ∈ L(G) such thatq = δ(q0, s).

Next, we check probability matching equations and inequalities from Theorem 1. If they are

not satisfied (there is no probabilistic supervisorVp such thatLp(Vp/G1) = Lp(G2)), we seek

G′
2 = (Q′, Σ, δ′, q′0, p

′) such that there exists a probabilistic supervisorVp so thatLp(Vp/Gp) =

Lp(G
′
2) holds, andG′

2 is closest toG2 in the metric presented. Without loss of generality, we

assume that nonprobabilistic automata underlyingG2 andG′
2 are isomorphic (with labeling of

events being preserved). Therefore, nonprobabilistic automata underlyingG2 andG′
2 are identical

up to renaming of states. This assumption is not restrictiveas there cannot be any string in the

desired system that does not belong toL(G2). Our goal is to find the probabilities ofG′
2 as the

closest approximation such that the distance betweenG2 andG′
2 (i.e. the distance between the

initial states ofG2 and G′
2) is minimized. As our metric is defined on the states of a system,



in order to define distances between the states ofG2 andG′
2, we can consider the union PDES

Gu = (Q ∪ Q′, Σ, δu, q0, pu), where

δu(q, σ) = δ(q, σ), pu(q, σ) = p(q, σ) if q ∈ Q andσ ∈ Σ

δu(q, σ) = δ′(q, σ), pu(q, σ) = p′(q, σ) if q ∈ Q′ andσ ∈ Σ

Then,M is the set of 1-bounded pseudometrics on the states of this joined system with the

same ordering as in (1).

Further, note that nonprobabilistic automata underlyingG1 andG2 are also isomorphic (with

the isomorphism function being the identity function). We first note that, considering the iso-

morphism between the nonprobabilistic versions ofG2 andG′
2, we will be interested only in the

distances between (probability measures on) statesq ∈ Q of G2 andq′ = f(q) ∈ Q′ of G′
2, where

f is the isomorphism between nonprobabilistic automata underlying G2 and G′
2 (and between

nonprobabilistic automata underlyingG1 andG′
2). We assume that, after the occurrence of string

s ∈ L(G1), the PDESG1 is in stateq (δ(q0, s) = q). Then,G2 and its closest approximationG′
2

are in statesq andq′, respectively, andq′ = f(q).

Let us first define a classA of functions s : Q × Q′ → [0, 1], such that∀q ∈ Q, q′ =

f(q) ∈ Q′ s(q, q′) = d(q, q′), whered ∈ M. Therefore, the classA is the class of all the

pseudometrics with domain reduced only toQ × Q′: only distances betweenq ∈ Q and q′ =

f(q) ∈ Q′ are defined. Next, we define a classA of partial functionsb : Q × Q′ → [0, 1],

such that∀q ∈ Q, q′ = f(q) ∈ Q′ b(q, q′) = d(q, q′), whered ∈ M. Therefore, the classA is

the class of all 1-bounded pseudometrics with domain reduced to Q × Q′, and only distances

betweenq ∈ Q and q′ = f(q) ∈ Q′ defined. Next, we define a family of functions∆ =

{ρ′|ρ′(q′) is a probability distribution onΣ × Q′ induced by stateq′ ∈ Q′}. Now, for eachρ′ ∈

∆, we define functionDρ′ : A → A as (q ∈ Q, q′ = f(q) ∈ Q′, d ∈ A):

Dρ′(d)(q, q′) = d(ρq, ρ
′
q′) andρ′(q′) = ρ′

q′

where, as before,d is lifted to the metric on distributions, andd(ρq, ρ
′
q′) is defined as in (7).

Further, for eachρ′ ∈ ∆, we define functiondρ′

max as the greatest fixed point of functionDρ′.

We introduce the reversed ordering onA to match the one in (1):

d1 �
′ d2 if ∀q ∈ Qq′ ∈ Q′d1(q, q

′) ≥ d2(q, q
′).



The fact that(A,�′) is a complete lattice follows from the fact that(M,�) is a complete

lattice. Let ρ′ ∈ ∆. The problem of finding optimal approximation reduces now tofinding

ρ′
m ∈ ∆ such thatdρ′m

max(q0, q
′
0) = m

ρ′
in{dρ′

max(q0, q
′
0)|ρ

′ ∈ ∆} and the conditions for the existence

of a probabilistic supervisor of Theorem 1 are satisfied. It follows straight from the definitions

of Dρ′ anddρ′

max that, for anyρ′ ∈ ∆, q ∈ Q, q′ = f(q) ∈ Q′, the distancesdρ′

max(q, q
′) for ρ′ ∈ ∆

are distances in our pseudometric.

Further, we are now able to substantially simplify the notation used in the previous section.

We assume thatQ = {q0, q1, . . . qN−1}, and Q′ = {q′0, q
′
1, . . . q

′
N−1}, where q′i = f(qi), i =

0, . . . , N − 1. Also, assumeΨ = Pos(q), Ψu = Pos(q) ∩ Σu, and Ψc = Pos(q) ∩ Σc. For

PDES G2, let ρq be the probability distribution induced by the stateq ∈ Q and, for PDES

G′
2, let ρ′

q′ be the probability distribution induced by the stateq′ ∈ Q′. Also, we will write ρσ

instead ofρq(σ, qi), ρ′
σ instead ofρ′

q′(σ, q′i) andpσ instead ofp(q, σ). Next we define the function

P : A → A (q ∈ Q, q′ = f(q) ∈ Q′, d ∈ A):

P(d)(q, q′) = Minimize
ρ′

σ

∑

σ∈Ψ

max(ρσ − ρ′σ + ciρ
′
σ, ciρσ), (19)

whereci = e · d(qi, q
′
i) s.t. qi = δ(q, σ)

subject to

pσ
∑

α∈Ψu

pα

=
ρ′σ
∑

α∈Ψu

ρ′α
, σ ∈ Ψu, (20)

∑

α∈Ψu
pα

pσ

ρ′σ +
∑

α∈Ψc

ρ′α ≤ 1, σ ∈ Ψc, (21)

0 ≤ ρ′σ ≤ 1, σ ∈ Ψ, (22)
∑

α∈Ψ

ρ′α = 1 (23)

The functionP is well-defined since, ifρ′
σ = 0 for ρ′

σ ∈ Ψc, and if ρ′
σ = pσ

∑

α∈Ψu

pα
for ρ′

σ ∈ Ψu,

the constraints (20), (21), (22), (23) are satisfied; therefore, the optimization problem has a

feasible origin. SinceA is a lattice, and the functionP : A → A is monotone, it has the greatest

fixed point.

Next, we prove a lemma.

Lemma 3:Let (L,�) be a complete lattice, and letf, g : L → L be two monotone functions

such that∀x ∈ L : g(x) � f(x). Let gfp(f) and gfp(g) denote the greatest fixed point of

functionsf andg, respectively. Then,gfp(g) � gfp(f).



Proof: According to Knaster-Tarski theorem, the functionsf andg have the greatest fixed

points gfp(f) and gfp(g), respectively, wheregfp(f) = sup({x|f(x) � x}), and gfp(g) =

sup({x|g(x) � x}). Since∀x : g(x) � f(x), then {x|f(x) � x} ⊆ {x|g(x) � x}; hence

gfp(g) � gfp(f).

Obviously, because of the definition of functionP, for any ρ′ ∈ ∆, for functionDρ′ ∈ F , it

holds that∀d ∈ A Dρ′(d) �′ P(d). Using the previous theorem, we conclude that the greatest

fixed point ofP is greater than or equal to anydρ′

max ∈ Amax. This greatest fixed point corresponds

to the minimal distance betweenq andq0 because of the reversed ordering ofA. Therefore, the

greatest fixed point of functionP corresponds to the pseudometric in which the distance between

q0 andq′0 is minimized. Consequently, the values of decision variablesρ′
q′
i

for q′i ∈ Q′ when the

greatest fixed point ofP is reached correspond to the state probability distributions of the optimal

approximation.

B. Minimizing the Distance: Algorithm

We suggest an iterative algorithm to calculate minimum achievable distance (i.e. the only fixed

point of the functionP) up to a desired accuracy and probability distribution of the achievable

behaviour of the system when this distance is achieved. We follow the proof pattern used for

the algorithm from the Section III-D.

Let d ∈ A. Again, we assume thatQ = {q0, q1, . . . qN−1}, andQ′ = {q′0, q
′
1, . . . q

′
N−1}, where

q′i = f(qi), i = 0, . . . , N − 1. We define the function̂V(d) = (V̂1(d), . . . , V̂N(d))T as:

V̂(d) = (d(q0, q
′
0), d(q1, q

′
1), . . . , d(qN−1, q

′
N−1))

T .

Therefore, fork = 1, . . . , N :

V̂k(d) = d(qk−1, q
′
k−1). (24)

We redefine the functionP in a natural way asP(V̂(d)) = (P1(V̂(d)), . . . ,PN(V̂(d)))T , where

for any k ∈ {1, . . . , N}:

Pk(V̂(d)) = P(d)(qk−1, q
′
k−1).

Also, let P0 = {V̂(d)|d ∈ A}.

Theorem 4:FunctionP is P-contractive onP0.



Proof: Let d′, d′′ ∈ A, and d̂
′ = V̂(d′), and d̂

′′ = V̂(d′′). Let k ∈ {1, . . . , N}. Then,

Pk(d̂) = P(d)(qk−1, q
′
k−1), d̂ ∈ {d̂′, d̂′′}. Assume that the minumum of the objective function in

(19) in functionP(d′)(qk−1, q
′
k−1) is reached forρ′

q′ = µ for µ ∈ Φ(q). Further, assume that the

minumum of the objective function in (19) in functionP(d′′)(qk−1, q
′
k−1) is reached forρ′

q′ = νσ

for σ ∈ Φ(q). Also, let t(σ) = t such thatqt = δ(qk−1, σ), and l(σ) = l such thatql = f(qt) (to

be denotedt and l). Assume thatPk(d̂
′) ≥ Pk(d̂

′′). Then:

∣

∣Pk(d̂′) − Pk(d̂′′)
∣

∣

=

∣

∣

∣

∣

∣

∑

σ∈Ψ

max(ρσ − µσ + ed′(qt, ql)µσ, ed′(qt, ql)ρσ) −
∑

σ∈Ψ

max(ρσ − νσ + ed′′(qt, ql)νσ, ed′′(qt, ql)ρσ)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∑

σ∈Ψ

max(ρσ − νσ + ed′(qt, ql)νσ, ed′(qt, ql)ρσ) −
∑

σ∈Ψ

max(ρσ − νσ + ed′′(qt, ql)νσ, ed′′(qt, ql)ρσ)

∣

∣

∣

∣

∣

(for ρ′σ = µσ the minimum inPk(d̂′) is reached)

≤

∣

∣

∣

∣

∣

∑

σ∈Ψ

(max(ρσ − νσ + ed′(qt, ql)νσ, ed′(qt, ql)ρσ) − max(ρσ − νσ + ed′′(qt, ql)νσ, ed′′(qt, ql)ρσ))

∣

∣

∣

∣

∣

≤
∑

σ∈Ψ

|max(ρσ − νσ + ed′(qt, ql)νσ, ed′(qt, ql)ρσ) − max(ρσ − νσ + ed′′(qt, ql)νσ, ed′′(qt, ql)ρσ)| (25)

Similarly, whenPk(d̂
′) ≤ Pk(d̂

′′), we get (25). Again, every summand in (25) has one of the

following forms:

|ρσ − νσ + ed′(qt, ql)νσ − (ρσ − νσ + ed′′(qt, ql)νσ)| or |ed′(qt, ql)ρσ − ed′′(qt, ql)ρσ)| , where

|ρσ − νσ + ed′(qt, ql)νσ − (ρσ − νσ + ed′′(qt, ql)νσ)| = eνσ |d′(qt, ql) − d′′(qt, ql)| ≤ eρσ |d′(qt, ql) − d′′(qt, ql)|

and

|ed′(qt, ql)ρσ − ed′′(qt, ql)ρσ)| = eρσ |d′(qt, ql) − d′′(qt, ql)|

Hence,
∣

∣Pk(d̂′) − Pk(d̂′′)
∣

∣ ≤
∑

σ∈Ψ

eρσ |d′(qt, ql) − d′′(qt, ql)|

Further, using the same reasoning as in the proof of Lemma 1, it is straightforward to show that

P is P-contractive.

Lemma 4:Let d′, d′′ ∈ A, and d̂
′ = V̂(d′), and d̂

′′ = V̂(d′′). For anyk ∈ {1, . . . , N}, there

existsm ∈ {1, . . . , N} such that:

∣

∣

∣Pk(d̂
′) −Pk(d̂

′′)
∣

∣

∣ ≤ e
∣

∣

∣d̂
′
m − d̂

′′
m

∣

∣

∣

Proof: Analogue to the proof of Lemma 2.



Theorem 5:For anyd̂
0 ∈ P0, the sequence

d̂
n+1 = P(d̂n), n = 0, 1, . . .

converges to the only fixed point ofP in P0, d̂
∗, and the error of convergence is given compo-

nentwise (k ∈ {1, . . . , N}) as:

|d̂n
k − d̂

∗
k| ≤ (1 − e)−1en, n = 1, 2, . . .

Proof: Analogue to the proof of Theorem 3.

The objective function in (19) is nonlinear, but fortunately transformable into a linear one by

introducing additional variablesyσ.

Minimize
∑

σ∈Ψ

yσ (26)

subject to

ρσ − ρ′σ + ciρ
′
σ ≤ yσ, σ ∈ Ψ

ciρσ ≤ yσ, σ ∈ Ψ

where, forσ ∈ Ψ, ci = e · d(qi, q
′
i) s.t. qi = δ(q, σ)

pσ
∑

α∈Ψu

pα

=
ρ′σ
∑

α∈Ψu

ρ′α
, σ ∈ Ψu,

∑

α∈Ψu
pα

pσ

ρ′σ +
∑

α∈Ψc

ρ′α ≤ 1, σ ∈ Ψc,

0 ≤ ρ′σ ≤ 1, σ ∈ Ψ,

∑

α∈Ψ

ρ′α = 1

We now present the iterative algorithm for finding the fixed point of functionP.

Let d0(q, q′) = 0 for all q ∈ Q, q′ = f(q) ∈ Q′. The distancedn(q, q′) between the states of



q ∈ Q andq′ = f(q) ∈ Q′ in the n-th iteration (n > 0) is given as:

Minimize
∑

σ∈Ψ

yσ (27)

subject to

ρσ − ρ′σ + ciρ
′
σ ≤ yσ, σ ∈ Ψ

ciρσ ≤ yσ, σ ∈ Ψ

where, forσ ∈ Ψ, ci = e · dn−1(qi, q
′
i) s.t. qi = δ(q, σ)

pσ
∑

α∈Ψu

pα

=
ρ′σ
∑

α∈Ψu

ρ′α
, σ ∈ Ψu,

∑

α∈Ψu
pα

pσ

ρ′σ +
∑

α∈Ψc

ρ′α ≤ 1, σ ∈ Ψc,

0 ≤ ρ′σ ≤ 1, σ ∈ Ψ,

∑

α∈Ψ

ρ′α = 1

After then-th iteration, the value of decision variablesρ′
σ that represent the unknown transition

probabilities, are such that that the distance between the (initial states of) systemsG2 and G′
2

is within (1 − e)−1en of the minimal distance between the two systems (in our pseudometric).

We would like to remind a reader that the aforementioned results hold for e ∈ (0, 1).

We now summarize the presented algorithm and give a brief complexity analysis.

1) First, we modify the classical algorithm for finding the supremal controllable sublanguage.

The automatonGs, the synchronous product of the nonprobabilistic automataunderlyingGp and

Gr is constructed. While constructing the product, the classical controllability conditions are

checked for each state. If the conditions are satisfied for each state of the product, thenG = Gs,

and go to 2. If there is at least one state of the product for which the classical conditions do not

hold, the rest of the algorithm for finding the (reachable anddeadlock-free) supremal controllable

sublanguage is then applied. Let (reachable and deadlock-free) DESG = (Q, Σ, δ, q0) represent

this supremal controllable language.

2) Let G1, G2, and G′
2 be defined as previously in this section. Check the equalities and

inequalities of the Theorem 1 for each state: if they are satisfied, supervisor exists, andG2 is the

optimal approximation. If not, then letd0(q, q′) = 0 for all q ∈ Q, q′ = f(q) ∈ Q′. The distance

dn(q, q′) between the states ofq ∈ Q and q′ = f(q) ∈ Q′ in the n-th iteration (n > 0) is given

by (27). For each of the state ofG2 (typically, the number of states ofG2 is much smaller than



|Qp| · |Qr|), simplex method can be used to efficiently solve the linear programming problem

(27). The worst-case time complexity of simplex method is exponential in the number of decision

variables. In our case, the number of decision variables is twice the number of events possible

from the stateq. As this number is typically small in practical applications, this exponential

complexity does not generally present a limitation of the algorithm. Furthermore, the number of

iterations needed to reach the accuracy ofǫ is ⌈(loge ǫ + loge(1 − e))⌉.

C. Example

For a plantGp as depicted in Fig. 1, there does not exist a probabilistic supervisorVp such that

G(Vp/Gp) = Gr. PDESsG1 andG2 in Figure 2 represent the supremal controllable sublanguage

L(Gp)∩L(Gr) (with respect toGp) with probability distributionsp andp2 given as in (17) and

(18), respectively. For PDESG2, let ρq be the probability distribution induced by the stateq ∈ Q

and, for PDESG′
2, let ρ′

q′ be the probability distribution induced by the stateq′ ∈ Q′. Also, we

will write ρq,σ instead ofρq(σ, qi), andρ′
q′,σ instead ofρ′

q′(σ, qj).

γ : 0.4

β : 0.2

qr0

β : 0.1

Gp Gr

β : 0.5

qp1 qr1qp0

α : 0.1

γ : 0.2

τ : 0.4

θ : 0.3θ : 0.6

τ : 0.2

α : 0.1

β : 0.9

Fig. 1. PlantGp, and requirements specificationGr



At n-th iteration, distancesdn(q0, q
′
0), d

n(q1, q
′
1), anddn(q2, q

′
2) are calculated as follows:

dn(q0, q
′
0) = Minimize (yq0,α + yq0,β)

subject to

ρq0,α − ρ′q′

0
,α + e · dn−1(q1, q

′
1)ρ

′
q′

0
,α ≤ yq0,α, e · dn−1(q1, q

′
1)ρq0,α ≤ yq0,α,

ρq0,β − ρ′q′

0
,β + e · dn−1(q2, q

′
2)ρ

′
q′

0
,β ≤ yq0,β, e · dn−1(q2, q

′
2)ρq0,β ≤ yq0,β ,

p(q0, β)

p(q0, α)
ρ′q0,α + ρ′q0,α ≤ 1,

0 ≤ ρ′q′

0
,α ≤ 1, 0 ≤ ρ′q′

0
,β ≤ 1, ρ′q′

0
,α + ρ′q′

0
,β = 1.

dn(q1, q
′
1) = Minimize (yq1,β + yq1,γ)

subject to

ρq1,β − ρ′q′

1
,β + e · dn−1(q2, q

′
2)ρ

′
q′

1
,β ≤ yβ , e · dn−1(q2, q

′
2)ρq1,β ≤ yq1,β,

ρq1,γ − ρ′q′

1
,γ + e · dn−1(q2, q

′
2)ρ

′
q′

1
,γ ≤ yγ , e · dn−1(q2, q

′
2)ρq1,γ ≤ yq1,γ ,

p(q1, β)

p(q1, γ)
ρ′q0,γ + ρ′q1,γ ≤ 1,

0 ≤ ρ′q′

1
,β ≤ 1, 0 ≤ ρ′q′

1
,γ ≤ 1, ρ′q′

1
,β + ρ′q′

1
,γ = 1.

dn(q2, q
′
2) = Minimize (yq2,β + yq2,θ + yq2,τ )

subject to

ρq2,β − ρ′q′

2
,β + e · dn−1(q2, q

′
2)ρ

′
q′

2
,β ≤ yβ , e · dn−1(q2, q

′
2)ρq2,β ≤ yq2,β,

ρq2,θ − ρ′q′

2
,θ + e · dn−1(q0, q

′
0)ρ

′
q′

2
,θ ≤ yγ , e · dn−1(q0, q

′
0)ρq2,θ ≤ yq2,θ,

p(q2, τ)

p(q2, τ) + p(q2, β)
=

ρ′
q′

2
,τ

ρ′
q′

2
,τ

+ ρ′
q′

2
,β

,
p(q2, β) + p(q2, τ)

p(q1, θ)
ρ′q0,θ + ρ′q1,θ ≤ 1,

0 ≤ ρ′q′

2
,β ≤ 1, 0 ≤ ρ′q′

2
,θ ≤ 1, 0 ≤ ρ′q′

2
,τ ≤ 1, ρ′q′

2
,β + ρ′q′

2
,θ + ρ′q′

2
,τ = 1.

After 20 iterations, we find that the closest behaviour (fore = 0.5) achievable with probabilistic

control is as given in Fig. 2.

V. CONCLUSIONS

Our goal is to solve a classical problem of nearest approximation in the framework of

probabilistic control of PDES. We suggest two algorithms for the calculation of the distances

between the states of a probabilistic generator used to model PDES in the chosen pseudometric.



β : 0.9

β : 0.3333

θ : 0.3750

γ : 0.6667

G′
2

q′0

q′1

β : 0.3125
α : 0.1

β : 0.9

β : 0.3333

θ : 0.3750

γ : 0.6667

τ : 0.3125

G1 G2

γ : 0.4444

β : 0.5556

β : 0.8333 q′2

β : 0.2 β : 0.125

q1

q0 q0

q1

α : 0.1667

τ : 0.2

θ : 0.6

τ : 0.5

q2 q2

α : 0.1

Fig. 2. PDESsG1, G2 and the closest approximationG′

2

Then, we suggest the straightforward modification of the iterative algorithm to be used to

minimize the distance (in this pseudometric) between the required behaviour of a system and

its achievable behaviour.

Although we know the rate of convergence of the algorithm to the minimal distance, we would

like to investigate how unknown, desired probabilities change as the distance converges. Also,

the question of uniqueness of the closest approximation remains open as well as probabilistic

control with marking. Further, it would be interesting to compare the distance between the

required behavior and its nearest approximation achieved using probabilistic control with the

distance between the required behavior and its nearest approximation obtained using deterministic

control only.
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[16] A. Kučera and O. Stražovský, “On the controller synthesis for finite-state Markov decision processes,”Fundamenta

Informaticae, vol. 82, no. 1-2, pp. 141–153, 2008.

[17] Y. Deng, T. Chothia, C. Palamidessi, and J. Pang, “Metrics for action-labelled quantitative transition systems,”Electronic

Notes in Theoretical Computer Science, vol. 153, no. 2, pp. 79–96, 2006, also appeared inProceedings of the 3rd Workshop

on Quantitative Aspects of Programming Languages.

[18] V. Pantelic and M. Lawford, “Towards optimal supervisory control of probabilistic discrete event systems,” inProceedings

of 2nd IFAC Workshop on Dependable Control of Discrete Systems, Bari, Italy, June 2009, accepted, available at

http://www.cas.mcmaster.ca/ pantelv/ifac09optimaldraft.pdf.

[19] G. Barrett and S. Lafortune, “Using bisimulation to solve discrete event control problems,” inProceedings of the 1997

American Control Conference, Albuquerque, NM, June 1997, pp. 2337–2341.

[20] K. G. Larsen and A. Skou, “Bisimulation through probabilistic testing,” Information and Computation, vol. 94, no. 1, pp.

1–28, 1991.

[21] A. Sokolova and E. d. Vink, “Probabilistic automata: system types, parallel composition and comparison,” inValidation

of Stochastic Systems: A Guide to Current Research, C. Baier, B. Haverkort, H. Hermanns, J.-P. Katoen, and M. Siegle,

Eds. LNCS 2925, 2004, pp. 1–43.

[22] A. Giacalone, C. Jou, and S. Smolka, “Algebraic reasoning for probabilistic concurrent systems,” inM. Broy and C.B.

Jones, eds, Proceedings of the Working Conference on Programming Concepts and Methods. Sea of Gallilee, Israel:

North-Holland, 1990, pp. 443–458.

[23] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden, “Metrics for labeled Markov systems,” inCONCUR, ser.

Lecture Notes in Computer Science, J. C. M. Baeten and S. Mauw, Eds., vol. 1664. Springer, 1999, pp. 258–273.

[24] A. Arnold, Finite Transition Systems. Prentice Hall, 1994.

[25] L. Kantorovich, “A new method for solving some classes of extremal problems,”Comptes Rendus (Doklady) Acad. Sci.

USSR, vol. 28, pp. 211–214, 1940.

[26] J. E. Hutchinson, “Fractals and self-similarity,”Indiana University Mathematics Journal, vol. 30, pp. 713–747, 1981.

[27] D. Kozen, “A probabilistic PDL,”Journal of Computer and System Sciences, vol. 30, no. 2, pp. 162–178, 1985.

[28] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden, “Metrics for labelled Markov processes,”Theor. Comput. Sci.,

vol. 318, no. 3, pp. 323–354, 2004.



[29] ——, “Approximating labeled Markov processes,” inLogic in Computer Science, 2000, pp. 95–106. [Online]. Available:

citeseer.ist.psu.edu/article/desharnais00approximating.html

[30] J. Desharnais, R. Jagadeesan, V. Gupta, and P. Panangaden, “The metric analogue of weak bisimulation for probabilistic

processes,” inLICS ’02: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science. Washington,

DC, USA: IEEE Computer Society, 2002, pp. 413–422.

[31] F. van Breugel and J. Worrell, “An algorithm for quantitative verification of probabilistic transition systems,” in CONCUR,

ser. Lecture Notes in Computer Science, K. G. Larsen and M. Nielsen, Eds., vol. 2154. Springer, 2001, pp. 336–350.

[32] ——, “A behavioural pseudometric for probabilistic transition systems,”Theor. Comput. Sci., vol. 331, no. 1, pp. 115–142,

2005.

[33] E. P. de Vink and J. J. M. M. Rutten, “Bisimulation for probabilistic transition systems: a coalgebraic approach,”Theor.

Comput. Sci., vol. 221, no. 1-2, pp. 271–293, 1999.

[34] C. Baier and M. Kwiatkowska, “Domain equations for probabilistic processes,” inProc. EXPRESS’97, Santa Margherita

Ligure, ser. Electronic Notes in Theoretical Computer Science, vol. 7. Elsevier, 1997.

[35] F. van Breugel and J. Worrell, “Towards quantitative verification of probabilistic transition systems,” inICALP, ser. Lecture

Notes in Computer Science, F. Orejas, P. G. Spirakis, and J. van Leeuwen, Eds., vol. 2076. Springer, 2001, pp. 421–432.

[36] J. M. Ortega and W. C. Rheinboldt,Iterative solution of nonlinear equations in several variables. New York, New York,

USA: Academic Press, Inc., 1970.


