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Abstract

This paper considers optimal supervisory control of prdistic discrete event systems (PDESS).
PDESs are modeled as generators of probabilistic languddpes probabilistic supervisors employed
enable/disable events with certain probabilities. We wmrghe case when there exists no probabilistic
supervisor to match the behaviour of a plant to a probaigilisquirements specification. First, we define
a notion of distance between two probabilistic generaiinen, given a plant and a desired probabilistic
behaviour, we present an algorithm that minimizes the distedbetween the desired behaviour and the

behaviour of the controlled plant achievable under prdisiigi control.
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. INTRODUCTION

In order to model stochastic behaviour of a plant, many nedéktochastic behavior of dis-
crete event systems have been proposed (e.g., Markov qidif&abin’s probabilistic automata
[2], stochastic Petri nets [3]). We follow the theory of patiilistic DES that was developed
in [4], [5] using an algebraic approach. A stochastic discevent system is represented as an
automaton with transitions labeled with probabilities. &sposed to the model of [4], [5], our
probabilistic automaton is deterministic in the followisgnse: for each state of the automaton
and any event, there is at most one next state to which thenatiom can move. The probabilities
of all the events in a certain state add up to at most one. Wathiris probabilistic automata
[2], on the other hand, the sum of the transition probabgitbf an event at a state is one. Also,
unlike the Markov chains [1], the emphasis of the approacfpf[5] is on event traces rather
than state traces.

The control of different models of stochastic discrete ¢wstems has been investigated in
[6], [7], etc. Rabin’s probabilistic automata are used ihd6 the underlying model, while [7]
investigates the optimal control theory of Markov chainsdéterministic supervisory control
framework for stochastic discrete event systems was dpedlo [8] using the model of [4], [5].
Controllable events are disabled dynamically as first ssiggkin [9], so that the probabilities of
their execution become zero, and the probabilities of tleiwence of other events proportionally
increase. The control objective considered in [8] is to tmmts a supervisor such that the
controlled plant does not execute specified illegal traees, occurrences of the events in the
system are greater or equal to specified values. The papes geécessary and sufficient condition
for the existence of a supervisor. Further, in [10], a teghaito compute a maximally permissive
supervisor on-line is given. In [11], [12], the probabiksgenerators introduced in [4], [5] are
used. The requirements specification is given by weightgaesd to states of a plant and the
control goal is, roughly speaking, to reach the states witrenweight (more desired states)
more often. A deterministic control is synthesized for aegivequirements specification so that
a measure based on the specification and probabilities gfléme is optimized.

In [9], PDESSs are modeled as probabilistic generators a&diojpbm [4], [5], and deterministic
supervisors for DES are generalizedpmbabilistic supervisorsThe probabilistic supervisors

are so named because they employ the control methoahofom disablemengfter observing a



string s, the probabilistic supervisor enables an eventith a certain probability. Standard
(deterministic) control can deterministically enablsatile controllable events. As shown in
[9], a plant under probabilistic control can generate adargass of probabilistic languages
than deterministic control. The supervisory control pesblconsidered is to find, if possible,
a supervisor under whose control the behaviour of a plandestical to a given probabilistic
specification. The necessary and sufficient conditionshfereixistence of a supervisor for a class
of PDESs are given in [9]. A formal proof of the necessity anffisiency of the conditions and
an algorithm for the calculation of the supervisor are pmese in [13], [14].

Controller synthesis for probabilistic systems has alt@aetied attention in the formal methods
community. E.g., [15], [16] consider different control miés: deterministic or randomized
(probabilistic) on one hand; memoryless (Markovian) otdrigindependent on the other. The
systems considered are finite Markov decision processesiewthe state space is divided into
two disjoint sets: controllable states and uncontrolladibges. In [15], the controller synthesis
problem for a requirements specification given as a proistibicomputation tree logic (PCTL)
formula is shown to be NP-hard, and a synthesis algorithradtomata specification is presented.
Controller synthesis was considered in [16] for requireteespecification given as a formula
of PCTL extended with long-run average propositions. Ithsven that the existence of such
a controller is decidable, and an algorithm for the synthedia controller, when it exists, is
presented. Further, controller robustness with respestight changes in the probabilities of the
plant is discussed. The paper shows that the existence o$tragbntrollers is decidable and the
controller, if it exists, is effectively computable.

Deterministic control is easier to deal with than probatidi control, both from the viewpoint
of analysis, and practice. However, probabilistic contsoinuch more powerful. It has been
shown in [9] that probabilistic supervisory control can gexie a much larger class of probabilis-
tic languages than deterministic control. In the sense@sttpervisory control problem discussed
in this paper, the use of deterministic control might be testnictive for a designer. Hence, [9]
and [13] investigate probabilistic supervisory contrabinditions under which a probabilistic
control can generate a prespecified language, and, if thengapr exists, the algorithm for its
synthesis.

Analogous to a problem in classical supervisory controbtieit can happen that, given a

plant to be controlled and a probabilistic specificationglaege, no supervisor exists such that



the plant under control generates the pre-specified lamguaghis case, when the exact solution
is not achievable, a designer tries to find a supervisor sughtihe plant generates the behavior
closest to the desired behaviour. The measure of proximityur case will be a pseudometric
on the states of probabilistic transition systems.

In Section Il we present PDES as generators of probabiliaiguages, and introduce the
probabilistic control of PDES. The proposed pseudomesripresented in Section Ill. Its char-
acterization as the greatest fixed point of a function (aseted in [17]) is used for the derivation
and proof of the correctness of two algorithms for the caltah of the distances between the
states of a PDES in this pseudometric. Section IV presestsitjorithm for finding the closest
approximation to within a prespecified accuracy. Sectionovictudes with avenues for future
work.

Results of this research were first published in [18], lagkinuch of informal reasoning or
formal proofs of algorithms presented. In this paper we givaore formal and detailed version

of that work.

[I. PRELIMINARIES

In this section, we present PDES modeled as generators babilstic languages. Then, we
introduce the probabilistic control of PDESSs, the prokiatd supervisory problem, and the main
results of [9], [13].

A. Modeling PDES
The probabilistic DES can be modeled as a probabilistic ggoeG = (Q, 3, 0, g0, Qum, p)

[9], where () is the nonempty set of states (at most countaliie)s a finite alphabet whose
elements we will refer to as event labels; @ x X — @ is the (partial) transition function,

g € @ is the initial state,, C @ is the set of marking states, which represent the completed
tasks, and : Q x ¥ — [0, 1] is the statewise event probability distribution. The staé@sition
function is traditionally extended by induction on the lén@f strings tod : @ x ¥X* — Q:

d(q,€) =q,

d(q,s0) =6(0(q,8),0), qER,sEX 0N



wheneverd(q, s) andd(d(q, s), o) are both defined. For a stageand a strings, the expression
d(g, s)! will denote thatj is defined for the string in the statey.

The probability that the event € ¥ is going to occur at the statee @ is p(q, o). For the
generatorG to be well-defined(i) p(q, o) = 0 should hold if and only (¢, o) is undefined,
and (i7) Yq¢ > ,exp(q,0) < 1. The probabilistic generata is nonterminating if, for every
reachable state € @, > ,cx p(¢,0) = 1. ConverselyG is terminating if there is at least one
reachable state € @) such thaty", s, p(q,0) < 1. The probability that the system terminates
at stateq is 1 — > 5, p(q, o). Throughout the sequel, we will mostly consider nonterring
generators.

The languagd.(G) generated by a probabilistic DES automatén= (Q, X, d, o, Qm, p) IS
L(G) = {s € ¥* | d(qo, $)!}. The marked language @f is L,,(G) = {s € ¥* | §(qo, s) € Qm},

whereas the probabilistic language generated-big defined as:

Ly(G)(e) =1

LG { Ly(G)(5) - p(6(a0,5),7) i O(ao, )
0 otherwise
Informally, L,(G)(s) is the probability that the string is executed inG. Also, L,(G)(s) > 0
iff s e L(G).
For each state € ), we define the functionp, : ¥ x @ — [0, 1] such that for any; € @,
o € X, we havep,(o,q¢) = p(q,o0) if ¢ = d(¢,0), and O otherwise. The functiop, is a
probability distribution on the set x @). Also, for a state;, we definethe set of possible events

to be Pos(q) := {0 € X|p(q,0) > 0}.

B. Probabilistic Supervisors: Existence and Synthesis

As in classical supervisory theory, the 3ets partitioned intoX, andX,,, the sets of control-
lable and uncontrollable events, respectively. Deterstimisupervisors for DES are generalized
to probabilistic supervisorsThe control technique used is callemhdom disablementnstead of
deterministically enabling or disabling controllable eis& probabilistic supervisors enable them
with certain probabilities. This means that, upon reaclarggrtain state, the control pattern is
chosen according to supervisor’s probability distribontiaf controllable events. Consequently,

the controller does not always enable the same events whire istate;.



Fora PDESG = (Q, X, 9, qo, @m, p), aprobabilistic supervisors a functionV,, : L(G) x ¥ —

0, 1] such that
1 if o€,

(Vs € L{G))Vo € D)Vpls0) = { x50 €10,1]  otherwise.

Therefore, after observing a strisgthe supervisor enables the evenwith probability V, (s, o).
After a set of controllable events to be enabled has beerdeéaipon (uncontrollable events
are always enabled), the system acts as if supervised byeardeistic supervisor.

The goal is to match the behaviour of the controlled planthwvaitgiven probabilistic speci-
fication language. We call this problem tReobabilistic Supervisory Control Problem (PSCP)
More formally:

Given a plant PDES+; and a specification PDES., find, if possible, a probabilistic supervisor
V, such thatL,(V,/G1) = L,(G2).

We now present the conditions for the existence of a proiséibilsupervisor for PSCP (that
were first presented in [9]), and an algorithm for the comparaof the supervisor which is the
main result of [13].

For notational convenience, insteadadt) (z(0) € R, 0 € ¥), we will write z,.

Theorem 1:Let G; = (Q, %, 01, g0, Qm, p1) aNd Gy = (R, X, 82,10, Ry, p2) be two nontermi-
nating PDESs with disjoint state sefsand R. There exists a probabilistic supervisgy such
that L,,(V,/G1) = L,(G>) iff for all s € L(G5) there existsy € () such thatd; (¢o, s) = ¢ and,
letting » = d5(ro, s), the following two conditions hold:

() Pos(q) NX, = Pos(r) NX,, and for allo € Pos(q) N3,

pi(g,0) _ _ pa(r,0)
> nlga) Y pa(ra)
€, a€dl,

(i)  Pos(r)NX. C Pos(q) N3, and, if Pos(q) N X, # 0, then for alloc € Pos(q) N 2,

pQ(T,U) Z pl(q7a)+ Z pQ(T,Oé) <1.

P (q’ U) €, acPos(q)NX.

Conditions (i) and (ii) together are necessary and suffidfi@nthe existence of a probabilistic
supervisor solving the PSCP. The first part of both cond#tioorresponds to controllability as
used in classical supervisory theory (namely, the comittes(q) N 3, = Pos(r) N %, of (i),
and Pos(r) N X. C Pos(q) N X, of (ii)). The remaining equations and inequalities coroesp

to the conditions for probability matching.



Theorem 2:Assume that the conditions (i) and (ii)) of Theorem 1 are fatls Let' =
Pos(q) N X, if Pos(q) N%, # 0, andT’ = (Pos(q) N 3.)\{~} otherwise, wherey € Pos(q) is
such that for every € Pos(q), 24 > 2209 s satisfied. Let:? € [0,1]" and f : R" — R".
For z° = 0, the sequence

a* = (b)), k=0,1,..., where

S

B pa(r, o)
fa(xS) B P1 (Qa O_)ha(xs)
1

ho(zs) =) =S miaa) [T -20) [[osa

0cP(I'\{s}) aco acl acl\{c}\©

,o € I where

converges to the control input; (i.e., V,(s,0) =z, for o € I).
The following results are for prefix closed probabilistiesication languages so in the sequel
we simplify the probabilistic generata@r = (Q, %, 61, qo, Qm, p) 10 G = (Q, %, 01, qo, p)-

[1l. THE METRIC FOR THE CLOSEST APPROXIMATION

In this section, we roughly describe the problem of optimgbesvisory control, introduce

research done on metrics on states of probabilistic systentspresent the chosen metric.

A. Formulation of the Problem

In the case when the conditions for the existence of a solutidhe probabilistic supervisory
control problem are not satisfied, we search for a suitabf@oxmation. Assume that the
plant is given asG; = (Q,%,01,q0,p1) and the specification i7s = (R, X, 09,70, pa). If
there is no probabilistic supervisdf, such thatL,(V,/G1) = L,(G2), we seekV, such that
L,(V,/Gy) = L,(Gs), whereGs = (S, %, 41, s0,p3) and G is closest toG, according to a
certain criterion. As a criterion, we choosgpseudometrion the initial states of generators as

explained in the sequel.

B. Literature review

Probabilistic bisimulations commonly used to define an equivalence relation betweamapr
bilistic systems. However, probabilistic bisimulatiorhiardly a robust relation: roughly speaking,
two states of probabilistic systems are bisimilar if andyahthey have the same transitions with
exactly the same probabilities to states in the same e@uigal classes. The formal definition

follows and represents a modified version of the definitiomisfmulation given in [19].



Definition 1: Let G = (Q, %, 6, qo, p) be a PDES. Probabilistic bisimulation 6his the binary
relation= such that for any; = ¢; ando € %, the following holds:

1) For everyq; such thati(q;,0) = q;, there isq¢, such thatd(qe, o) = ¢, pi(q,0) =

JR——i

pi(g2,0), andq; = g,.
2) For everyq, such thatd(q,0) = ¢, there isq, such thaté(q,0) = qi, pi(qr,0) =
pi(g2,0), andq; = gs.
Statesy; andg, are probabilistic bisimilar if there exists a probabilistisimulation= such that
1 = (2.

Note that we did not use the definition of probabilistic bislation for reactive systems as
given in [20] or the definition of probabilistic bisimulatidor generative systems given in [21].
Since our model is deterministic, we found the straightimdvmodification of [19] sufficient
for our needs.

As a more flexible way to compare probabilistic systems, @onobf pseudometridgs intro-
duced. Apseudometric on a set of stat@sis a functiond : ) x ) — R that defines a distance
between two elements @, and satisfies the following conditiong(x,y) > 0, d(z,z) = 0,
d(z,y) = d(y,z), andd(x, z) < d(x,y) + d(y, z), for any z,y, z € Q. If all distances are not
greater than 1, the pseudometricliboundedIn the sequel, we will use the terms metric and
pseudometric interchangeably.

The first paper that discussed the use of a metric as a way teungethe distance between
two probabilistic processes is [22]. This early work coesgddeterministic probabilistic systems.
The distance between processes is a number betWesrd 1, and represents a measure of a
behavioral proximity between the processes: the smallentimber, the smaller the distance.

Labeled Markov chains are considered in [23]. The motivatbthe paper is to explore the
possibility of substituting one process with another tlsasufficiently close in a metric space.
The pseudometric is given via a real-valued logic that isivatéd by the well-known result that
the Hennessy-Milner logic is complete for bisimulation JJ[2Burther, this metric is inspired by
the Kantorovich metric [25] which is used in transport peshk, and more recently has been
used by Hutchinson in his theory of fractals [26]. Two stedes at distanc® in this metric if
and only if they are probabilistic bisimilar.

More concretely, the ideas of [27] are used to generalizeclsg that reasoning about

probabilistic systems is supported. A functignhe F evaluated at a state takes truth values



in the interval|0, 1], instead of{0, 1}. Then, the distance between two states is defined as a

pseudometric:
d(qq, ar) = sup{|f(gq) — f(@)|f € F}.

This paper also offers an algorithm to calculate a distaeteden two systems in the introduced
metric with a prespecified accuracy. The algorithm runs pogential time. Further, asymptotic
metrics have been considered as a side topic. An extens[@8Jaf given in [28]. It considers not
only discrete probabilistic systems (labeled Markov chgibut also continuous systems (labeled
Markov processes). In [29] only continuous-time labeled®da processes are considered. The
paper also shows that a small perturbation in a system évmoisabilities results in a system
that is close to the original one. A pseudometric analoguedak bisimulation is presented in
[30] for labeled concurrent Markov chains where the set afest is divided into two disjoint
sets of probabilistic and nondeterministic states. Thesiteons from probabilistic states are not
labeled, while the transitions from nondeterministic esatire. The metric is given a fixed-point
characterization that allows for coinductive definition.

The systems considered in [31] are reactive nonlabeledapittic systems, but the results
can be easily generalized to labelled systems [32]. The rpspggests a pseudometric as a
measure of behavioral similarity between the systems aimbil the one presented in [23]. The
pseudometric is coalgebraic as opposed to that of [23]. Hpepfurther presents an algorithm
to calculate the distance between two systems in the pegs@seudometric with a prespecified
accuracy. Comparison of this metric with a number of metfecg., [33], [34]) is given in [35].
Also, the metric can be recovered from the metric of [23] byiag negation to the logic of
[23] (see [35]).

The work of [17] is closely related to [23], [30], [31]. It irdduces a pseudometric on states for
a large class of probabilistic automata, including reactimd generative probabilistic automata.
The pseudometric is based on Kantorovich metric on didiobs and is characterized as the
greatest point of a function. The metric to be used in thetgoiwf our problem is based on
this metric. It intuitively matches our notion of the distenbetween PDESSs, and accounts for all
differences between corresponding transition probaslitas opposed to e.g., that of [22] that,
roughly speaking, considers only the maximum of the difiees between the corresponding

probabilities. Furthermore, as the metric is suggesteaflarge class of systems, it allows for



an extension of our work to e.g., nondeterministic systekiso, as it turns out, there is a simple

algorithm to compute distances in this metric for our getingadeterministic model.

C. The metric

Let G = (Q, %, 0, q, p) be a nonterminating PDES, whefe= {qo, ¢1,...qnv_1} (if a plant is
terminating, it can easily be transformed into a nontertimigeone using the technique described
in [9]). This is the system we shall be using throughout thgusé Next, we introduce some
useful notation. Let,,q, € @ and letp, andp, be the distributions ol x ) induced by
the states), andg,, respectively. Assumé < i,j < N —1 andV¥ = Pos(q,) U Pos(g,). For
notational convenience, we will writg,; instead ofp,, (o, ¢;), and, similarly,p, ; instead of
Pa. (0, ;).

Next, we present the pseudometric suggested in [17] for gelatass of automata which
includes our generator. This pseudometric is also basedamokKovich metric on probability
measures.

First, [17] introduces the clasé1 of 1-bounded pseudometrics on states with the ordering
dl j d2 if \V/S,t dl(svt) Z d2(57t) (l)

as was initially suggested in [30]. It is proved tha¥t, <) is a complete lattice.

Then, letd € M, and let the constamtc (0, 1] be adiscount factothat determines the degree
to which the difference in the probabilities of farther tsdions is discounted: the smaller the
value ofe, the greater the discount on future transitions. We assiatetiie total mass of,,
is greater or equal to the total massgf:

Z Poyi = Z me
ogggezl\yf—l ogggezl\yf—l
This assumption is not needed for nonterminating autoniktan, the distance between the
distributionsp,, andp,,, d(p,, pe.) (NOte a slight abuse of notation) for our generators is given

as:



Maximize e- Yo GeiPoi— Y. %,mfm

ocew oew
0<i<N-—1 0<i<N-—1
subjectto 0<a,; <1, ceV¥, 0<i<N-1
Ugi — Gaj < €7, o€V, 0<i,j<N-1 (2)
where

C

o { d(gi,qj) fo=a

() .
1 otherwise

If the total mass o, is less than the total mass pf,, d(p,,, p4,) is defined to bel(p,,, py,)-
This extension to distributions is also pseudometric, ancbinsistent with the ordering (1) (see
[30]).

The pseudometric on stateg;, is, then, given as the greatest fixed-point of the funcibn

on M (here we give a simplified version of that in [17]):

D(d)(Qqa QT) = d(pqqu p(I'r>7 de M, dq, 4r € Q (3)

The proofs that the function defined by (3) is monotone\dnthat it does have the greatest fixed
point, and that its closure ordinal g originate from [30]. Furthermore, since the pseudometric
dy is a fixed-point of (3), the distances i are between O and. In order to scale the
distances with the factor/e so that they can be betweénand 1, we define a pseudometric
d,, for nonterminating generators to be the greatest fixedtpdithe function (3) onM, where



d(pq, Pq.) is redefined to be:

Maximize Y. GoiPoi— Y. GoiPy;
oew oV
0<i<N-—1 0<i<N-—1
subjectto 0<a,; <1, ceV, 0<i<N-1
g — oy < ¢, o0 €W, 0<ij<N-1 @)
where

b

aa{ e'd(%‘,%‘) if o=a

1 otherwise
Given the aforementioned difference between our defintiothe distance between distributions
and that of [17], it is obvious that the the distances betwsates in our pseudometric are by
the factorl/e larger than theirs.
At this point we recall the fact that our generators are dei@stic: for an eventr and a
stateq, there is at most one staté such thaty’ = (¢, o). For the purposes of the following
analysis of our nonterminating deterministic generataes rewrite the objective function of the

optimization problem of (4) as:

Z (aa,i(qq,a)pa,i(qq,a) - amj(qma)p;,j(qr,o)) (5)
ocev

wherei(q,, o) = i such thatyg;, = d(q,, o) if d(¢,, 0)!, andi(q,, o) = 0, otherwise. We arbitrarily
choosei(q,, o) to be0 whend(q,, o) is not defined although we could have chosen any other
i€ {l,...,N —1}. This is because whefi(q,,o)! does not hold, them,.;,, ., = 0 for any
i(g,0) € {1,...,N — 1}. Similarly, j(¢q,,0) = j such thatg; = 6(q,,0) if §(¢.,0)!, and
Jj(gr,0) = 0, otherwise. For readability purposes, we will writeinstead ofi(q,, o), and j
instead ofj(g., o).

Also, since our generators are nonterminating, we do notl rike first constraint in (4);
we keep it, however, as it will be useful later. Further, tHgeotive function of this linear
programming problem can be maximized by maximizing eachtsoBummands separately. In
order to explain this observation, we consider a summgpg., ;—a.; o, ;- Due to the generator’s
determinism, there is no other nonzero summand contaiyng0 < k < N —1, k #1, k # j.



Therefore, the last constraint of (4) for any two coefficgent; anda,; (0 < i,7 < N —1)
from different summands becomes; — a,; < 1. This constraint is already implied by the
first constraint, so we can independently pick the coeffisienin different summands, and,
consequently, independently maximize the summands inr aodemaximize the sum.

In order to maximize a summand of the objective function (&, solve the following linear

programming problem fos € W:

Maximize (ag,ipa,i - aa,jpim')

(6)

subjectto 0 < a,;,a0; <1,
(g — Qg j < Cij
wherei and j are defined as in (5), and; = ed(q;, ¢;) as before. Also, note that the set of
constraints does not contain the inequality; — a,;, < c;;. In order to maximize the given
function, the coefficient;,; is to be chosen to be greater thay; since the given constraints
allow it. In that case, since;; = cj;, if a,; — a,; < ¢;j, thena,; — a,; < c;; follows, so the
latter constraint is redundant. Further, it is not hard te g&t the solution of the given linear
programming problem fop,; > o, ; is equal top,; — p;, ; + cijp,, ;- We can solve this problem
using graphical method, simplex method or using the follmnine of reasoning. In order to
maximize the given function, we can either choagg to be 1 and then pick, ; so that it has
the minimal value for the given constraints, or we choage to be 0, and then pick,; so
that it has the maximal value under the given constraintshénfirst case, we pick, ; to be 1,
a; to bel —c¢;;, and value of the objective function js ; — p;, ; + c;;p, ;- In the second case,
sincea, ; is 0, thena,; is equal toc;;, and the objective function becomesp,, ;. Sincec;;p,,;
is never greater tham, ; — o, ; +ci;0, ; (for p,; > pi,; ande;; € [0, 1]), the latter is our solution.
Using the same reasoning, fpg; < o), ;, the maximum is reached &t;, a;) = (c;;,0) and its
value isc;;p,;.
Now, we put together the presented solution of the lineaggamming problem (4) and the

aforementioned reasoning. The distance between thehldistmnsp,, and p,, is then:



d<qu7 p(Ir) = %:‘ij(qm qT7 d7 U)u Where

Poi = Poj + Ciiloy 1T poi 2 0o

f(qlla qr, da U) - CijPoi otherwise (7)

or, equivalently,

f(q(p dr, d7 O') = max(po,i - p;,j + Cijpir,]ﬁ Cijpcr,i)a

wherec;; = e-d(¢;, q;) as before, andand; denotei(q,, o) andj(q,, o), respectively, as defined
as in (5).

To summarize, the functio®(d) for our model is given as:

D(d)<QQ7 QT) = Zmax<p0,i - P;,j + Cijp;,jv Cijpo,i) (8)
oeVv

where, againg;; = e - d(qg;, ¢;) as before, and and j denotei(q,, o) andj(q,, o), respectively,
as defined in (5).

D. Calculating the Pseudometric: Algorithms

Fore € (0, 1), we will prove that, for our model, the functid® as given in (8) has only one
fixed point. Then, we suggest two algorithms for calculating distances in the pseudometric
that represents the fixed point of this function.

First, we introduce some useful definitions and results flimear algebra.

A real n x n matrix A = (a;;) defines a linear mapping frof” to R , and we will write
A € L(R") to denote either the matrix or linear function, as we shalkenao distinction
between the two.

Definition 2: For any complexn: x n matrix A, the spectral radius ofl is defined as the

maximum of [\, -+, |\,|, where)\,,--- |\, are the eigenvalues of.

The spectral radius ofi, denotedy(A), satisfiesp(A) < ||A||, where||A]| is an arbitrary
norm onR™. During the course of the following proof, we will make use iafinity norm

1 Alloe = maz 375, fay|-



Definition 3: An operatorG : D C R® — R” is called aP-contractionon a setD, C D if

there exists a linear operatét € L(R") such thatP > 0, ¢(P) < 1 and
|G(z) — Gy)| < Plz—y| forall z,y € Dy ©)
Now, letd € M. Next, we define the functiow on M:

V(d) = (d(q0, 90), d(q0, 01, - - -, d(qn -1, CIN—1))T-
Therefore,V(d) = (Vi(d), Va(d), -+, Vi (d))T, whereVi(d) for k € {1,..., K} is given as:
Vi(d) = d(¢i,q5), i =k div (N +1), j=(k—1) mod N.

Now, we extend the functio® in a natural way to the functioP(V(d)) = (D1(V(d)), ..., Dx(V(d)))?,
where for anyk € {1,..., K}:

D(V(d) = d(pg,, po,)s i =k div (N +1), j = (k— 1) mod N. (10)

Further, letDy = {V(d)|d € M}.
Lemma 1:The functionD is a P-contraction onD,.

Proof: Let d', d” € M, andd’ = V(d'), andd” = V(d"). Letk € {1,..., K}, and leti and
j (0 <i,57 <N —1) be given as in (10). Further, assunfe= Pos(q;) U Pos(g;). Also, let
t(i,o) = t such thatd(q;, o) = q; if §(¢;,0)!, andt(i,0) = 0, otherwise. Similarly/(j,o) =1
such thaty(¢;, o) = ¢, if §(g;,0)!, andi(j, o) = 0, otherwise. Again, for notational convenience,
we will write ¢ instead oft(i, o), and( instead ofl(j, o). Also, we will write p,, instead of
pe;(0,q;), and, similarly,o.,; instead ofp,, (c,q) for ¢, q € Q. Then:

|Dk(bl) - Dk(bnﬂ = ‘dl(pqmqu) - dll(pqiaqu)‘

> max(pes — plhyy + ed (g, @)l ed (G, @)pos) — Y max(pos — Py + ed" (G, @)ply 1 ed” (G, @1)pot)
oew oew

> eld (g q) — d" (g, @))min(po., plyy)
oew

<> emin(pos, ph ) |d (g, @) — d” (a0, @) (11)
oew

< > emin(por ) [0, — ). (12)
oV
m=tN+Il+1
Note that ag = t(i,0) andl = [(j, o) are also functions of (since: and; are functions oft).

Now, without the explicit construction of the matrik, we can see from (12) that there exists



P such thatD(d') — D(d")| < P|o" —2"| where

1Plloe = maz 3 emin(po, )

ocew
<e
(since > po= Y. phy=1)
oew oev
te{0,...,N—1} 1{0,..,N—1}

< 1 (sincee € (0,1))

Therefore,p(P) < 1 and, since, obviously” > 0, thenD is P-contraction. [
Lemma 2:Let d',d” € M, and?d’" = o(d’), andd” = o(d”). For anyk € {1,..., K}, there
existsm € {1,..., K} such that:

Di(0') = Di(2")] < €0y, — 2y,
Proof: We use the notation from the previous lemma.
D (d') — Di(2")]

< Y emin(pg.i, plyy) |d (g1, @) — d”(qe, @)] (from (11))
oew

< Y emin(po,i, pl) maz {ld'(qe, @) — d"(ar, @) [}
oy {((0,1),1(0,5)) o€ W}

<Y emin(pos, phy) |d (gr,qs) — d"(qr.q0)]  for somer,s € {0,...,N — 1}

oc¥
<eld(gr,qs) —d"(gr,q5) (SiNCE D" poi= > ph,=1)
oc¥ oeV¥
tc{0,....N—1} 1e{o,...,N—1}
<elo, — 0| for somem € {1,...,K}

Theorem 3:For any? € Dy, the sequence
"t =D>O"), n=0,1,...

converges to the only fixed point dP in D,, o*, and the error of convergence is given

componentwisek( € {1,..., K}) as:

P -5 < (1—e)te", n=1,2,... (13)



Proof: Note that this is a variant of the contraction-mapping teeorextended taP-
contractions ([36], Theorem 13.1.2.). We employ a simileogb technique. Letn,m > 1.
Then:

n+m _ 0n| < Z |an+t n+t71|

| N

Z a?(t‘)l| (applying Lemma 2 times,i(t) € {1,...,K})
Z etmax{|0 % I}

1

IN

< <Z et> o7 — o7~ (for somej € {1,...,K})
t=1

<(1—e) ey -0 1|(smceZ (1—e)~* for m >0)
t=0

< (1—e) teo} — Y| (for somel, by applying Lemma 2n — 1) times)

<(1—e)tem (14)
Therefore, the sequende} },.>, is a Cauchy sequence and hence converges to spnaad,
consequently, the sequen¢e}, >, converges t@* € D,. Also, we have:

|

0 = DY) < [p* =" 4+ |D(O") = D) < [oF ="+ Po" -0

When we letn — oo, we see thad* = D(0*). Also, if we letn — oo in (14), we get the

componentwise error estimate of (13).
At last, we prove thad* is the only fixed point inD,. Assume that there is another fixed

point of D in the same intervaD,, o*. Then,
" =27 = [D(@") - D7) < Plo* — 27

Hence, (I — P)[o* — 27| < 0. However, sincep(P) < 1, (I — P)™' = 32, P > 0, then
[o* —0*| < 0. Therefore,p* =o™. u

Now, using the presented analysis, we suggest the follotwogalgorithms for the calculation
of the distances between the states of PDESs in the chosadgosetric.

Algorithm 1 Theorem 3 proves that the system of equations

2 =D(d) (15)



has a unique solution. The equations are linear. Therefloeesystem (15) can be rewritten into
the standard formdo = b, where A is a K x K matrix andb is a column vector of dimension
K. Therefore, the distances in our pseudometric can be eddrlilby solving this system of
linear equations. The distances found are exact solutibmge(disregard the round-off error).
Algorithm 2 Theorem 3 suggests an iterative algorithm to calculateanicgts between the
states of a probabilistic generator. The algorithm is aghitéorward modification of that of [31]
that calculates distances in a pseudometric suggesteddiffieeent kind of probabilistic system
and derived by using terminal coalgebras. Uetg,, ¢.) = 0 for any two states,, ¢. € Q. As
before, letp,, andp,, be the distributions induced by the statgsandg,, respectively. Assume
0<1i,7<N-—1andV¥ = Pos(q,) U Pos(gq.). Then-th iteration of the algorithm calculates the

distanced” between each two stateg, ¢, € Q:

dn(Qqa QT) = Z\pmax(pa,i - p:r,j + Cijp;,jv Cijpo,i) (16)
o

wherec;; = e-d"!(q;,q;), andi = i(q,, o) andj = j(g., o) are defined as in (5). The accuracy
of the solution found im-th iteration is(1 — ¢)~'e™.

The iterative method can be useful for systems with lakgewhere the direct method can
be rather expensive. Furthermore, the mathematical ajpsanaed to reach the iterative method

will be reused in the solution of the closest approximatioobpem.

IV. FINDING THE CLOSEST APPROXIMATION

In this section we first characterize the closest approxonand then give the algorithm to
minimize the distance between the required behaviour olstesy and its achievable behaviour.

All the results in the sequel are applicable foe (0, 1).

A. Characterizing The Closest Approximation

First, we repeat the formulation of the nearest approxiomairoblem. Assume that the plant
is given as PDES+, = (Q,, X, d,, ¢y, Pp), and the requirements specification is givenas=
(Qr, 2,9y, ¢ry, pr). If there is no probabilistic supervisdr, such thatL,(V,/G,) = L,(G,),
we seek the optimal (closest) solution and characterize foblows. As mentioned before, the

conditions (i) and (ii) of the Theorem 1 for the existence odhabilistic supervisor consist of



two parts. The first part of both conditions corresponds totrodiability as used in classical
supervisory theory (namely, the conditiétvs(q) "X, = Pos(r)N %, of (i), and Pos(r)NX. C
Pos(q) N3, of (ii)). The remaining equations and inequalities cormespto the conditions for
probability matching. Hence, before we start looking fog tHosest approximation in the sense
of probability matching, we resort to the classical supssry theory of supremal controllable
languages. We first find.(G,) N L(G,), and then the supremal controllable sublanguage of
L(G,) N L(G,) (with respect ta&,,), K. Then, the DES that represents this languagdurther
equipped withp,, distribution (appropriately normalized) becomes the rfiediplant PDES+,,
and the same DES (corresponding to the supremal contrellabjuageX’) equipped with the
distribution p, appropriately normalized becomes the desired behaviolEFG,. Formally,
let (reachable and deadlock-free) DES = (Q, X, 0, qo) represent the supremal controllable
languagek’. We define a PDE®/, = (Q, %, 6, o, p), Where the distributiop : @ x ¥ — [0, 1],
foranyq € Q,0 € 3, is defined as:

Pp(@p, 0)

Pp(dp; 0)
oe{oeX]|é(q,0)!}

plg,0) = (17)
where g, = 0,(¢p,,s) for s € L(G) such thatg = d(qo,s). Similarly, we define a PDES
Gs = (Q, %, 9, qo, p2) Where the distribution, : @ x ¥ — [0, 1], where, for anyg € Q, 0 € %

pr(‘]rv U)

pr(QTa U)
oe{oeXx|d(q,0)!}

wheregq, = ,(qr,, s) for s € L(G) such thatg = 6(qo, 5).

pa(q,0) = (18)

Next, we check probability matching equations and inegjealifrom Theorem 1. If they are
not satisfied (there is no probabilistic supervid@rsuch thatL,(V,/G1) = L,(G2)), we seek
G, = (Q,%,d,q,p") such that there exists a probabilistic supervigprso thatL,(V,/G,) =
L,(GY) holds, andG, is closest toG, in the metric presented. Without loss of generality, we
assume that nonprobabilistic automata underlyiagand G, are isomorphic (with labeling of
events being preserved). Therefore, nonprobabilisticraata underlying=, andG, are identical
up to renaming of states. This assumption is not restri@s/¢here cannot be any string in the
desired system that does not belong/t@-,). Our goal is to find the probabilities @, as the
closest approximation such that the distance betweggeand G, (i.e. the distance between the

initial states ofG, and G) is minimized. As our metric is defined on the states of a sgyste



in order to define distances between the state§.0&nd G’,, we can consider the union PDES
G, = (QUQ', %, 64, q,pu), Where

0u(q,0) =0(q,0),pu(q,0) =p(g,0) if g€ Q ando € &

oulq,0) =08'(q,0),pulq,0) =p'(q,0) if € Q ando € X

Then, M is the set of 1-bounded pseudometrics on the states of timedsystem with the
same ordering as in (1).

Further, note that nonprobabilistic automata underlyihgand GG, are also isomorphic (with
the isomorphism function being the identity function). Wistfinote that, considering the iso-
morphism between the nonprobabilistic versiongzgfand GG, we will be interested only in the
distances between (probability measures on) state§) of G, andq’ = f(q) € Q' of G, where
f is the isomorphism between nonprobabilistic automata tyidg G, and G, (and between
nonprobabilistic automata underlyidg, andG?). We assume that, after the occurrence of string
s € L(G,), the PDESG, is in stateg (6(qo, s) = ¢). Then,G, and its closest approximatids,
are in stateg and ¢/, respectively, and’ = f(q).

Let us first define a clasgl of functionss : @ x @ — [0,1], such thatvg € Q,¢ =
flq) € @ s(q,q) = d(q,q), whered € M. Therefore, the classl is the class of all the
pseudometrics with domain reduced only@x '": only distances between € Q andq¢ =
f(q) € @ are defined. Next, we define a clagsof partial functionsb : @ x Q' — [0, 1],
such thatvqg € Q,q¢ = f(q) € Q' blq,q") = d(q,q'), whered € M. Therefore, the clasgl is
the class of all 1-bounded pseudometrics with domain retitc&) x ', and only distances
betweeng € @ and ¢ = f(q) € Q' defined. Next, we define a family of functions =
{¢'|p'(¢") is a probability distribution ort x @’ induced by state’ € @'}. Now, for eachy’ €
A, we define functioD”’ : A — Aas g€ Q,¢ = f(q) € Q',d € A):

D’ (d)(q,q') = d(pg, ply) andp'(¢') = p,
where, as befored is lifted to the metric on distributions, andp,, p/,) is defined as in (7).

Further, for eachy € A, we define functionl”,  as the greatest fixed point of functid’.

max

We introduce the reversed ordering gnto match the one in (1):

dy =<' dy if Vg € Q¢ € Q'di(q,q") > dalq,q).



The fact that(.A, <’) is a complete lattice follows from the fact that, <) is a complete
lattice. Letp’ € A. The problem of finding optimal approximation reduces nowfitaling
ol € A such thatd’= (qo, qh) = min{dﬁ;ax(qo, q,)|p" € A} and the conditions for the existence
of a probabilistic supervisor of [:I'heorem 1 are satisfiedollofvs straight from the definitions
of D*" anddr that, foranyy’ € A, ¢ € Q,¢ = f(q) € @', the distanced”,_(q,q') for o' € A

are distances in our pseudometric.

Further, we are now able to substantially simplify the notatused in the previous section.
We assume tha€) = {q,q1,...qv-1}, and Q' = {q, ¢}, ... dv_1}, Whereq, = f(q), i =
0,...,N — 1. Also, assumel = Pos(q), ¥, = Pos(q) N X,, and ¥, = Pos(q) N .. For
PDES G, let p, be the probability distribution induced by the state= ) and, for PDES
Gy, let pj, be the probability distribution induced by the statec Q'. Also, we will write p,
instead ofp, (o, ¢:), pi, instead ofp,, (o, ;) andp, instead ofp(q, o). Next we define the function

P:A—-A@@e,d=f(q €@, deA):

P(d)(g,¢') = Minimize > " max(py — pl, + ciply, cipo); (19)

7 ocevw

wherec; = e - d(qi,q;) s.t.q; = 6(q,0)

subject to
Do pla
Z pa = Z p/ y S \Iju, (20)
acv, acWv, “
mpiﬂr Y o<1, o€V, (21)
pd acW,
0<p, <1, cev, (22)
acV¥
The function? is well-defined since, ip!, = 0 for p/ € V., and if p/, = f’pa for pl € W,

the constraints (20), (21), (22), (23) are satisfied; tlwreefthe optimizbéetiqzébn problem has a
feasible origin. Sinced is a lattice, and the functiof® : A — A is monotone, it has the greatest
fixed point.

Next, we prove a lemma.

Lemma 3:Let (£, <) be a complete lattice, and I¢tg : £L — L be two monotone functions
such thatve € £ : g(z) < f(x). Let gfp(f) and gfp(g) denote the greatest fixed point of
functions f and g, respectively. Theng fp(g) < gfp(f)-



Proof: According to Knaster-Tarski theorem, the functiohend g have the greatest fixed
points gfp(f) and gfp(g), respectively, where fp(f) = sup({z|f(z) =< x}), andgfp(g) =
sup({z]g(z) = x}). SinceVz : g(z) 2 f(z), then{z|f(x) = «} C {z[g(x) = x}; hence
gfo(g) = gfp(f). L

Obviously, because of the definition of functi@h for any o’ € A, for functionD”’ € F, it
holds thatvd € A D*'(d) <’ P(d). Using the previous theorem, we conclude that the greatest
fixed point of P is greater than or equal to adg;’m € A,.... This greatest fixed point corresponds
to the minimal distance betweenand ¢, because of the reversed ordering.4f Therefore, the
greatest fixed point of functiof® corresponds to the pseudometric in which the distance legtwe
¢o andgq;, is minimized. Consequently, the values of decision vaeiabjlg for ¢/ € Q" when the
greatest fixed point P is reached correspond to the state probability distrimstiaf the optimal

approximation.

B. Minimizing the Distance: Algorithm

We suggest an iterative algorithm to calculate minimumeddle distance (i.e. the only fixed
point of the functionP) up to a desired accuracy and probability distribution & #thievable
behaviour of the system when this distance is achieved. \M@wfdhe proof pattern used for
the algorithm from the Section IlI-D.

Let d € A. Again, we assume th& = {q, ¢1,-.-qv-1}, and Q" = {¢, ¢, - - . ¢y_, }, Where
¢ = f(q),i=0,...,N — 1. We define the functio"’(d) = (V,(d), ..., Vy(d))T as:

~

V(d) = (d(qo. q0), d(q1, ) - - - dlan—1, dh—1))" -

Therefore, fork =1,..., N:

~

Vk(d) = d(Qk—la q//i’—l)' (24)

>

We redefine the functiof® in a natural way ag(V(d)) = (P.(V(d)), ..., Pn(
foranyk e {1,...,N}:

(d)))*, where

Pe(V(d)) = P(d)(qr-1, Gh)-

Also, let Py = {V(d)|d € A}.

Theorem 4:Function? is P-contractive orf,.



Proof: Let d',d” € A, andd’ = V(d'), andd” = V(d"). Let k € {1,...,N}. Then,
Pe(0) = P(d)(qe_1,q}_,), 0 € {0,0"}. Assume that the minumum of the objective function in
(19) in functionP(d’)(qx—1, q;,_,) is reached fop;, = u for € ®(q). Further, assume that the
minumum of the objective function in (19) in functio”(d”)(qx—1, q,_,) is reached fop;, = v,
for o € ®(q). Also, lett(c) = ¢ such thaty, = §(gx—1,0), andl(c) = [ such thaty = f(¢) (to
be denoted andl). Assume thatP,(d') > P,.(2”). Then:

|Pr(d) — Pr(d")]

= > maz(py — po + ed (g1, @) pior ed (G, @1)ps) — Y _maz(ps — vo + ed” (g, @)Vo, ed” (g1, 01)po)
ocV¥ ocevw

<\ max(ps — ve + ed (g1, @)V, ed (g1, @1)ps) — > maz(ps — vo + ed” (g1, @1)Ve, ed” (a1, q1)po)
ocV¥ oev

(for p'. = 1, the minimum inP,(?’) is reached)

< Z (max(ps — vo + ed/(Qta Q)Vo, ed’(qt, qQ)po) — mar(ps — Vo + ed”(qt, ql)Vov ed”(qtv q)ps))
ocevw

<Y max(ps — vo + ed (g1, q)vo, ed (g, 01)po) — maz(py — v + ed” (g1, q)vo, ed” (qr, q1)ps)|  (25)
ocevw

Similarly, whenP,(?') < P,(d”), we get (25). Again, every summand in (25) has one of the
following forms:

lpo — vo +ed (g, q1)Vo — (po — Vo +ed” (g, q)vo)| OF |ed (g1, q1)po — ed” (qi, @1)ps)|, Where

|po — Vo + ed (1, @)Vo — (po — Vo + ed” (a1, @)Vo)| = evo |d' (g, 1) — d"(qe, @) < epo |d (e, @) — d” (qe, qu)|
and
led' (qe, q1)po — ed” (qe, @1)po)| = epo |d' (qe, @) — d” (qe, @)

Hence,
PR(@) = Pe@”)| < epold (qr,ar) — d" (a1, )|

oew

Further, using the same reasoning as in the proof of Lemmiaislstraightforward to show that
P is P-contractive. [ |

Lemma 4:Let d',d"” € A, andd’ = V(d'), andd” = V(d"). For anyk € {1,...,N}, there
existsm € {1,..., N} such that:

J/ I
o —0

m

<e

L) — Pr(d")

Proof: Analogue to the proof of Lemma 2. [ ]



Theorem 5:For any?d’ € P,, the sequence
Tl =PR"), n=0,1,...

converges to the only fixed point @ in P, 0*, and the error of convergence is given compo-
nentwise f € {1,...,N}) as:

\62 —6Z| <(1—-e)te", n=1,2,...

Proof: Analogue to the proof of Theorem 3. [ |

The objective function in (19) is nonlinear, but fortungt&élansformable into a linear one by
introducing additional variableg,.

Minimize ) "y, (26)

cew

subject to
Po— Py +City <Ys, O0EW
CiPo < Yo, ocevw

where, foro € ¥, ¢; = e-d(q;,q}) St.q¢; = (q,0)

/

Po P

> pa ng” o€ Yu
aew,, acV, “
Zocvle, S aeu.

g acv,

0<p, <1, cev,
S
aevw

We now present the iterative algorithm for finding the fixednp@f function P.
Let d°(q,q¢') =0 for all ¢ € Q,¢ = f(¢q) € Q. The distancel"(q, ¢') between the states of



g € Q andq = f(q) € Q" in then-th iteration ¢ > 0) is given as:

Minimize > "y, (27)
oew

subject to
Po— P+ Cify Yo, OoEW
CiPo < Yo, cevw

where, forc € U, ¢; = e-d" (g, q}) st. ¢ = 6(q,0)

/
Po P
ST WA 7t
aevl,, aevw,, “
p
@p:ﬁ_ Z o<1, o€V,
pa (Me\pc
0<p, <1, cev,
Y
ac¥

After then-th iteration, the value of decision variablgsthat represent the unknown transition
probabilities, are such that that the distance betweenitiigal states of) systemé&, and G,
is within (1 — e)~!e" of the minimal distance between the two systems (in our pm®@ettic).
We would like to remind a reader that the aforementionedlt®$wld fore € (0, 1).

We now summarize the presented algorithm and give a briefptmaty analysis.

1) First, we modify the classical algorithm for finding thgpsemal controllable sublanguage.
The automatort+,, the synchronous product of the nonprobabilistic autornatierlyingG, and
G, is constructed. While constructing the product, the ctadstontrollability conditions are
checked for each state. If the conditions are satisfied foin state of the product, ther = G,
and go to 2. If there is at least one state of the product focktiie classical conditions do not
hold, the rest of the algorithm for finding the (reachable deddlock-free) supremal controllable
sublanguage is then applied. Let (reachable and deadteek-DESG = (Q, ¥, 9, qo) represent
this supremal controllable language.

2) Let G4, Go, and G, be defined as previously in this section. Check the equsilaied
inequalities of the Theorem 1 for each state: if they aresBatl, supervisor exists, ard, is the
optimal approximation. If not, then let’(¢,¢') = 0 for all ¢ € Q,¢ = f(q) € Q. The distance
d"(q,q") between the states qfc @ andq¢ = f(q) € @' in the n-th iteration ¢ > 0) is given
by (27). For each of the state 6f, (typically, the number of states @f, is much smaller than



Q| - |@Q:]), simplex method can be used to efficiently solve the lineag@mmming problem
(27). The worst-case time complexity of simplex method gamential in the number of decision
variables. In our case, the number of decision variablewisetthe number of events possible
from the stateg. As this number is typically small in practical applicat®rthis exponential
complexity does not generally present a limitation of thgoathm. Furthermore, the number of

iterations needed to reach the accuracy & [(log, € + log, (1 —¢))].

C. Example

For a plantG, as depicted in Fig. 1, there does not exist a probabilispesusorV,, such that
G(V,/G,) = G,. PDESsG; andG; in Figure 2 represent the supremal controllable sublanguag
L(G,) N L(G,) (with respect to,) with probability distributiong andp, given as in (17) and
(18), respectively. For PDES,, let p, be the probability distribution induced by the state )
and, for PDESGS, let p;, be the probability distribution induced by the state= @'. Also, we

will write p,, instead ofp, (o, ¢;), andpj, , instead ofp;, (o, ¢;).

G,
3:0.2 a:0.1

G,
a:0.1
3:05
’ £:0.1
> ~ D
Ly 1 Gro Gr1
7:04
v:04
0:0.6 0:03
2

v :0.

Fig. 1. PlantG,, and requirements specificati@n.



At n-th iteration, distances”(qo, q;), d"(q1, ), andd™ (g2, ¢5) are calculated as follows:

d" (g0, qp) = Minimize (Y4q,0 + Ygo,5)
subject to
Pao.ac — pfz[’),a te- dn_l(Qlaqll)pfzg,a <Yaor € d"H@1,01)Pa0,0 < Yao,0

Paoss — Pyg+ e A" a2, 45)Pg 5 < Yao,8 € A" (42,85)Pa0.8 < Yao 5

p(q0, 5)
p(qo, )

pfloﬂ +p:107(¥ < 1’
/ / / / .
0 S pq()_’a S 17 0 S pqé_’ﬂ S 13 pqé,a +pq6ﬁ =1
d"(q1, ) = Minimize (yq, 5 + g, .+)
subject to
Pars =Py pte - d T Hazd)py s <ys, e d"H(42,05)P0,6 < Yau, 6

Pary = pflﬁﬁ Te dn_l(qg,qé)p;;ﬂ S Yy e dn_l(%aq/Q)quﬂ < Yar v

p(q1, B) o
plgi,vy) %

/
vt Pgy =L

/ / / / o
ngqiﬂgla ngq/, <]‘? pqlpﬁ+pq'17'y_1'

d" (g2, q5) = Minimize (yg, 5 + Yg,,0 + Ygo.7)
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ol
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P(g2,7) + (42, 8) Py -+ Py 5 p(q1,0) ’ '

0<pyp<l 0<pye<l, 0<py. <1 pyg+pgetry. =1

After 20 iterations, we find that the closest behaviour éfer 0.5) achievable with probabilistic

control is as given in Fig. 2.

V. CONCLUSIONS

Our goal is to solve a classical problem of nearest appraximan the framework of
probabilistic control of PDES. We suggest two algorithms tfte calculation of the distances

between the states of a probabilistic generator used to INRRIES in the chosen pseudometric.
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Then, we suggest the straightforward modification of theattee algorithm to be used to

minimize the distance (in this pseudometric) between tlggired behaviour of a system and

its achievable behaviour.

Although we know the rate of convergence of the algorithmhtrhinimal distance, we would

like to investigate how unknown, desired probabilitiesraia as the distance converges. Also,

the question of uniqueness of the closest approximatiorairesopen as well as probabilistic

control with marking. Further, it would be interesting tongoare the distance between the

required behavior and its nearest approximation achieweaguprobabilistic control with the

distance between the required behavior and its nearestxapyation obtained using deterministic

control only.
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