
Inspection of Concurrent Systems: Combining Tables,
Theorem Proving and Model Checking

Vera Pantelic, Xiao-Hui Jin1, Mark Lawford, and David Parnas2

Department of Computing and Software, McMaster University
1280 Main St W., Hamilton, ON, Canada L8S 4K1

Telephone: +1 (905) 525–9140 ext.27406, Fax: +1 (905) 524–0340
E-mail: {pantelv} at mcmaster dot ca, {Xiaohui dot Jin} at Inf dot ethz dot ch, {lawford, parnas} at mcmaster dot ca

Abstract— A process for rigorous inspection of concurrent
systems using tabular specification was developed and applied
to the classic Readers/Writers concurrent program by Jin
in [1]. The process involved describing the program by a
table and then performing a manual “column-by-column”
inspection for safety and clean completion properties. The key
step in the process is obtaining an invariant strong enough
to prove the properties of interest. This paper presents partial
automation of this approach. Model checking is first used to
validate a formal model of the system with a small, fixed
number of concurrent process instances. The verification of the
system for an arbitrary number of processes is then performed
using automated theorem proving together with model check-
ing on the earlier model to validate potential invariants before
they are used in the formal proof. This method was used to
check the manual proof of the Readers/Writers problem given
in [1], discovering several random and one systematic mistake
of the proof. Subsequently, a new, significantly automated proof
was performed.

Keywords—Concurrency, SAL, PVS, invariant, tables.

1. Introduction
A reliable and effective inspection approach for the inspec-

tion of concurrent programs is proposed in [1]. Inspection is
made easier and reliable by inspecting each of the components
separately. Further, each component’s behavior is described
using program function tables [2]. However, as will be shown
in this paper, the manual proof of the correctness criterion
given in [1] did not consider the whole transition relation

1Present affiliation: Software Engineering, ETH Zentrum, RZ F9, Clau-
siusstrasse 59, 8092 Zurich, Telephone: +41 44 632 8296, Fax: +41 44 632
14 35

2McMaster Emeritus, present affiliation: Department of Computer Science
and Information Systems, Faculty of Informatics and Electronics, University
of Limerick, Limerick, Ireland, Telephone: (353) 61 202731, Fax: (353) 61
202734

described by the program function table. Automated tool
support helped to discover the flaws of the manual proof easily.

There are many approaches to mechanized formal analysis
of concurrent systems represented with transition relations.
Those include theorem proving, model checking, abstraction
and model checking, automated abstraction, bounded model
checking [3], [4], and equivalence verification [5], [6], [7].

Model checking is a technique for verifying finite state
concurrent systems [8]. The most important advantage of
model checking over theorem proving is that it is completely
automatic. However, although the state explosion problem
has been addressed by many techniques (e.g., partial order
reduction, infinite-state model checking), model checking still
cannot handle systems with an arbitrary number of processes.

Theorem proving, on the other hand, can be used to analyze
very large or infinite systems. It still remains the most general
way to reason about complex systems. However, currently it
requires substantial human guidance.

This paper represents an extension of the approach of
[1], providing partial automation of the proposed inspection
process. The original program can be analyzed in SPIN for
a small number of processes. SPIN is a model checking tool
specialized for handling concurrent systems. Its specification
language provides the primitives for interprocess communica-
tion [9]. Model checking in SPIN can be particularly useful
for the purpose of refutation (generating a counterexample for
a particular version of the system). Full verification, however,
requires the use of theorem proving, since the number of the
processes can be arbitrarily large, and the values of global or
local process variables can be unbounded.

The starting point of the full verification is the program
function table prepared as in [1]. The transition relation of
the concurrent system as given by the table is rewritten into
the SAL model checker [10] and model checked for safety
and liveness properties. However, at this point, SAL does
not support tables, nor does it offer a full typechecker. The
table is then rewritten into the PVS specification language [10]



table construct and checked for consistency and completeness.
Safety properties are proved in PVS using the inductive invari-
ant approach [3]. The property P is inductive on transition
relation T and set of initial states I if it includes all the
initial states (I(s) ⇒ P (s)) and is closed on all the transitions
(P (s)∧T (s, t) ⇒ P (t)). We try to prove that a safety property
is an invariant of the system, by showing that it is satisfied
in the initial state and preserved by any transition. However,
few properties are inductive. Failed proof goals suggest the
auxiliary invariants that we then use to strengthen the initial
property. Then, we try to prove that the strengthened invariant
(the conjunction of the newly found ones and the desired in-
variant) is inductive. Before being checked in theorem prover,
every new, auxiliary invariant is model checked in the SAL
model-checker for a specific instance of the problem. This
check is automatic and fast. The process iterates until the
inductive invariant is found or it is suggested by the failed
proof(s) that a proof of inductivity cannot be found. Proving
the liveness property then requires additional strengthening of
the inductive invariant found during the proof of the safety
property.

2. Preliminaries
2.1 Introduction to the Approach

The key idea of this approach is the use of the “divide and
conquer” principle: the correctness of the program components
implies the correctness of the whole program.

The process includes the following:
a) Auxiliary variables are introduced to capture all the infor-

mation needed to analyze the program, specify the control
flow.

b) The requirements of the program are formulated as a
mathematical specification.

c) The primitive operators are specified (e.g., synchronization
primitives) — this should have been done before the
program was written.

d) The program is rewritten so that each primitive statement
has a label. The transfer of control from statement to
statement is made explicit by assigning a label value to an
auxiliary variable (that functions as the program instruction
counter) for each statement. The value of this auxiliary
variable is the condition of the execution of each statement.

e) The program is described in a tabular representation.
f) Two properties of a concurrent program are to be proved:

• Invariant property — ensures that the requirement
predicate holds in all the reachable states of the pro-
gram. A set of invariants that embodies the essential
properties of the execution and is inductive is formu-
lated.

• Liveness property — ensures that all of the program’s
constituent processes can cleanly finish their execution.

The program is inspected to show that the invariant is
satisfied in the initial state of the system and the execution
of every primitive statement maintains the invariant, and that
the liveness property holds.

2.2 Example Application: Readers/Writers
Problem

A classic concurrency problem is the Readers/Writers prob-
lem [11]. Two different kinds of processes, readers and writers,
access the common resource. An unlimited number of readers
can concurrently access the resource, but a writer must have
exclusive access to the resource. Among two variants of this
problem presented in [11], the one that gives readers priority
over the writers is chosen. In this case, the readers’ preference
is weak.

2.2.1 The Original Program: The program used to solve
the chosen variant from [11] is reproduced below with shared
variable definitions followed by the reader process on the left,
and the writer process on the right:

integer rdcnt; (initial value = 0)
semaphore mutex, w; (initial value

for both = 1)
READER: P(mutex); WRITER: P(w);

rdcnt := rdcnt+1; WRITE;
if rdcnt=1 then P(w); V(w);
V(mutex);
READ;
P(mutex);
rdcnt := rdcnt-1;
if rdcnt=0 then V(w);
V(mutex);

Two semaphores are used as synchronization primitives.
Semaphore w is used as a mutual exclusion semaphore for
the first and the last reader, and any writer entering the critical
section, while semaphore mutex ensures that only one reader
process can enter or leave the critical section at a time. The
variable rdcnt counts all the reader processes that have
entered the critical section (meaning, the section protected with
the w semaphore) or have asked for the permission to enter it.

Let rd and wt be the number of active reader and writer
processes, respectively. The informal requirement of the pro-
gram as stated at the beginning of the subsection (at most one
writer can write while no reader is reading, and any number
of readers can read concurrently) can be written as the safety
property:

(rd = 0 ∨ wt = 0) ∧ wt < 2 (1)

2.2.2 Applying the proposed approach to the example ap-
plication: Applying the steps of the proposed approach (as
described in the Section 2.1), the original Readers/Writers
program can be partially rewritten as in Figure 1. The complete
code for a reader is given in [1].

The stop symbol tells us when an executing process can be
interrupted, allowing other processes to resume their execu-
tion, i.e., each line of Figure 1 represents a primitive statement.

If more than one process is ready to execute, the choice
of the process to be executed is non-deterministic. The array
variable next functions as an instruction counter variable,
locating the execution of each process — the value of next[i]
represents the current statement label of the ith process. The
labels waitAtPm1, rlseAtPm1, waitAtPm2, rlseAtPm2,



WRITER j:
1 Begin
2 if next[j]=w1 then P(w); wt := wt+1; stop
3 if next[j]=waitAtPww then next[j]:=waitAtPww stop
4 if next[j]=rlseAtPww then wt := wt+1; next[j]:=w2 stop
5 if next[j]=w2 then WRITE; next[j]:=w3 stop
6 if next[j]=w3 then V(w); wt := wt-1 stop
7 End

Fig. 1. Readers/Writers program rewritten

waitAtPwr, rlseAtPwr, waitAtPww, rlseAtPww are in-
troduced so that synchronization primitives can be specified.
A process can pass P (sem) successfully (advance with its
execution), it can be suspended (in which case it gets labeled
as waitAtPsem), or released by a V -operation, in which case
it acquires the label rlseAtPsem. The detailed specification
of P/V operations of a semaphore is taken from [1].

The program is then rewritten into a main table and subta-
bles, parts of which are reproduced in Figure 2. The complete
original main table containing 41 columns and all associated
subtables can be found in [1]. In the tables M is the total
number of processes and n is the number of reader processes
with 0 ≤ n ≤ M . A parameter k (0 < k ≤ M ) is
introduced to identify a representative process. The variable
pID is used to identify the currently executing process. Two
additional boolean expressions are introduced: IsReader(k)
and IsWriter(k), that stand for 0 < k ≤ n and n < k ≤ M ,
respectively. The interested reader is referred to [1] for the
details on rewriting the program as in Figure 1 to the table as
in Figure 2. The program state can be described as a 7-tuple
(rdcnt, rd, wt, mutex, w, next, pID).

2.2.3 Showing Clean Completion: We say that a program
has a clean completion when all of its constituent processes
can finish their execution (the program counter of every
process can reach the label EOP). For the purposes of proving
the clean completion of the program (liveness property), a
vector of decreasing quantity DQ is defined in [1]:

DQ = (Pros, IntRW (next[1]), . . . , IntRW (next[M ]))

where M is the total number of processes, Pros is the number
of the processes that have not reached the EOP (End of
Program) label yet, and IntRW is the function mapping all
the values of next to integers, as indicated in Table I, as taken
from [1].

Let l = 1, 2 be program states. Then nextl and Prosl are
the values of next and Pros in state l. As before, n is the
number of the reader processes (0 ≤ n ≤ M ). Let

∑

rl =

{

0, n = 0
∑

n

i=1
IntRW (nextl[i]), 0 < n ≤ M

∑

wl =

{

0, n = M
∑M

i=n+1
IntRW (nextl[i]), 0 ≤ n < M

DQl = (Prosl, IntRW (nextl[i]), . . . , IntRW (nextl[i]))

TABLE I
THE IntRW FUNCTION DEFINITION

x IntRW (x)
r1 15

waitAtPm1 14
rlseAtPm1 13

r2 12
r3 11

waitAtPwr 10
rlseAtPwr 9

r4 8
r5 7
r6 6

waitAtPm2 5
rlseAtPm2 4

r7 3
r8 2
r9 1
w1 5

waitAtPww 4
rlseAtPww 3

w2 2
w3 1

EOP 0

Then, the order property of DQ is given by the Table II (taken
from [1]) where DQorder stands for DQ1 > DQ2.

Theorem of DQ 1: Assume that there are no new read-
ers/writers arriving. Then:

1) If there is a change of state other than a simple change
of the pID variable, DQ decreases.

2) If there is no possible change of state other than a simple
change of the pID variable, DQ is zero.

3) If DQ is zero, there is no waiting process.

3. Specification and Analysis in SPIN
SPIN is a model checker specialized for modeling and

analysis of concurrent systems [9]. SPIN supports rendezvous
and buffered message passing, and communication through
shared memory. We use it to formalize and model-check the
original version (before it is rewritten into a table) of the
Readers/Writers concurrent program with a fixed number of
readers and writers.

The semaphores used for synchronization in the
Reader/Writer problem are easily modeled with the help of
SPIN’s rendezvous port feature.



‘pID = k ∧ IsReader

‘next[k] = r1
‘next[k] =
waitAtPm1

‘next[k] =
rlseAtPm1 . . .

‘m.cnt >
1 ‘m.cnt = 1 ‘m.cnt < 1

rdcnt′ = ‘rdcnt ‘rdcnt ‘rdcnt ‘rdcnt . . .
rd′ = ‘rd ‘rd ‘rd ‘rd
wt′ = ‘wt ‘wt ‘wt ‘wt . . .
m.cnt′ = ‘m.cnt − 1 ‘m.cnt − 1 ‘m.cnt ‘m.cnt . . .

m.set′| =
m.set′ =
‘m.set

m.set′ =
‘m.set ∪ {k}

m.set′ =
‘m.set

m.set′ =
‘m.set . . .

w.cnt′ = ‘w.cnt ‘w.cnt ‘w.cnt ‘w.cnt . . .

w.set′|
w.set′ =
‘w.set

w.set′ =
‘w.set

w.set′ =
‘w.set

w.set′ =
‘w.set . . .

pID′|
next[pID′]′ 6=
EOP

next[pID′]′ 6=
EOP

next[pID′]′ 6=
EOP

next[pID′]′ 6=
EOP . . .

next′| Tab2 Tab3
∀j : next[j]′ =
‘next[j] Tab5 . . .

1 2 3 4 5 . . .

Tab2: ∀j,

j = k j 6= k

next[j]′ = r2 next[j]′ = ‘next[j]
...

Fig. 2. Part of the tabular specification of the Readers/Writers program

The safety property defined as

(rd = 0 ∨ wt = 0) ∧ wt < 2 ∧ rd ≥ 0 ∧ wt ≥ 0 (2)

is to be checked in SPIN. We note that the safety property
as given here is a modified version of the property defined
in Equation 1 (originally taken from [1]). Since the rd and
wt variables are integers, adding the last two conjuncts as in
Equation 2 requires that the number of readers/writers cannot
be negative). The safety property is easily formalized using
LTL logic or never claim [9].

The check of clean completion can be automatically done
in SPIN by checking for the absence of invalid end states.

However, checking the properties even for the system of 10
readers and 10 writers is very slow (longer than 20 hours).
We can use the SPIN’s approximation techniques described in
[9] (collapse compression, bitstate hashing, hash-compact) to
make a quick check, but these techniques do not guarantee
complete coverage, and are, therefore, used only as a last
resort. Moreover, even if the size of the state space would
be manageable, the maximal number of processes allowed in
a PROMELA model is 255.

In summary, we found it easy to formalize and verify limited
instances of the original Readers/Writers problem in SPIN.
This check could be useful for refutation purposes: some
potential bugs of a program can be discovered in this early
stage of the verification. However, only instances of the system
with a relatively small number of processes can be verified.

4. Formalization in PVS and SAL
After analysis in SPIN, we formalize the program, rewritten

as a tabular specification, to match the SAL specification
language, in order to model check it for safety and liveness
properties. This not only allows potential bugs of the original
program to be discovered, but also any errors introduced when
the specification was rewritten. We will use the SAL model as
a prelude to theorem proving in PVS of the general model with
an arbitrary number of readers and writers (as will be shown in
the next section). During the theorem proving process, every
potential auxiliary invariant found by PVS is model checked
in SAL.

The formalization in PVS is given first, as the analysis in
PVS has the central spot in our approach. The formalization
in SAL is then given by comparing it with PVS formalization.
The details can be found in [13].

4.1 Formalization in PVS
PVS stands for “Prototype Verification System”. It provides

mechanized support for specification and verification: it offers
a specification language in which mathematical theories and
conjectures can be defined, and then, latter can be discharged
using the interactive theorem prover [10].

The decl theory with the definitions of types, functions,
etc. for the readers/writers problem with an arbitrarily large
number of processes is given in Figure 3.

The program state is defined as the record type state.
However, we also needed the predicate subtype stateneop,
which we use to help reflect the fact that a process that

TABLE II
THE ORDER PROPERTY OF DQ

Pros1 = Pros2Pros1 > Pros2
P

r1 +
P

w1 >
P

r2 +
P

w2

P

r1 +
P

w1 ≤
P

r2 +
P

w2

Pros1 < Pros2

DQorder TRUE TRUE FALSE FALSE



M: posnat
ntype: TYPE = {i: nat | i <= M}
index: TYPE = {i: ntype | i >= 1}

CONTAINING 1
n: ntype
label: TYPE = {r1, waitAtPm1, rlseAtPm1, r2,

r3, waitAtPwr, rlseAtPwr, r4, r5, r6,
waitAtPm2, rlseAtPm2, r7, r8, r9, w1, w2,
w3, waitAtPww, rlseAtPww, EOP}

x: VAR label
rlabel?(x): bool = (x = r1 or x = waitAtPm1 or

x = rlseAtPm1 or x = r2 or x = r3 or
x = waitAtPwr or x = rlseAtPwr or x = r4 or
x = r5 or x = r6 or x = waitAtPm2 or
x = rlseAtPm2 or x = r7 or x = r8 or
x = r9 or x = EOP)

wlabel?(x): bool = (x = w1 or x = w2 or
x = w3 or x = waitAtPww or x = rlseAtPww or
x = EOP)

IsReader(i: index): bool = (i <= n)
ar: TYPE = {a: [index -> label] |

forall (i: index):
((IsReader(i) => rlabel?(a(i))) and
(not IsReader(i) => wlabel?(a(i))))}

importing finite_sets[index]
sem: TYPE = [#cnt: integer, set: finite_set#]
state: TYPE = [#

pID: index,
m: sem,
w: sem,
rdcnt: int,
next: ar,
rd: int,
wt: int #]

stateneop: TYPE = {s: state |
next(s)(pID(s)) /= EOP}

Fig. 3. Theory decl

has terminated (reached the label EOP) cannot become the
executing process.

The process chosen in the execution of the program is
identified by an index variable pID (the variables are taken
from [1]). A global variable of the type state contains
the resources shared by all the processes: semaphores m and
w, then counters rd, wt, rdcnt, the array of processes’
labels next, and pID, the identifier of the currently executing
process. Indices of the array are the process identifiers. The
predicate IsReader takes as an argument a variable of type
index and is true if the process in question is a reader
process (i ≤ n), and false if the process is a writer process
(n < i ≤ M), where (0 ≤ n ≤ M). This theory also contains
a definition of the function IntRW from Table I, used for
proving the clean completion of the program.

The tabular representation of the Readers/Writers rewritten
program is represented as a theory in PVS. The table is
modeled with a transition relation trans (the interested
reader is referred to [13] for details).

The disjointness obligation for the table trans is automat-
ically discharged by PVS, and the completeness obligation is
easily discharged after making the type constraints of next

explicit.

4.2 Formalization in SAL
SAL stands for Symbolic Analysis Laboratory. It is a frame-

work for combining different tools for abstraction, program
analysis, theorem proving and model checking towards the cal-
culation of properties (symbolic analysis) of transition systems
[12]. The current SAL toolset provides explicit state, symbolic,
bounded, infinite bounded and witness model checkers for
SAL [10]. We will use the symbolic model checker called sal-
smc, which uses linear temporal logic (LTL) as its assertion
language.

As the specification language of SAL has input syntax
similar to PVS, we found rewriting the tabular specification
into the SAL specification language to be straightforward.
However, SAL does not support tables, so the table is rewritten
into the transition part of the SAL module: table headers
are rewritten into the guards, and cells into the assignment
part of the guarded commands. Moreover, since we are using
SAL’s symbolic model checker for finite state systems, the
types of the fields of the global state cannot be unbounded.
Furthermore, the pID is not modeled as the part of the global
state, as it is implicitly modeled by model checker.

5. Verifying the Manual Proof
The safety requirement as stated in Equation 1 is defined in

PVS. Strictly following the manual proof of [1], we first try
to prove the first conjunct of Equation 1, by proving that it is
true after initialization and, row by row (or, column by column,
for the original table), that it is preserved after every statement
in the program. Before being checked in the theorem prover,
every new, auxiliary invariant, as found in the manual proof,
is model checked in the SAL model-checker for a specific
instance of the problem. This check is automatic and fast.

The proposed combination of theorem proving and model
checking discovered several random and one systematic mis-
take in the manual proof. More precisely, model checking itself
indicated that some of the invariants found in the manual proof
were not invariants of the program. Theorem proving offered
further insight into the depth of the systematic mistake made:
it pointed to the sources of the errors. By investigating the
manual proof, we came to the conclusion that the random
errors were made because some branches of the proof were
not explored at all (the interested reader is referred to [13]
for details). Furthermore, proving the auxiliary invariants of
the form (∃i : (i = pID(t) ∧ next(t)(i) = l)) ⇒ P (t),
where P is a predicate on the global state of the system
t, and l is some label, discovered a more serious flaw of
the proof: only part of the transition relation was explored.
The manual proof actually considered the relation from the
table with an additional assumption: the pID of the currently
executing process does not change after the transition of the
program to the next state.



6. Verification in PVS Revisited
In this section we describe a significantly automated proof

of the safety property. While the PVS proof still mimics the
manual proof’s “divide and conquer” technique by considering
the proof in a row by row case, the process is significantly
automated. Rather than having to explicitly state and prove
a theorem for each row of the table, proof tactics have
been developed that examine the structure of the table and
decompose the complete proof obligation into proof subgoals,
one for each row of the table.

We formalize a lemma per invariant. Using the knowledge
gained from the analysis in the previous section, we designed a
strategy to prove these lemmas, or, rather, gain new invariants.
Branches of the proof corresponding to the invariants that are
universally quantified on i (the identification number of a
process) are split into two cases. When the process of interest
is the executing one (i!1 = pID, where i!1 is a term used
to instantiate an invariant), we apply GRIND, and contemplate
the invariants from the unprovable sequents. However, we
choose to skip the case when the process of interest is not
the one executing (i!1 /= pID), since the vast majority of
the failed goals corresponding to this branch can be subsumed
into two invariants saying that there cannot be more than one
process in the critical section of a semaphore (m or w) at a time
— we will refer to those invariants as “semaphore” invariants.
We continue on with strengthening the property using the same
tactic without using “semaphore” invariants, until we prove
that the conjunction of the global property and the newly found
invariants is inductive for the branches corresponding to i!1
= pID. We needed six iterations to reach inductivity. Every
iteration contains the following steps:

1) We formalize the theorem in PVS that states that a
property includes all the initial states and is closed under
all possible transitions.

2) If the proof fails, we obtain the new potential auxiliary
invariants indicated by unprovable sequents.

3) New invariants are model checked in SAL.
4) The desired property becomes the conjunction of the old

and newly found ones. However, we choose to prove only
the properties that were not proved (for i!1=pID) in the
previous iteration and the newly found ones.

As indicated in step 3, all the auxiliary invariants are first
model checked. The verification using model checking being
fully automatic made the checking of the auxiliary invariants
fast and easy. It increased the confidence in our PVS deductive
analysis and provided fast discovery of “fake” invariants
(proposed invariants originating in a mistake made while
contemplating the invariant from the characteristic equation
of an unprovable sequent). The mistake would, obviously, be
caught by PVS, but at best in the next iteration (which is still
time-consuming and not as obvious), and under the assumption
that the SAL and PVS models are equivalent.

Now, we are to prove that all those auxiliary invariants are
invariants. We came up with another four auxiliary invariants,
corresponding to the cases where the label of a process is

changed by executing another process (a process is releasing
semaphore, and the other process can enter the critical section).
We ended up with 42 invariants all together. Proofs of the
“semaphore” invariants are divided into lemmas because of
the time and memory constraints. Special proof tactics were
also written for those lemmas.

All the strategies written use a “divide and conquer” policy:
every proof is split into 31 branches (where 31 is the number of
non-blank table columns) are then tackled with the same tactic.
This tactic is chosen so that the degree of the automation of
the process, and memory and time consumption, are balanced.
The vast majority of the invariant proofs (around 80%) are
completely automated using those strategies; for the rest, after
applying a corresponding strategy, the unprovable sequents
of some branches clearly indicate the further steps, so that
a minimal level of human insight is needed to help finish
up the proofs. The achieved run-times of the proofs can be
decreased with more human interaction. The higher level of
human guidance would involve choosing the invariants needed
for a particular auxiliary invariant proof (since not all the
invariants in the inductive invariant are needed to prove each
auxiliary invariant).

7. Proving Clean Completion
The clean completion property says that all the processes

will eventually complete, i.e., reach the label EOP. However,
model checking this property (under the assumption of weak
fairness of the scheduler) in SAL runs out of memory. There-
fore, we prove the liveness property for a system with fixed
number of readers/writers as suggested in Section 2.2.3. We
prove the theorems dqa, dqb, and dqc corresponding to the
first, second, and third part, respectively, of the theorem of
decreasing quantity. However, we found no need to define
a DQ vector as suggested in Section 2.2.3 (originating from
[1]), because of the assumption that no new readers/writers
arrive after the initialization of the system. Moreover, if Pos
is defined as the number of the reader/writer processes with
a label other than EOP, then the case of a process reaching
the label EOP (Pos1 > Pos2) can be considered as the case of
decreasing one of the components of the vector IntRW defined
as:

IntRW (next) = (IntRW (next[1]), . . . , IntRW (next[M ]))

Therefore, the vector IntRW can be used as the decreasing
quantity. We say that IntRW has decreased if there is at least
one element of the IntRw that has decreased, while all the
others have decreased or remained the same. Note, however,
that the ordering defined by DQdecrease is not total. We
later prove that this ordering implies the order originally
formulated in [1].

The theorem dqb is not expressible in LTL logic, so it
cannot be model checked by SAL’s symbolic model checker.
However, this is the most general form of the theorem appli-
cable to any system. If we bring the insight of our problem
into it, we are able to formalize it in LTL. Moreover, a module



is introduced to cope with the size of automata generated in
model checking the theorems dqa and dqb [13].

In PVS, proving the dqb theorem required additional
strengthening of the invariant that was found sufficient for
proving the safety property. This reduction of the state space
would have required many iterations, if we were to use
exclusively the failed goals in PVS in order to come up
with the invariants. These iterations were skipped by human
intervention with significant help of the SAL model checker.
We needed 12 new invariants. The proofs for those invariants
are not completely automated, since the proofs are distinct, so
we did not feel that we would benefit from writing strategies.
On the other hand, the theorems dqa and dqc were easily
proven. Finally, we proved that the partial order DQdecrease
implies the total order DQorder from the original theorem
of decreasing quantity from [1].

8. Model Checking Results
Tables III and IV show the model checking results for SPIN

and SAL, respectively. SAL performs worse than SPIN,

TABLE III
SPIN MODEL CHECKING RESULTS

safety/completion
states time(s)

3R/2W 3619 0.02
5R/5W 0.4·106 1.25
6R/6W 2.3·106 115
8R/8W 8.4·107 6555

10R/10W - >20h

TABLE IV
SAL MODEL CHECKING RESULTS

safety dqa new/dqb new1p dqc
states time(s) states time(s) states time(s)

3R/2W 9961 40 34962 180 9961 40
5R/5W 14.9·106 2326 - - 14.9·106 2780
6R/6W 0.3·109 4044 - - 0.3·109 4044
7R/7W 6.1·109 55627 - - 6.1·109 55627

15R/10W - - - - - -

due in part to the relatively higher complexity of SAL model
and the greater size of state variable vector. Model checking,
however, was not sufficient to prove the correctness of the
systems with arbitrary number of processes. In both cases,
only specific instances of the system with a small number of
processes could be checked.

Complete SPIN, PVS, and SAL files are available from the
first author on request.

9. Conclusions
We provided partial automation of the inspection process

of [1]. We believe that many of the issues dealt with in the
analysis of the Readers/Writers example in this paper will
reappear in the verification of other concurrent problems using
the same inspection approach (e.g., the use of ‘pregenerated’
invariants inherent to the synchronization (communication)
used, or the invariants of the form ∀i : (next(t)(i) = l ⇒
P (t)), where P is a predicate on the global state of the system

t, and l is some label, for which the written strategies can be
reused to a certain extent).

In our verification of the Readers/Writers program we used
a specific implementation of semaphore. For future work,
we would suggest investigating the possibility of using the
specification of a synchronization primitive rather than its
implementation. This should enable us to use the same proof
for different implementations of a synchronization primitive,
while only verifying its specification axioms, as published
in [14], against a particular implementation.

The further development of SAL as a powerful tool com-
bining the theorem proving, model checking, abstraction and
invariant generation will offer the means of the enhanced
analysis, including the automated invariant generation and
existential abstraction as suggested in [15]. Even with the aid
of automation, proving such programs remains a lot of work
that would only be justified for critical programs. We believe
that further research is needed to introduce more automation
and make the procedure applicable to a broader class of
problems.

Acknowledgment
The authors would like to thank Ryszard Janicki and

Sanzheng Qiao for reviewing Vera Pantelic’s thesis.

References
[1] X. J. Jin, “Use of tabular expression in the inspection of concurrent

programs,” Master’s thesis, McMaster University, December 2004.
[2] D. Parnas, “Tabular representation of relations,” Communications Re-

search Laboratory, McMaster University, Tech. Rep. 260, Oct. 1992.
[3] J. Rushby, “Tutorial introduction to mechanized formal analysis using

theorem proving, model checking and abstraction,” SRI, Menio Park,
California, Tech. Rep., May 2003.

[4] K. Havelund and N. Shankar, “Experiments in theorem proving and model
checking for protocol verification,” in FME ’96: Proceedings of the Third
International Symposium of Formal Methods Europe on Industrial Benefit
and Advances in Formal Methods. London, UK: Springer-Verlag, 1996,
pp. 662–681.

[5] M. Lawford and W. Wonham, “Equivalence preserving transformations
of timed transition models,” IEEE Trans. Autom. Control, vol. 40, pp.
1167–1179, July 1995.

[6] R. Milner, Communication and Concurrency. Prentice–Hall, 1989.
[7] R. Milner, A Calculus of Communicating Systems, ser. Lecture Notes

in Computer Science. Springer, 1980, vol. 92.
[8] E. M. Clarke, O. G. Jr., and D. A. Peled, Model Checking. Cambridge,

Massachusetts: The MIT Press, 2001.
[9] G. J. Holzman, The SPIN Model Checker . Addison-Wesley, 2003.
[10] Formal Methods Program, “Formal methods roadmap: PVS, ICS, and

SAL,” Computer Science Laboratory, SRI International, Menlo Park, CA,
Tech. Rep. SRI-CSL-03-05, Oct. 2003.

[11] P. J. Courtois, F. Heymans, and D. L. Parnas, “Concurrent control with
readers and writers,” Commun. ACM, vol. 14, no. 10, pp. 667–668, 1971.

[12] L. de Moura, S.Owre, and N. Shankar, “The SAL language manual,”
Computer Science Laboratory, SRI International, Menlo Park, CA, Tech.
Rep. CSL-01-01, 2003.

[13] V. Pantelic, “Inspection of concurrent systems: Combining tables, theo-
rem proving and model checking,” Master’s thesis, McMaster University,
December 2005.

[14] A. N. Habermann, “Synchronization of communicating processes,”
Commun. ACM, vol. 15, no. 3, pp. 171–176, 1972.

[15] N. Shankar, “Combining theorem proving and model checking
through symbolic analysis,” in CONCUR ’00: Proceedings of the 11th
International Conference on Concurrency Theory. London, UK:
Springer-Verlag, 2000, pp. 1–16.


	1 Introduction
	2 Preliminaries
	2.1 Introduction to the Approach
	2.2 Example Application: Readers/Writers Problem
	2.2.1 The Original Program
	2.2.2 Applying the proposed approach to the example application
	2.2.3 Showing Clean Completion


	3 Specification and Analysis in SPIN
	4 Formalization in PVS and SAL
	4.1 Formalization in PVS
	4.2 Formalization in SAL

	5 Verifying the Manual Proof
	6 Verification in PVS Revisited
	7 Proving Clean Completion
	8 Model Checking Results
	9 Conclusions
	References

