
1

Supervisory Control of Probabilistic Discrete Event
Systems

Vera Pantelic, Steven Postma, and Mark Lawford

Abstract

This paper considers supervisory control of probabilistic discrete event systems (PDES). PDESs are modeled as
generators of probabilistic languages. The supervisory control problem considered is to find, if possible, a supervisor
under whose control the behaviour of a plant is identical to a given probabilistic specification. The probabilistic
supervisors we employ are a generalization of the deterministic ones previously employed in the literature. At any
state, the supervisor enables/disables events with certain probabilities. Necessary and sufficient conditions for the
existence of such a supervisor, and an algorithm for its computation are presented.

SQRL Report No. 54

Authors are with the SQRL, Department of Computing and Sofware, Faculty of Engineering, McMaster University, 1280 Main Street
West, Hamilton ON, L8S 4K1 (E-mail: pantelv at mcmaster dot ca, steven.m.postma at gmail dot com, lawford at mcmaster dot ca).



2

I. INTRODUCTION

THE supervisory control theory of discrete event systems was developed in the seminal work of Ra-
madge and Wonham [1]. A supervisor (controller) controls a plant by enabling/disabling controllable

events based on the observation of the previous behaviour of the plant. The supervisory control problem
considered is to supervise the plant so it generates a given specification language. In order to model
stochastic behaviour of the plant, many models of stochastic behavior of discrete event systems have been
proposed; for example, Markov chains [2], Rabin’s probabilistic automata [3], stochastic Petri nets [4].
We follow the theory of probabilistic DES that was developed in [5], [6] using an algebraic approach. A
stochastic discrete event systems is represented as an automaton with transitions labeled with probabilities.
The probabilities of all the events in a certain state add up to at most one. With Rabin’s probabilistic
automata [3], on the other hand, the sum of the probabilities of an event at a state is one. Also, unlike
the Markov chains [2], the emphasis of the approach of [5], [6] is on event traces rather than state traces.
The control of different models of stochastic discrete event systems has been investigated in [7], [8], etc.

Rabin’s probabilistic automata are used in [7] as the underlying model, while [8] uses Markov chains. In
[9], the model of [5], [6] is adopted and deterministic supervisors for DES are generalized to probabilistic
supervisors. The control method of random disablement is used: after observing a string s, the probabilistic
supervisor enables an event σ with a certain probability. The necessary and sufficient conditions for the
existence of a supervisor for a class of nonterminating DESs are given and reduce to checking whether
certain linear equalities and inequalities hold. Further, the paper describes a way to transform a terminating
PDES into the nonterminating PDES, so that the presented results can be applied.
The work of [10] builds upon [9] by giving a formal proof of the necessity and sufficiency of the

conditions presented in [9]. It also gives an algorithm for the calculation of the supervisor. A supervisory
control framework for stochastic discrete event systems that was developed in [11] represents a special
case of the control introduced in [9]. Deterministic control is considered where controllable events are
disabled dynamically, so that the probabilities of their execution become zero, and the probabilities of
the occurrence of other events proportionally increase. The control objective considered is to construct
a supervisor such that the controlled plant does not execute specified illegal traces, and the probabilities
of occurrences of the events in the system are greater than or equal to specified values. The paper gives
a necessary and sufficient condition for the existence of a supervisor. Further, in [12], a technique to
compute a maximally permissive supervisor on-line is given. In [13], [14], the same model of [5], [6]
is used. The requirements specification is given by weights assigned to states and the control goal is,
roughly speaking, to reach the states with more weight (more desired states) more often. A deterministic
control is synthesized for a given requirements specification so that a measure based on the specification
and probabilities of the plant is optimized.
This paper merges the works of [9] and [10]. The notation used in [10] is rather different than the

classical notation introduced in the seminal work of [1] and used in [9]. We will use this classical notation.
Further, a more detailed literature review is presented. Some of the proofs from [10] have been reworked
and a new, more general example for the computation of a supervisor is used. We also consider a special
case when only controllable events can occur in a plant. This case has not been solved in any of the
previous work.
Section II introduces PDES modeled as generators of probabilistic languages. The technique of random

disablement is presented in Section III. The probabilistic supervisory problem is stated in Section IV. This
section also introduces the main results of [9] and [10]. These results apply to nonterminating PDESs.
Section V gives the formal proof of the main result. Section VI extends the presented results to terminating
PDESs. Finally, Section VII concludes with avenues for future work.

II. PRELIMINARIES
A probabilistic DES (PDES) is modeled as a probabilistic generator G = (Q, Σ, δ, q0, Qm, p) [9],

where Q is a nonempty set of states, Σ is an alphabet whose elements we will refer to as event labels,



3

δ : Q×Σ → Q is the (partial) transition function, q0 ∈ Q is the initial state, Qm ⊆ Q is the set of marking
states, which represent the completed tasks, and p : Q × Σ → [0, 1] is the statewise event probability
distribution. The state transition function is traditionally extended by induction on the length of strings to
δ : Q × Σ∗ → Q (for q ∈ Q, s ∈ Σ∗, σ ∈ Σ):

δ(q, ε) = q, and δ(q, sσ) = δ(δ(q, s), σ),

whenever δ(q, s) and δ(δ(q, s), σ) are both defined. For a state q, and a string s, the expression δ(q, s)!
will denote that δ is defined for the string s in the state q.
The probability that the event σ ∈ Σ is going to occur at the state q ∈ Q is p(q, σ). For the generator G to

be well-defined, (i) p(q, σ) = 0 should hold if and only if δ(q, σ) is undefined, and (ii) ∀q
∑

σ∈Σ p(q, σ) ≤
1. The probabilistic generator G is nonterminating if, for every reachable state q ∈ Q,

∑

σ∈Σ p(q, σ) = 1.
The probabilistic generator G is terminating if there is at least one reachable state q ∈ Q such that
∑

σ∈Σ p(q, σ) < 1. Upon entering state q, the probability that the system terminates at that state is
1−

∑

σ∈Σ p(q, σ). Throughout the sequel, unless stated otherwise, we will be considering nonterminating
generators.
The language L(G) generated by a probabilistic DES automaton G = (Q, Σ, δ, q0, Qm, p) is given by

L(G) = {s ∈ Σ∗ | δ(q0, s)!}. The marked language of G is given by Lm(G) = {s ∈ Σ∗ | δ(q0, s) ∈ Qm},
whereas the probabilistic language generated by G is defined as:

Lp(G)(ε) = 1

Lp(G)(sσ) =

{

Lp(G)(s) · p(δ(q0, s), σ) if δ(q0, s)!
0 otherwise

Informally, Lp(G)(s) is the probability that the string s is executed in G. Also, Lp(G)(s) > 0 iff s ∈ L(G).

III. CONTROL OF PDES
As in classical supervisory theory, the set Σ is partitioned into Σc and Σu, the sets of controllable and

uncontrollable events, respectively. Given a specification language E ⊆ Σ∗ and generator G of probabilistic
language Lp(G) representing a plant, the goal is to find a supervisor V such that the language generated
by the plant under supervision, Lp(V/G), is equal to E. A classical, deterministic supervisor can only
disable controllable events σ ∈ Σc. It can be defined using a function V : L(G) × Σ → {0, 1}:

(∀s ∈ L(G))(∀σ ∈ Σ)V (s, σ) =

{

1 if σ ∈ Σu or sσ ∈ E
0 otherwise

We now explore the limited effect a classical supervisor can have on a PDES. Figure 1 shows two
PDESs: the first one, G, represents a plant, and the second one, G2, is a requirements specification.
Controllable events are marked with a bar on their edges. A number next to an event represents the

G2

γ : 0.6

β : 0.4

γ : 0.5

α : 0.1

q20

α : 0.4

q21

G

q0

α : 0.6

γ : 0.2

β : 0.2

Fig. 1. Plant G and requirements specification G2

V

qV 0
qV 1

β

α

α

γ

γ

V/G
β : 0.2

α : 0.6

γ : 0.2

γ : 0.25

α : 0.75

r1r0

Fig. 2. Deterministic supervisor V and controlled plant V/G

probability distribution of that event. G has alphabet Σ = {α, β, γ} and is nonterminating. The event
γ is uncontrollable, and, therefore, always enabled. We also make an important assumption about the



4

behaviour of a supervisor: After an event is disabled, the probabilities of the remaining enabled events
proportionally increase. The question we want to answer is: Is there a deterministic supervisor V such
that Lp(V/G) = Lp(G2)?
We first consider the case when the PDES G is in the state q0 and the PDES G2 is in the state q20. The

required probabilities of all the events in the state of q20 are nonzero. Therefore, the deterministic supervisor
V should enable all (controllable) events (state qV0 of DES V in Figure 2). Hence, the probabilities of
events in the controlled plant remain unchanged (see state r0 of the controlled plant V/G in Figure 2).
Next, after an odd number of α and γ events (PDES G is in state q0 and PDES G2 is in state q21),

the supervisor should disable β. When V disables only β, the plant can choose between α and γ. The
probabilities of these events occuring in the resulting system are increased proportional to their initial
probabilities. Therefore, the probability of α occuring in state r1 of the controlled plant is equal to:

P (α|σ ∈ {γ, α}) =
p(q0, α)

p(q0, α) + p(q0, γ)
=

0.6

0.6 + 0.2
= 0.75

Similarly, the probability of γ ocurring is 0.25.
Therefore, although the requirement was met nonprobabilistically (meaning L(V/G) = L(G2)), it is

obvious that there is no deterministic control such that Lp(V/G) = Lp(G2). The example illustrates that
application of deterministic supervisors to PDES results in a rather limited class of probabilistic languages.
Hence, applying a deterministic supervisor to a PDES might be unacceptable for a designer.
We now generalize deterministic supervisors for DES to probabilistic supervisors. The control technique

used is called random disablement. Instead of deterministically enabling or disabling controllable events,
probabilistic supervisors enable them with certain probabilities. This means that, upon reaching a certain
state q, the control pattern is chosen according to supervisor’s probability distributions of controllable
events. Consequently, the controller does not always enable the same events when in the state q.
For a PDES G = (Q, Σ, δ, q0, Qm, p), a probabilistic supervisor is a function Vp : L(G) × Σ → [0, 1]

such that
(∀s ∈ L(G))(∀σ ∈ Σ)Vp(s, σ) =

{

1 if σ ∈ Σu

xs,σ otherwise, where xs,σ ∈ [0, 1]

Therefore, after observing a string s, the supervisor enables the event σ with a probability Vp(s, σ). After
a set of controllable events to be enabled, Θ, has been decided upon (uncontrollable events are always
enabled), the system acts as if supervised by a deterministic supervisor. An example of a probabilistic
supervisor is given in Figure 3. Note that the probabilities of all the events that can execute in a state of

α : 0.162β : 0.886

Vp

γ : 1.0

γ : 1.0

α : 0.533

qP0 qP1

Fig. 3. Probabilistic supervisor Vp

this generator do not, in general, add up to 1. This is because those are not the probabilities of events
occurring, but rather being enabled.
What is the probability that an event α will occur in a plant G under the control of probabilistic

supervisor Vp when the string s ∈ L(G) has been observed? First, the control pattern is chosen according
to controllable event probabilities of the supervisor, and then, under that pattern, the plant makes a
choice according to its events probabilities. For a state q, we define the set of possible events to be



5

Pos(q) := {σ ∈ Σ|p(q, σ) > 0}. Then, the probability that the event α ∈ Σ will occur after string s has
been observed (let q be the state of the plant after s) is equal to:

P (α ∈ Vp/G|s) =
∑

Θ∈P(Pos(q)∩Σc)

P (α|Vp enables Θ after s) · P (Vp enables Θ|s) (1)

where

P (α|Vp enables Θ after s) =











p(q, α)
∑

σ∈Θ∪Σu

p(q, σ) if α ∈ Θ ∪ Σu

0 otherwise
(2)

P (Vp enables Θ|s) =
∏

σ∈Θ

Vp(s, σ) ·
∏

σ∈(Pos(q)∩Σc)\Θ

(1 − Vp(s, σ))

For the probabilistic controller from Figure 3, the possible enablement patterns in state qP0 are Θ = ∅,
Θ = {α}, Θ = {β}, and Θ = {α, β}. Let Pσ(s) be the probabillity of σ occurring in the plant under
control after the string s is observed, Pσ(s) = P (σ ∈ Vp/G|s). If we apply (1) to the controller from
Figure 3 for a string s such that the controller is at state qP0, then :

Pα(s) = p(q0, α)Vp(s, α)Vp(s, β) + P (α|σ ∈ {γ, α})Vp(s, α)(1 − Vp(s, β))

= 0.6(0.162)(0.886) + 0.75(0.162)(1− 0.886) (3)
= 0.1

Pβ(s) = p(q0, β)Vp(s, α)Vp(s, β) + P (β|σ ∈ {γ, β})(1 − Vp(s, α))Vp(s, β)

= 0.2(0.162)(0.886) + 0.5(1 − 0.162)(0.886) (4)
= 0.4

Pγ(s) = p(q0, γ)Vp(s, α)Vp(s, β) + P (γ|σ ∈ {γ, α})Vp(s, α)(1 − Vp(s, β))

+P (γ|σ ∈ {γ, β})(1 − Vp(s, α))Vp(s, β)

+P (γ|σ ∈ {γ})(1 − Vp(s, α))(1 − Vp(s, β)) (5)
= 0.2(0.162)(0.886) + 0.25(0.162)(1− 0.886)

+0.5(1 − 0.162)(0.886) + 1.0(1 − 0.162)(1 − 0.886)

= 0.5

Similarly, for a string t that corresponds to the supervisor in Figure 3 being at state qP1, we have
Pα(t) = 0.4, Pβ(t) = 0 and Pγ(t) = 0.6. Therefore, the plant under probabilistic control succeeds in
generating the probabilistic language Lp(G2) whereas a deterministic controller failed. However, in the
general case, for a given plant, there might not exist a probabilistic supervisor for a given probabilistic
specification language. In the next section, we will explore the conditions under which a probabilistic
supervisor exists.

IV. PROBABILISTIC SUPERVISORY CONTROL PROBLEM
A. Problem Statement
Our goal is to match the behaviour of the controlled plant with a given probabilistic specification

language. We call this problem the Probabilistic Supervisory Control Problem. More formally:

Given a plant PDES G1 and a specification PDES G2, find, if possible, a probabilistic supervisor Vp such
that Lp(Vp/G1) = Lp(G2).

Let xs ∈ [0, 1]Pos(q)∩Σc be the control input after string s has been observed, and we will write xs,σ

instead of xs(σ), σ ∈ Pos(q) ∩ Σc.



6

First, we note that the ratio between the probabilities of two uncontrollable events in an uncontrolled
plant should remain the same in the plant under control. Here is the informal reasoning for this claim.
Let α, β ∈ Σu. We compare the values of P (α ∈ V/G|s) and P (β ∈ V/G|s) when calculated using (1).
For a control policy Θ, the value of P (Vp enables Θ|s) is the same for both α and β. Also, the factor
1/

∑

σ∈Θ∪Σu

p(s, σ) is the same for both events. Therefore, the only distinguishing factor is p(s, σ), which is

a constant. The formal proof of this claim will be presented in Section V.
Further, we consider controllable events. We slightly abuse the notation for Pσ(s) in order to explicitly

relate Pα(s) and Pβ(s) of (3) and (4) to supervisor probabilities, xs,α and xs,β. If we apply (1) to the
plant G from Figure 1, then:

Pα(xs,α, xs,β) = 0.6xs,αxs,β + 0.75xs,α(1 − xs,β)

= 0.75xs,α − 0.15xs,αxs,β (6)
Pβ(xs,α, xs,β) = 0.2xs,αxs,β + 0.5(1 − xs,α)xs,β

= 0.5xs,β − 0.3xs,αxs,β (7)

Our goal is to find constraints on Pα and Pβ such that (6) and (7) are satisfied, and (xs,α, xs,β) ∈
[0, 1] × [0, 1]. To map this region from the (xs,α, xs,β) to the (Pα, Pβ) plane (as shown at Figure 4), we

0.5

1 1

0.5

0.5 1

Pβ

Pα + 2Pβ = 1

0.5 1 Pα

4
3Pα + Pβ = 1

(0.6, 0.2)

xs,β

xs,α

Fig. 4. Mapping from (xs,α, xs,β) to (Pα, Pβ) plane

use the following logic. If xs,α is equal to 0, then, according to (6) and (7), Pα = 0 (α is disabled), and
Pβ = 0.5xs,β. So, in this case, Pα = 0 and Pβ ∈ [0, 0.5]. Similarly, when xs,β = 0, then Pβ = 0 and
Pα ∈ [0, 0.75]. For xs,α = 1, we solve for xs,β in one of (6) or (7) and substitute it into other equation to
get 4

3Pα + Pβ = 1. Similarly, for xs,β = 1, we get Pα + 2Pβ = 1. Those two lines intersect at the point
(0.6, 0.2), that corresponds to the probabilities of α and β in the original, uncontrolled system.
There exists another way to derive those bounds. Since G is nonterminating and the controller never

disables all the events, then

Pα + Pβ + Pγ = 1. (8)

Since γ is uncontrollable, then Vp(s, γ) = 1. Let’s consider a case when xs,α = 1. This means that α is
effectively uncontrollable, so:

Pγ

Pα

=
p(q, γ)

p(q, α)
=

1

3

Also, as xs,α decreases, P (α) decreases too. Therefore:

Pγ ≥
1

3
Pα

with equality holding when xs,α = 1. We plug this back into (8) to get 4
3Pα + Pβ ≤ 1. Similarly, if we

assume that xs,β = 1, we get Pα + 2Pβ ≤ 1.



7

B. Main Result
In the previous subsection we gave the intuition behind the conditions for the existence of the proba-

bilistic supervisor that were first presented in [9]. We now present the conditions formally together with
an algorithm for the computation of the supervisor which is the main result of [10]. We incorporated the
special case (Pos(q) ∩ Σu = ∅) into the theorems.
For notational convenience, instead of x(σ) (x(σ) ∈ R, σ ∈ Σ), we will write xσ.

Theorem 1. Let G1 = (Q, Σ, δ1, q0, Qm, p1) and G2 = (R, Σ, δ2, r0, Rm, p2) be two nonterminating PDESs
with disjoint state sets Q and R. There exists a probabilistic supervisor Vp such that Lp(Vp/G1) = Lp(G2)
iff for all s ∈ L(G2) there exists q ∈ Q such that δ1(q0, s) = q and, letting r = δ2(r0, s), the following
two conditions hold:

(i) Pos(q) ∩ Σu = Pos(r) ∩ Σu, and for all σ ∈ Pos(q) ∩ Σu,

p1(q, σ)
∑

α∈Σu

p1(q, α)
=

p2(r, σ)
∑

α∈Σu

p2(r, α)

(ii) Pos(r) ∩ Σc ⊆ Pos(q) ∩ Σc, and, if Pos(q) ∩ Σu ,= ∅, then for all σ ∈ Pos(q) ∩ Σc,

p2(r, σ)

p1(q, σ)

∑

α∈Σu

p1(q, α) +
∑

α∈Pos(q)∩Σc

p2(r, α) ≤ 1.

Conditions (i) and (ii) together are necessary and sufficient for the existence of a probabilistic supervisor
solving the PSCP. The first part of both conditions corresponds to controllability as used in classical
supervisory theory (namely, the condition Pos(q)∩Σu = Pos(r)∩Σu of (i), and Pos(r)∩Σc ⊆ Pos(q)∩Σc

of (ii)). The remaining equations and inequalities correspond to the conditions for probability matching.
Theorem 2. Assume that the conditions (i) and (ii) of Theorem 1 are satisfied. Let Γ = Pos(q) ∩ Σc

if Pos(q) ∩ Σu ,= ∅, and Γ = (Pos(q) ∩ Σc)\{γ} otherwise, where γ ∈ Pos(q) is such that for every
σ ∈ Pos(q), p2(r,γ)

p1(q,γ) ≥
p2(r,σ)
p1(q,σ) is satisfied. Let x0

s ∈ [0, 1]Γ and f : RΓ → RΓ. For x0
s = 0, the sequence

xk+1
s = f(xk

s ), k = 0, 1, . . . , where

fσ(xs) =
p2(r, σ)

p1(q, σ)hσ(xs)
, σ ∈ Γ and

hσ(xs) =
∑

Θ∈P(Γ\{σ})

1

1 −
∑

α∈Θ
p1(q, α)

∏

α∈Θ

(1 − xs,α)
∏

α∈Γ\{σ}\Θ

xs,α

converges to the control input x∗
s (i.e., Vp(s, σ) = x∗

s,σ for σ ∈ Γ).

V. FORMAL PROOF
If there exists a probabilistic supervisor Vp such that Lp(Vp/G1) = Lp(G2), then L(G2) ⊆ L(G1).

Therefore, let s ∈ L(G2) and assume there exists q ∈ Q such that q = δ1(q0, s), and r = δ2(r0, s). For
notational convenience, whenever obvious from the context, we will omit the symbols for strings and
states so that, e.g., instead of p1(q, σ), we shall write p1,σ, and instead of p2(r, σ), we shall write p2,σ. We
will use small Greek letters to denote events and capital Greek letters for sets of events. To denote sets
whose elements are not necessarily events, capital Roman letters will be used, and small Roman letters
will denote functions. Also, we assume the set difference operation to be left-associative.
Further, without loss of generality, we assume that at the state q, not all the possible events are

controllable, that is
∑

σ∈Σc
p1,σ < 1. This assumption is safe since if p1,σ = 0 for all σ ∈ Σu, then

the PSCP reduces to the PSCP with only controllable events which can be transformed into a problem
with exactly one uncontrollable event (we will discuss this further in Section V-B). Note that in the case
of at least one possible uncontrollable event, we have Γ = Pos(q) ∩ Σc.
After a string s ∈ L(G2) has been observed, the supervisory problem is effectively the problem of

finding the control input vector x ∈ [0, 1]Γ such that P (x) = p2, where P : [0, 1]Γ → [0, 1]Σ and Pσ is
defined as Pσ = P (σ in Vp/G|s) given by Equation 1, for all σ ∈ Σ.



8

A. Proof
Lemma 1. Let x ∈ RΨ and Ψ ⊆ Γ. Then,

∑

Φ⊆Ψ

∏

σ∈Φ
xσ

∏

σ∈Ψ\Φ

(1 − xσ) = 1.

Proof: We prove the lemma by the induction on the size of Ψ. Let k = |Ψ|. For k = 1, the identity
is satisfied. Assume that it holds for k = n − 1. We now prove that it holds for k = n. Let σ ∈ Γ, but
σ ! Ψ. Then:

∑

Φ⊆Ψ∪{σ}

∏

α∈Φ

xα

∏

α∈(Ψ∪{σ})\Φ

(1 − xα) =
∑

Φ⊆Ψ∪{σ}
σ∈Φ

∏

α∈Φ

xα

∏

α∈(Ψ∪{σ})\Φ

(1 − xα) +
∑

Φ⊆Ψ∪{σ}

σ/∈Φ

∏

α∈Φ

xα

∏

α∈(Ψ∪{σ})\Φ

(1 − xα)

= xσ

∑

Φ⊆Ψ

∏

α∈Φ

xα

∏

α∈Ψ\Φ

(1 − xα) + (1 − xσ)
∑

Φ⊆Ψ

∏

α∈Φ

xα

∏

α∈Ψ\Φ

(1 − xα)

= 1

Lemma 2. Let x ∈ [0, 1]Γ. Then, Pσ(x) = p1,σxσhσ(x) for every σ ∈ Σ, where hσ : RΓ → R is given by

hσ(x) =
∑

Θ∈P(Γ\{σ})

1

1 −
∑

α∈Θ
p1,α

∏

α∈Θ

(1 − xα)
∏

α∈Γ\{σ}\Θ

xα (9)

Proof: Let x ∈ [0, 1]Γ. For σ ∈ Σ, Equation 1 can be equivalently expressed as:

Pσ(x) =
∑

Θ∈P(Γ\{σ})

p1,σ
∑

α∈Θ∪{σ}∪Σu

p1,α

∏

α∈Θ∪{σ}

xα

∏

α∈Γ\(Θ∪{σ})

(1 − xα)

If we apply the substitution Ω = Γ\(Θ ∪ {σ}) to the previous equation, it becomes

Pσ(x) =
∑

Ω∈P(Γ\{σ})

p1,σ

1 −
∑

α∈Ω
p1,α

∏

α∈Ω

(1 − xα)
∏

α∈Γ\Ω

xα

The previous equation is well-defined as, for any Ω ∈ P(Γ\{σ}), we have 1 −
∑

α∈Ω p1,α > 0 since we
assumed that there is at least one event α ∈ Σu such that p1,α > 0 . Therefore, for σ ∈ Σc, we have:

Pσ(x) =
∑

Ω∈P(Γ\{σ})

p1,σ

1 −
∑

α∈Ω
p1,α

∏

α∈Ω

(1 − xα) ·



xσ

∏

α∈Γ\{σ}\Ω

xα



 = p1,σxσhσ(x)

For σ ∈ Σu, since σ /∈ Γ and xσ = 1, then:

Pσ(x) =
∑

Ω∈P(Γ\{σ})

p1,σ

1 −
∑

α∈Ω
p1,α

∏

α∈Ω

(1 − xα)
∏

α∈Γ\{σ}\Ω

xα = p1,σxσhσ(x)

.
Next, we introduce the following order on RΓ. For x, y ∈ RΓ, x ≤ y iff for all σ ∈ Γ, xσ ≤ yσ. Let

f : (X,≤) → (Y,≤) be a mapping between posets. This mapping is monotone if whenever x ≤ y, then
f(x) ≤ f(y); it is antitone if whenever x ≤ y, then f(x) ≥ f(y). Also, for a ∈ R, let ā denote x ∈ RΓ

such that xσ = a.

Lemma 3. Let ∆ ⊆ Γ and l : P(Γ) → R be positive and monotone. The function f∆ : RΓ → R given by
f∆(x) =

∑

Φ∈P(∆)

l(Φ)
∏

σ∈Φ
(1 − xσ)

∏

σ∈∆\Φ

xσ is positive and antitone on [0, 1]Γ.



9

Proof: First, we find the derivative of the function f∆(x) with respect to xα, for α ∈ Σ. When α ,∈ ∆,
f∆ does not depend on xα and ∂fR

∂xα
(x) = 0. For the case when σ ∈ ∆,

f∆(x) =
∑

Φ∈P(∆)
α∈Φ

l(Φ)
∏

σ∈Φ

(1 − xσ)
∏

σ∈∆\Φ

xσ +
∑

Φ∈P(∆)
α&∈Φ

l(Φ)
∏

σ∈Φ

(1 − xσ)
∏

σ∈∆\Φ

xσ

=
∑

Φ∈P(∆\{α})

(l(Φ ∪ {α})(1 − xα) + l(Φ)xα)
∏

σ∈Φ

(1 − xσ)
∏

σ∈∆\{α}\Φ

xσ

and so
∂f∆

∂xα

(x) = (−1) ·
∑

Φ∈P(∆\{α})

(l(Φ ∪ {α}) − l(Φ))
∏

σ∈Φ

(1 − xσ)
∏

σ∈∆\{α}\Φ

xσ

which is always non-positive on x ∈ [0, 1]Γ since l is monotone. Therefore, f∆ is antitone on [0, 1]Γ and,
consequently, f∆(x) ≥ f∆(1̄) = l(∅) > 0. Hence, f∆ is positive on [0, 1]Γ.

Lemma 4. The functions hσ(x), σ ∈ Σ, as defined in Lemma 2 are positive antitone, and such that
xσhσ(x) ≤ hγ(x) on [0, 1]Γ for all σ ∈ Σc, γ ∈ Σu.

Proof: Let ∆ ⊆ Γ be a nonempty set. Let l : P(∆) → R be given by l(∆) = 1
1−

P

σ∈∆
p1,σ
. Let

Φ, Λ ∈ P(∆) be such that Φ ⊆ Λ. Since 0 ≤
∑

σ∈Φ p1,σ ≤
∑

σ∈Λ p1,σ < 1, l is monotone. Therefore,
according to Lemma 3, hσ are positive antitone. We now prove that for all σ ∈ Σc, γ ∈ Σu we have
xσhσ(x) ≤ hγ(x):

xσhσ(x) = xσ

∑

Θ∈P(Γ\{σ})

l(Θ)
∏

α∈Θ

(1 − xα)
∏

α∈Γ\{σ}\Θ

xα =
∑

Θ∈P(Γ\{σ})

l(Θ)
∏

α∈Θ

(1 − xα)
∏

α∈Γ\Θ

xα

≤
∑

Θ∈P(Γ)

l(Θ)
∏

α∈Θ

(1 − xα)
∏

α∈Γ\Θ

xα

=
∑

Θ∈P(Γ\{γ})

l(Θ)
∏

α∈Θ

(1 − xα)
∏

α∈Γ\Θ\{γ}

xα, for any γ ∈ Σu, since γ /∈ Γ

= hγ(x), for any γ ∈ Σu.

Let {xk} be a sequence of real numbers, and x ∈ R. We will write xk ↑ x iff xk ≤ xk+1 for all k ∈ N,
and xk → x as k → ∞. The lemma gives sufficient conditions for the existence of a fixpoint of the
function f .

Lemma 5. Let f : D → RΓ be a monotone function on D ⊆ RΓ, a0, b0 ∈ R, such that a0 ≤ b0,
[a0, b0]Γ ⊆ D and ā0 ≤ f(ā0). Assume that for every x ∈ [a0, b0]Γ such that x ≤ f(x), we have
f(x) ≤ b̄0. Then, the sequence {xk} given by

x0 = ā0, xk+1 = f(xk), k = 0, 1, . . .

exists and is such that xk ↑ x∗ for some x∗ ∈ [a0, b0]Γ. If, furthermore, f is lower continuous ( lim
xk↑x

f(xk) =

f(x)), then x∗ = f(x∗).

Proof:
We first use induction to show that the sequence {xk} is a monotone chain contained in [a0, b0]Γ.

Because of the assumptions, ā0 ≤ f(ā0) ≤ b̄0, so that the basis step is true. Assume that {xi} for i ≤ k
forms a monotone chain in [a0, b0]Γ. Since xk is in [a0, b0]Γ, xk+1 = f(xk) is defined. By the induction
hypothesis xk−1 ≤ xk holds. Hence, since f is monotone, f(xk−1) ≤ f(xk) also holds; consequently,



10

xk ≤ xk+1. Since ā0 ≤ xk, then ā0 ≤ xk+1. Also, since f(xk) ≤ b̄0, then xk+1 ≤ b̄0. Therefore, for
i ≤ k + 1, {xi} is a monotone chain contained in [a0, b0]Γ.
Since {xk} is monotone and has a finite upper bound b̄0, it converges to a point x∗ ≤ b̄0. Since f is

lower continuous, from xk ↑ x∗ follows xk+1 → f(x∗); therefore x∗ = f(x∗).
The following theorem presents necessary and sufficient conditions for controllable events’ probabilities

to be assignable to given probabilities. Further, if those conditions are satisfied, the fixpoint algorithm to
calculate the control input is given.

Theorem 3. Assume that Pos(r) ∩ Σc ⊆ Γ, and, for every σ ∈ Γ:
p2,σ

p1,σ

∑

α∈Σu

p1,α +
∑

α∈Γ

p2,α ≤ 1 (10)

Then, the sequence {xk} given by

x0 = 0, xk+1 = f(xk) k = 0, 1, . . . where fσ(x) =
p2,σ

p1,σhσ(x)
, σ ∈ Γ (11)

exists and is such that xk ↑ x∗ for some x∗ ∈ [0, 1]Γ. Furthermore, Pσ(x∗) = p2,σ for all σ ∈ Σc.
Conversely, for any x ∈ [0, 1]Γ, if p2,σ ! Pσ(x) for all σ ∈ Σc, then Pos(r) ∩ Σc ⊆ Γ and Equation 10
holds.

Proof: First, we show that f is defined on [0, 1]Γ and monotone. By Lemma 3, hσ is positive and
antitone on [0, 1]Γ. Therefore, fσ is positive and monotone on [0, 1]Γ, and f(0̄) ≥ 0̄. We show that whenever
x ≤ f(x), then f(x) ≤ 1̄. For x ∈ [0, 1]Γ assume that x ≤ f(x). Then Pσ(x) = p1,σxσhσ(x) ≤ p2,σ for
σ ∈ Γ. For σ ∈ Γ let

lσ =

1 −
∑

α∈Γ\{σ}

p1,α

p1,σ

.

Note that lσ is well-defined since p1,σ > 0.

lσp1,σhσ(x) =
∑

Ω∈P(Γ\{σ})






1 −

∑

α∈Γ\{σ}\Ω

p1,α

1 −
∑

α∈Ω
p1,α







∏

α∈Ω

(1 − xα)
∏

α∈Γ\Ω

xα

= 1 −
∑

Ω∈P(Γ\{σ})

∑

α∈Γ\{σ}\Ω

p1,α

1 −
∑

α∈Ω
p1,α

∏

α∈Ω

(1 − xα)
∏

α∈Γ\{σ}\Ω

xα (from Lemma 1)

≥ 1 −
∑

Ω∈P(Γ\{σ})

∑

α∈Γ\{σ}\Ω





p1,α

1 −
∑

α∈Ω
p1,α

xσ +
p1,α

1 − p1,σ −
∑

α∈Ω
p1,α

(1 − xσ)





∏

α∈Ω

(1 − xα)
∏

α∈Γ\{σ}\Ω

xα



since
pα

1 −
∑

α∈Ω
pα

xσ +
pα

1 − pα −
∑

α∈Ω
pα

(1 − xσ) ≥
pα

1 −
∑

α∈Ω
pα





= 1 −
∑

Ω∈P(Γ\{σ})

∑

α∈Γ\{σ}\Ω

p1,α

1 −
∑

α∈Ω
p1,α

∏

α∈Ω

(1 − xα)
∏

α∈Γ\Ω

xα−

−
∑

Ω∈P(Γ)
σ∈Ω

∑

α∈Γ\{σ}\Ω

p1,α

1 −
∑

α∈Ω
p1,α

∏

α∈Ω

(1 − xα)
∏

α∈Γ\Ω

xα

= 1 −
∑

Ω∈P(Γ)

∑

α∈Γ\{σ}\Ω

p1,α

1 −
∑

α∈Ω
p1,α

∏

α∈Ω

(1 − xα)
∏

α∈Γ\Ω

xα



11

= 1 −
∑

α∈Γ\{σ}

∑

Ω∈P(Γ\{α})

p1,α

1 −
∑

α∈Ω
p1,α

∏

α∈Ω

(1 − xα)
∏

α∈Γ\Ω

xα

(Suppose Ω ∈ P(Γ) and α ∈ Γ\{σ}\Ω. Then α ∈ Γ\{σ}. Since α ,∈ Ω, Ω\{α} = Ω, so Ω ∈ P(Γ\{α}))

= 1 −
∑

α∈Γ\{σ}

Pα(x) (from Lemma 2)

≥ 1 −
∑

α∈Γ\{σ}

p2,α (since Pσ ≤ p2,σ for α ∈ Γ)

Therefore,
fσ(x) =

p2,σ

p1,σhσ(x)
=

lσp2,σ

lσp1,σhσ(x)
≤

lσp2,σ

1 −
∑

α∈Γ\{σ}

p2,α

≤ 1

Using Lemma 5, the sequence x0 = 0̄ and xk+1 = f(xk) for k = 0, 1, . . . , exists and is such that
xk ↑ x∗ for some x∗ ∈ [0, 1]Γ. Since f is continuous on [0, 1]Γ, it follows that f(x∗) = x∗, or equivalently
that Pσ(x∗) = p2,σ for σ ∈ Γ. Also, since Pos(r) ∩ Σc ⊆ Γ, then for σ ∈ Σc, but σ /∈ Γ, we have
Pσ(x∗) = p1,σx∗

σhσ = 0 = p2,σ. Therefore, Pσ(x∗) = p2,σ for σ ∈ Σc.
We now prove the necessity of the condition. Suppose that there is x ∈ [0, 1]Γ such that Pσ(x) = p2,σ

for any σ ∈ Σc. Then, for σ /∈ Γ we have Pσ(x) = 0 = p2,σ. Therefore, Pos(r) ∩ Σc ⊆ Γ. Next, we note
that for any σ, α ∈ Σu we have that hσ = hα. We therefore introduce the function g : RΓ → R such that
g(x) = hσ(x) for any σ ∈ Σu. Then, since our generators are nonterminating,

1 =
∑

α∈Σu

Pα(x) +
∑

α∈Σc

Pα(x) =
∑

α∈Σu

p1,αxαhα(x) +
∑

α∈Σc

p2,α = g(x)
∑

α∈Σu

p1,α +
∑

α∈Γ

p2,α. (12)

Since p2,σ = p1,σxσhσ(x) and, according to Lemma 4, xσhσ(x) ≤ g(x), it follows that g(x) ≥ p2,σ

p1,σ
. By

plugging this inequality into Equation 12, we get the condition (10).
So far we have only considered the conditions under which the probabilities of controllable events can

be assigned to specified probabilities. We will now consider uncontrollable events as well.

Lemma 6. There exists x ∈ [0, 1]Γ such that Pσ(x) = p2,σ for every σ ∈ Σ iff Pos(r) ∩ Σc ⊆ Γ,
Pos(q) ∩ Σu = Pos(r) ∩ Σu, (10) holds for every σ ∈ Γ, and for every σ ∈ Pos(q) ∩ Σu

p1,σ
∑

α∈Σu

p1,α

=
p2,σ

∑

α∈Σu

p2,α

(13)

Proof: Assume that Pos(r) ∩ Σc ⊆ Γ, Pos(q) ∩ Σu = Pos(r) ∩ Σu, (10) holds for σ ∈ Γ, and (13)
holds for σ ∈ Pos(q) ∩ Σu. Then, according to Theorem 3, for all σ ∈ Σc, we have Pσ(x) = p2,σ, and,
according to Lemma 2, for all σ ∈ Σu, Pσ(x) = p1,σxσhσ(x), that is Pσ(x) = p1,σg(x). Therefore, for all
σ ∈ Σu:

Pσ(x) = p1,σg(x) = p1,σ ·

∑

α∈Σu

p1,αg(x)

∑

α∈Σu

p1,α
= p1,σ ·

∑

α∈Σu

Pα(x)

∑

α∈Σu

p1,α
= p1,σ ·

1 −
∑

α∈Σc

Pα(x)

∑

α∈Σu

p1,α
= p1,σ ·

∑

α∈Σu

p2,α

∑

α∈Σu

p1,α
= p2,σ

For the converse, assume that there is a supervisory controller x such that Pσ(x) = p2,σ for every
σ ∈ Σ. Then, according to Theorem 3, Pos(r) ∩ Σc ⊆ Γ and (10) holds. If p1,σ = 0, then Pσ(x) =
p1,σg(x) = 0 = p2,σ. Also, if p2,σ = 0 = Pσ(x) = p1,σg(x), then p1,σ = 0 (since g(x) ,= 0). Therefore,
Pos(q) ∩ Σu = Pos(r) ∩ Σu. Then, for σ ∈ Pos(q) ∩ Σu:

p2,σ
∑

α∈Σu

p2,α
=

Pσ(x)
∑

α∈Σu

p2,α
=

p1,σ
∑

α∈Σu

p2,α
g(x) =

p1,σ
∑

α∈Σu

p2,α
·

∑

α∈Σu

p1,αg(x)

∑

α∈Σu

p1,α

=
p1,σ

∑

α∈Σu

p2,α
·

∑

α∈Σu

Pα(x)

∑

α∈Σu

p1,α
=

p1,σ
∑

α∈Σu

p2,α
·

∑

α∈Σu

p2,α

∑

α∈Σu

p1,α
=

p1,α
∑

α∈Σu

p1,α



12

B. Special Case: Pos(q) ∩ Σu = ∅

We now address the issue mentioned in Section V: in a certain state, only controllable events can
happen in the plant. Then, a probabilistic supervisor can disable them all which would cause termination.
However, as we consider nonterminating generators, this is not allowed to happen. An elegant solution is
to always enable one event: this event effectively becomes uncontrollable and the problem reduces to the
one already proved. We now show that, if an event γ with the maximal ratio p2,γ/p1,γ is chosen, then the
conditions (10) and (13) are satisfied.
Formally, let Pos(q)∩Σu = ∅. Then, only for this local problem, we declare event γ ∈ Pos(q)∩Σc to

be uncontrollable. Then, Γ = (Pos(q) ∩ Σc)\{γ}. The condition (13) is trivially satisfied. The left hand
side of the condition in (10), for σ ∈ Γ, becomes:

p2,σ

p1,σ

p1,γ +
∑

α∈Γ

p2,α =
p2,σ

p1,σ

p1,γ − p2,γ +
∑

α∈Γ

p2,α + p2,γ

=
p2,σ

p1,σ

p1,γ − p2,γ +
∑

α∈Pos(q)∩Σc

p2,α =
p2,σ

p1,σ

p1,γ − p2,γ + 1

Then, the condition (10) becomes:
p2,σ

p1,σ

p1,γ − p2,γ ≤ 0,

which is equivalent to
p2,σ

p1,σ

−
p2,γ

p1,γ

≤ 0.

If the event γ is one with the maximal ratio p2,γ/p1,γ , it is obvious that the condition is satisfied for any
σ ∈ Γ and the algorithm for computation of control input from Theorem 3 can be applied to this special
case, with γ considered an uncontrollable event.

C. Example
We now present the calculation of a probabilistic supervisor for the example from Figure 1, where

Σc = {α, β}, and Σu = {γ}. The case when the string s ∈ L(G2) has been observed such that G is
at the state q0, and G2 is at q20 will be presented in detail. Again, for notational convenience, we shall
write p1,σ instead of p1(q0, σ), and p2,σ instead of p2(q20, σ) where σ ∈ Σ. Let p1 = (p1,α, p1,β, p1,γ), and
p2 = (p2,α, p2,β, p2,γ). From Figure 1, it follows p1 = (0.6, 0.2, 0.2), p2 = (0.1, 0.4, 0.5). First we check if
there exists a control input xs = (xs,α, xs,β) such that P (xs) = p2. The equality of Theorem 1 is trivially
satisfied. We then check if the inequalities of Theorem 1 are satisfied: 1

6 · p1,γ + p2,α + p2,β = 0.53 ≤
1, 2p1,γ + p2,α + p2,β = 0.9 ≤ 1.Therefore, there exists x∗

s ∈ [0, 1]{α,β} such that P (x∗
s) = p2, and vector

x∗
s can be calculated by the fixpoint iteration where x0

s = (0, 0), xk
s = f(xk−1

s ), and

fα(xs) =
p2,α

p1,α

(

xs,β + 1
1−p1,β

(1 − xs,β)
) and fβ(xs) =

p2,β

p1,2

(

xs,α + 1
1−p1,α

(1 − xs,α)
)

After just a few iterations, the sequence {xk
s} converges to x∗

s = (0.162, 0.886). The fixpoint computation
is shown on Figure 5.
The calculation of the supervisor after the string t ∈ L(G) has been observed such that G2 is in the

state q21 gives the result x∗
t = (0.533, 0). The supervisor is shown in Figure 3.



13

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

xs, α

xs, β

Fig. 5. Fixpoint iteration

VI. HANDLING TERMINATING PDESS
The results and proofs presented in this paper apply only to nonterminating systems. We now present

their extension to terminating systems as introduced in [9]. The terminating PDES G = (Q, Σ, δ, q0, Qm, p)
extends to nonterminating G′ = (Q ∪ {q⊥}, Σ ∪ {σ⊥}, δ′, q0, Qm, p′), where

p′(q, σ) = p(q, σ), σ ∈ Σ δ′(q, σ) = δ(q, σ), σ ∈ Σ
p′(q, σ⊥) = 1 −

∑

σ∈Σ p(q, σ) and δ′(q, σ⊥) = q⊥ if p′(q, σ⊥) > 0
p′(q⊥, σ⊥) = 1 δ′(q⊥, σ⊥) = q⊥

An example of a terminating generator and its transformation to the nonterminating one is shown in
Figure 6. A subtlety of terminating PDES is depicted in Figure 6. Again, in the state q, as depicted in

σ⊥ : ?

σ⊥ : 0.3

α : 0.4

σ⊥ : 1.0

β : 0.6

σ⊥ : 1.0

α : 0.2

qG

α : 0.2

β : 0.6

α : 0.4

q⊥

γ : 0.5

G′

γ : 0.5

q

Fig. 6. Terminating PDES G and resulting nonterminating PDES G′

Figure 6, all the events that can occur are controllable. The supervisor can disable them all. The probability
of termination in this state is equal to the probability that all the controllable events possible from this
state will be disabled. This situation is shown in Figure 6 using a dashed arrow from the state q to q⊥.

VII. CONCLUSION
In this paper, we presented the solution of the probabilistic supervisory control problem as introduced

in [9] and [10]. The control technique used is called random disablement: events are enabled with certain
probabilities. The necessary and sufficient conditions for the existence of the solution are introduced and
a fixpoint algorithm for computation of supervisor is given. Detailed formal proofs are presented. The
results apply to nonterminating PDES. Also, a straightforward extension to handle terminating PDES is
presented.
We are currently working on the problem of finding a supervisor such that a closest approximation

to a probabilistic specification language is achieved when there does not exist an exact solution to the



14

probabilistic supervisory control problem. Further, probabilistic control with marking, probabilistic control
under partial observations, modular probabilistic control etc. would be interesting problems, as well as
studying other control objectives (e.g., optimal control, [12]) inside the same framework.

REFERENCES
[1] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of discrete event processes,” SIAM Journal on Control and

Optimization, vol. 25, no. 1, pp. 206–230, 1987.
[2] C. G. Cassandras, Discrete Event Systems: Modeling and Performance Analysis. Homewood, IL, USA: Richadr D. Irwin, Inc., and

Aksen Associates, Inc., 1993.
[3] M. O. Rabin, “Probabilistic automata,” Information and Control, vol. 6, no. 3, pp. 230–245, September 1963. [Online]. Available:

citeseer.ist.psu.edu/article/emerson99utilizing.html
[4] M. Molloy, “Performance analysis using stochastic petri nets,” IEEE Transactions on Computers, vol. C-39, no. 9, pp. 913–917, 1982.
[5] V. Garg, “An algebraic approach to modeling probabilistic discrete event systems,” in Proc. of 31st Conf. Decision and Control, Tucson,

AZ, USA, Dec. 1992, pp. 2348–2353.
[6] ——, “Probabilistic languages for modeling of DEDS,” in Proc. of 26th Conf. on Information Sciences and Systems, vol. 1, Princeton,

NJ, Mar. 1992, pp. 198–203.
[7] H. Mortazavian, “Controlled stochastic languages,” in Proc. of 31st Annual Allerton Conference on Comm., Contr., and Comp., 1993,

pp. 938–947.
[8] V. S. Borkar, Topics in controlled Markov chains. New York: Wiley, 1991.
[9] M. Lawford and W. Wonham, “Supervisory control of probabilistic discrete event systems,” in Proceedings of the 36th Midwest

Symposium on Circuits and Systems, vol. 1. IEEE, Aug. 1993, pp. 327–331.
[10] S. Postma and M. Lawford, “Computation of probabilistic supervisory controllers for model matching,” in Proceedings of Allerton

Conference on Communications, Control, and Computing, 2004.
[11] R. Kumar and V. Garg, “Control of stochastic discrete event systems: Existence,” in Proceedings of 1998 International Workshop on

Discrete Event Systems, Cagliari, Italy, August, 1998, pp. 24–29. [Online]. Available: citeseer.ist.psu.edu/kumar98control.html
[12] ——, “Control of stochastic discrete event systems modeled by probabilistic languages,” IEEE Transactions on Automatic Control,

vol. 46, no. 4, pp. 593–606, Apr. 2001.
[13] Chattopadhyay and A. Ray, “Language-measure-theoretic optimal control of probabilistic finite state systems,” in Proc. of 46th Conf.

Decision and Control, New Orleans, LA, USA, Dec. 2007, pp. 5930–5935.
[14] ——, “Language-measure-theoretic optimal control of probabilistic finite-state systems,” International Journal of Control, vol. 80,

no. 8, pp. 1271–1290, 2007.


