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Abstract

Probabilistic discrete event systems (PDESs) are modeled as generators of probabilistic languages

and the supervisors employed are a probabilistic generalization of deterministic supervisors used in

standard supervisory control theory. In the case when thereexists no probabilistic supervisor such

that the behaviour of a plant under control exactly matches the probabilistic language given as the

requirements specification, we want to find a probabilistic control such that the behaviour of the plant

under control is “as close as possible” to the desired behaviour. First, as a measure of this proximity,

a pseudometric on states of generators is defined. Two algorithms for the calculation of the distance

between states in this pseudometric are described. Then, analgorithm to synthesize a probabilistic

supervisor that minimizes the distance between generatorsrepresenting the achievable and required

behaviour of the plant is presented.

I. INTRODUCTION

The supervisory control theory of discrete event systems (DESs) was developed in the sem-

inal work of Ramadge and Wonham [1]. A supervisor (controller) controls a plant by en-

abling/disabling controllable events based on the observation of the previous behaviour of the

plant. DESs are most often modeled by finite automata whose transitions are labeled with events:

therefore, the behaviour of a DES can be represented as a regular language. The supervisory

control problem considered is to supervise the plant so it generates a given specification language.
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Many models of stochastic behaviour of discrete event systems have been proposed (e.g.,

Markov chains [2], Rabin’s probabilistic automata [3], stochastic Petri nets [4]). The work of

[5]–[7] uses an algebraic approach. A stochastic discrete event system is represented as an

automaton with transitions labeled with events and probabilities. We use this approach. The

model is generative: the probabilities of all the events in acertain state add up to at most one.

On the other hand, with reactive models, such as Rabin probabilistic automata [3], the sum

of the transition probabilities of one event at a state is one. Also, unlike Markov chains [2],

the emphasis of the approach of [5]–[7] is on event traces rather than state traces. However,

as opposed to the nondeterministic model of [5]–[7], our probabilistic automaton (probabilistic

generator) is deterministic in the following sense: for each state of the automaton, there is at

most one next state to which the automaton can move on a given event.

The control of different models of stochastic discrete event systems has been investigated in

[8], [9], etc. Rabin’s probabilistic automata are used in [8] as the underlying model. The optimal

control theory of Markov chains is widely investigated in the framework of controlled Markov

chains, also known as Markov decision processes (e.g., see [9]). A deterministic supervisory

control framework for stochastic discrete event systems was developed in [10] using the model

of [5]–[7]. In [10], controllable events are disabled dynamically as first suggested in [11], so

that the probabilities of their execution become zero, and the probabilities of the occurrence of

other events proportionally increase. The control objective considered in [10] is to construct a

supervisor such that the controlled plant does not execute specified illegal traces, and occurrences

of the legal traces in the system are greater than or equal to specified values. The paper

gives necessary and sufficient condition for the existence of a supervisor. Further, in [12],

a technique to compute a maximally permissive supervisor on-line is given. In [13], [14],

the deterministic version of probabilistic automata used in [5]–[7] (our model) is used. The

requirements specification is given by weights assigned to states of a plant and the control goal

is, roughly speaking, to reach the states with more weight (more desirable states) more often.

A deterministic control is synthesized for a given requirements specification so that a measure

based on the specification and probabilities of the plant is optimized. Optimal supervisory theory

of probabilistic systems was considered in [15], where the system is allowed to violate the

specification, but with a probability lower than a prespecified value.

Controller synthesis for probabilistic systems has also attracted attention in the formal methods
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community. E.g., [16], [17] consider different control policies: deterministic or randomized

(probabilistic) on one hand; memoryless (Markovian) or history-independent on the other. The

systems considered are finite Markov decision processes, where the state space is divided into two

disjoint sets: controllable states and uncontrollable states. In [16], the controller synthesis problem

for a requirements specification given as a probabilistic computation tree logic (PCTL) formula

is shown to be NP-hard, and a synthesis algorithm for automata specifications is presented.

Controller synthesis was considered in [17] for a requirements specification given as a formula

of PCTL extended with long-run average propositions. It is shown that the existence of such

a controller is decidable, and an algorithm for the synthesis of a controller, when it exists, is

presented. Further, controller robustness with respect toslight changes in the probabilities of the

plant is discussed. The paper shows that the existence of robust controllers is decidable and the

controller, if it exists, is effectively computable.

Deterministic control of PDES is easier to deal with than probabilistic control, both from

the viewpoint of analysis, and practice. However, probabilistic control of PDES is much more

powerful. It has been shown in [11], [18] that probabilisticsupervisory control can generate

a much larger class of probabilistic languages than deterministic control. In the sense of the

supervisory control problem discussed in this paper, the use of deterministic control might

be too restrictive for a designer. Hence, [11], [18], [19] investigate probabilistic supervisory

control: conditions under which a probabilistic control can generate a prespecified probabilistic

language, and, if the supervisor exists, the algorithm for its synthesis. PDESs are modeled as

the probabilistic generators from [5]–[7]. Probabilisticsupervisors are so named because they

employ the control method ofrandom disablement: after observing a strings, the probabilistic

supervisor enables an eventσ with a certain probability.

Our work focuses on optimal supervisory control theory inside this framework. Analogous to a

problem in classical supervisory control theory, it can happen that, given a plant to be controlled

and a probabilistic specification language, no supervisor exists such that the plant under control

generates the prespecified language. In this case, when the exact solution is not achievable,

a designer tries to find a supervisor such that the plant undercontrol generates aclosest

approximationof the desired behaviour. The nonprobabilistic behaviour of the requirements

specification is considered to be a safety constraint in the standard supervisory control sense

similar to [10]. Therefore, the supremal controllable sublanguage of the intersection of the plant
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and the specification is generated as the maximal achievablelegal nonprobabilistic behaviour of

the plant under control. Then, the closest approximation iscalculated by minimizing the distance

between the achievable probabilistic behaviour of the plant under control and the probabilistic

behaviour of the specification (whose nonprobabilistic behaviour is reduced to the mentioned

supremal controllable sublanguage). The distances used are defined by a pseudometric on states

of probabilistic transition systems. This paper also offers two algorithms for the calculation of

distances in this pseudometric.

In Section II, PDESs are presented as generators of probabilistic languages, and the proba-

bilistic control of PDES is introduced. The proposed pseudometric is presented in Section III.

The rationale for choosing the pseudometric is given, and its characterization as the greatest

fixed point of a monotone function (as taken from [20]) is presented. Section IV uses this

characterization for the derivation and proof of correctness of two algorithms for the calculation

of the distances between the states of a PDES in this pseudometric. Section V presents the

algorithm for finding the closest approximation to within a prespecified accuracy. Section VI

concludes with avenues for future work.

This paper represents the journal version of results of [21]. Also, the paper offers the full

literature review, informal reasoning and formal proofs lacking in [21]. Still, due to space

restrictions, not all the proofs can be presented here. For review purposes, they are included

in the Appendix.

II. PRELIMINARIES

In this section, PDESs modeled as generators of probabilistic languages are presented. Then,

the probabilistic control of PDESs, the probabilistic supervisory problem, and the main results

of [11], [18], [19] are introduced.

A. Modeling PDES

Following [11], [18], a probabilistic DES is modeled as a probabilistic generatorG = (Q, Σ,

δ, q0, p), whereQ is the nonempty finite set of states,Σ is a finite alphabet whose elements we

will refer to as event labels,δ : Q×Σ → Q is the (partial) transition function,q0 ∈ Q is the initial

state, andp : Q × Σ → [0, 1] is the statewise event probability distribution, i.e. for any q ∈ Q,
∑

σ∈Σ p(q, σ) ≤ 1. The probability that the eventσ ∈ Σ is going to occur at the stateq ∈ Q is
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p(q, σ). For generatorG to be well-defined,(i) p(q, σ) = 0 should hold if and only ifδ(q, σ)

is undefined and(ii) ∀q
∑

σ∈Σ p(q, σ) ≤ 1. The probabilistic generatorG is nonterminating if,

for every reachable stateq ∈ Q,
∑

σ∈Σ p(q, σ) = 1. Conversely,G is terminating if there is at

least one reachable stateq ∈ Q such that
∑

σ∈Σ p(q, σ) < 1. The probability that the system

terminates at stateq is 1 −
∑

σ∈Σ p(q, σ). Throughout the sequel, unless stated otherwise, we

assume nonterminating generators. If a PDES is terminating, it can easily be transformed into a

nonterminating generator using the technique described in[11].

The state transition function is traditionally extended byinduction on the length of strings to

δ : Q×Σ∗ → Q in a natural way. For a stateq, and a strings, the expressionδ(q, s)! will denote

that δ is defined for the strings in the stateq. Note that the definition of PDES does not contain

marking states since the probabilistic specification languages considered in this paper are prefix

closed languages.

The languageL(G) generated by a probabilistic DES generatorG = (Q, Σ, δ, q0, p) is L(G) =

{s ∈ Σ∗ | δ(q0, s)!}. The probabilistic language generated byG is defined as:

Lp(G)(ǫ) = 1

Lp(G)(sσ) =











Lp(G)(s) · p(δ(q0, s), σ), if δ(q0, s)!

0, otherwise.

Informally, Lp(G)(s) is the probability that the strings is executed inG. Also, Lp(G)(s) > 0

iff s ∈ L(G).

For each stateq ∈ Q, we define the functionρq : Σ × Q → [0, 1] such that for anyq′ ∈ Q,

σ ∈ Σ, we haveρq(σ, q′) = p(q, σ) if q′ = δ(q, σ), and 0 otherwise. The functionρq is a

probability distribution on the setΣ×Q. Also, for a stateq, we definethe set of possible events

to bePos(q) := {σ ∈ Σ|p(q, σ) > 0}, or, equivalently,Pos(q) := {σ ∈ Σ|δ(q, σ)!}.

Next, the synchronous product of (nonprobabilistic) discrete event systems (DESs) that un-

derlie PDESs is defined in a standard manner. For a probabilistic generatorG = (Q, Σ, δ, q0, p),

the (nonprobabilistic) discrete event system (DES) that underliesG will be denotedGnp (i.e.,

Gnp = (Q, Σ, δ, q0)) throughout the sequel. LetGnp
1 andGnp

2 be the nonprobabilistic generators

(DESs) underlyingG1 = (Q1, Σ, δ1, q01
, p1) and G2 = (Q2, Σ, δ2, q02

, p2), respectively, i.e.,

Gnp
1 = (Q1, Σ1, δ1, q01

) andGnp
2 = (Q2, Σ, δ2, q02

).
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Definition 1: The synchronous product ofGnp
1 = (Q1, Σ, δ1, q01

) and Gnp
2 = (Q2, Σ, δ2, q02

),

denotedGnp
1 ‖ Gnp

2 , is the reachable sub-DES of DESGa = (Qa, Σ, δ, q0), whereQa = Q1 ×

Q2, q0 = (q01
, q02

), and, for anyσ ∈ Σ, qi ∈ Qi, i = 1, 2, it holds thatδ((q1, q2), σ) =

(δ1(q1, σ), δ2(q2, σ)) wheneverδ1(q1, σ)!, andδ2(q2, σ)!.

B. Probabilistic Supervisors: Existence and Synthesis

As in classical supervisory control theory, the setΣ is partitioned intoΣc andΣu, the sets of

controllable and uncontrollable events, respectively. Deterministic supervisors for DES are gen-

eralized toprobabilistic supervisors. The control technique used is calledrandom disablement.

Instead of deterministically enabling or disabling controllable events, probabilistic supervisors

enable them with certain probabilities. This means that, upon reaching a certain stateq, the

control pattern is chosen according to supervisor’s probability distributions of controllable events.

Consequently, the controller does not always enable the same events when in the stateq.

Let x : L(G) → [0, 1]Σc. For a PDESG = (Q, Σ, δ, q0, p), a probabilistic supervisoris a

function Vp : L(G) → [0, 1]Σ such that

(∀s ∈ L(G))(∀σ ∈ Σ)Vp(s)(σ) =











1, if σ ∈ Σu

x(s)(σ), otherwise.

Therefore, after observing a strings, the supervisor enables eventσ with probabilityVp(s)(σ).

After a set of controllable events to be enabled has been decided upon (uncontrollable events

are always enabled), the system acts as if supervised by a deterministic supervisor. Given sets

A, B, we will denote the power set ofA by P(A), and the set difference ofA andB by A\B.

Let q ∈ Q be the state of the plant afters ∈ L(G) has been observed. The plantG under the

control of the supervisorVp will be denotedVp/G. The probability that the eventα ∈ Σ will

occur in the controlled plantVp/G after strings has been observed is equal to:

P (α in Vp/G|s) =
∑

Θ∈P(Pos(q)∩Σc)

P (α|Vp enablesΘ after s) · P (Vp enablesΘ|s) (1)

where

P (α|Vp enablesΘ after s)=



























p(q, α)
∑

σ∈Θ∪Σu

p(q, σ)
, if α ∈ Θ ∪ Σu

0, otherwise
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P (Vp enablesΘ|s) =
∏

σ∈Θ

Vp(s)(σ) ·
∏

σ∈(Pos(q)∩Σc)\Θ

(1 − Vp(s)(σ))

The goal is to match the behaviour of the controlled plant with a given probabilistic speci-

fication language. We call this problem theProbabilistic Supervisory Control Problem (PSCP).

More formally:

Given a plant PDESGp and a specification PDESGr, find, if possible, a probabilistic supervisor

Vp such thatLp(Vp/Gp) = Lp(Gr).

An example of probabilistic generators representing a plant and a requirements specification

is shown in Fig. 1. Controllable events are marked with a bar on their edges.

γ : 0.4

β : 0.2

qr0

β : 0.1

Gp Gr

β : 0.5

qp1 qr1qp0

α : 0.1

γ : 0.2

τ : 0.4

θ : 0.3θ : 0.6

τ : 0.2

α : 0.1

β : 0.9

Fig. 1. PlantGp, and requirements specificationGr

Next, we present the conditions for the existence of a probabilistic supervisor for the PSCP

from [11], [18].

Theorem 1:Let Gp = (Qp, Σ, δp, qp0
, pp) andGr = (Qr, Σ, δr, qr0

, pr) be two nonterminating

PDESs with disjoint state setsQp andQr. Then, letGnp
p andGnp

r be the nonprobabilistic gener-

ators underlyingGp andGr, respectively, i.e.Gnp
p = (Qp, Σ, δp, qp0

) andGnp
r = (Qr, Σ, δr, qr0

).

Also, let Gs = (Qs, Σ, δs, q0s
) be the synchronous product of generatorsGnp

p and Gnp
r , Gs =

Gnp
p ‖ Gnp

r . There exists a probabilistic supervisorVp such thatLp(Vp/Gp) = Lp(Gr) iff for all

(q, r) ∈ Qs, the following two conditions hold:

(i) Pos(q) ∩ Σu = Pos(r) ∩ Σu, and for allσ ∈ Pos(q) ∩ Σu,

pp(q, σ)
∑

α∈Σu

pp(q, α)
=

pr(r, σ)
∑

α∈Σu

pr(r, α)
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(ii) Pos(r) ∩ Σc ⊆ Pos(q) ∩ Σc, and, if Pos(q) ∩ Σu 6= ∅, then for allσ ∈ Pos(q) ∩ Σc,

pr(r, σ)

pp(q, σ)

∑

α∈Σu

pp(q, α) +
∑

α∈Pos(q)∩Σc

pr(r, α) ≤ 1.

Conditions (i) and (ii) together are necessary and sufficient for the existence of a probabilistic

supervisor. The first part of both conditions corresponds tocontrollability as used in classical

supervisory theory (namely, the conditionPos(q)∩Σu = Pos(r)∩Σu of (i), andPos(r)∩Σc ⊆

Pos(q) ∩ Σc of (ii)). The remaining equations and inequalities correspond to the conditions for

probability matching.

The results hold for nonterminating generators. Terminating PDESs can be transformed into

nonterminating as shown in [11].

Also, it should be stressed that a special case was implicitly considered in the previous theorem.

This special case arises when all the possible events in a state of the plant are controllable. Then,

disabling all the events can cause termination. In order to avoid this (as nonterminating generators

are considered), there is always at least one event enabled (for details, an interested reader is

referred to [18]).

When the conditions are satisfied, a solution to the PSCP exists. The probabilistic supervisor

can then be computed by the fixpoint iteration algorithm as presented in [18], [19].

III. T HE METRIC FOR THE CLOSEST APPROXIMATION

In this section, the problem of optimal supervisory controlin our probabilistic setting is

described, related research done on pseudometrics on states of probabilistic systems is reviewed,

and the chosen metric is presented.

A. Problem Formulation

In the case when the conditions for the existence of a solution to the probabilistic supervisory

control problem are not satisfied, we search for a suitable approximation. We define the problem

as follows.

Optimal Probabilistic Supervisory Control Problem (OPSCP): Let Gp = (Qp, Σ, δp, qp0
, pp) be

a plant PDES, and letGr = (Qr, Σ, δr, qr0
, pr) be a requirements specification represented as

a PDES. If there is no probabilistic supervisorVp such thatLp(Vp/Gp) = Lp(Gr) (i.e., the

conditions of Theorem 1 fail), find, if it exists,Vp such that
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1) L(Vp/Gp) ⊆ L(Gr) and supervisorVp is maximally permissive in the nonprobabilistic

sense (i.e.,L(Vp/Gp) is the supremal controllable sublanguage ofL(Gr) with the respect

to Gp).

2) The probabilistic behaviour of the controlled plant is “as close as possible” to the proba-

bilistic behaviour of the requirements specification restricted to the supremal controllable

sublanguage ofL(Gr) with the respect toGp.

Let G = Vp/Gp = (S, Σ, δ, s0, p) be the closest approximation.

The first criterion is straightforward. The requirementGr represents a safety constraint: the

controlled plant is not allowed to generate strings not inL(Gr) even with the smallest of

probabilities. Further, the criterion of maximal permissiveness is a standard one for optimality

of supervisory control. The second criterion, on the other hand, is probabilistic: apseudometric

on the initial states of the probabilistic generatorsG and an appropriately modifiedGr is chosen

as a measure of probabilistic similarity. The requirementsspecificationGr is modified such

that its nonprobabilistic behaviour is reduced to the maximal permissible legal nonprobabilistic

behaviour of the plant under control. In other words, the (nonprobabilistic) language of the

modified specification is the supremal controllable sublanguage ofL(Gr) with respect toGp.

Consequently, the probabilities of the specification are appropriately normalized as it makes

sense to revise the specification so that probabilities of the events inadmissible for not satisfying

the first criterion are redistributed over the admissible ones.

B. Probabilistic pseudometrics

Probabilistic bisimulationis commonly used to define an equivalence relation between prob-

abilistic systems. However, probabilistic bisimulation is not a robust relation: roughly speaking,

two states of probabilistic systems are bisimilar if and only if they have the same transitions

with exactly the same probabilities to states in the same equivalence classes.

As a more robust way to compare probabilistic systems, a notion ofpseudometricis introduced.

A pseudometric on a set of statesQ is a functiond : Q × Q → R that defines a distance

between two elements ofQ, and satisfies the following conditions:d(x, y) ≥ 0, d(x, x) = 0,

d(x, y) = d(y, x), andd(x, z) ≤ d(x, y)+d(y, z), for anyx, y, z ∈ Q. If all distances are in[0, 1],

the pseudometric is1-bounded. In the sequel, we will use the terms metric and pseudometric

interchangeably.
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Little work on metrics has focused on generative models. Thefirst paper that discussed the

use of a metric as a way to measure the distance between two probabilistic processes is [22].

This early work considers deterministic generative probabilistic systems. The distance between

processes is a number between0 and 1, and represents a measure of a behavioural proximity

between the processes: the smaller the number, the smaller the distance. The work of [5] suggests

a metric based on probabilities of occurrence of strings in languages generated by two automata.

More precisely, the distance between two automata in the metric is defined as a maximal

difference in occurrence probabilities of strings in the corresponding languages. Probabilistic

generators are used to model probabilistic systems in [23].In a symbolic pattern recognition

application, a metric is introduced to measure the distancebetween the original model and

the transformed one, where the transformed model has the same long term distribution over

the states as the original one. The work of [20] introduces a pseudometric on states for a

large class of probabilistic automata, including reactiveand generative probabilistic automata.

The pseudometric is based on the Kantorovich metric on distributions [24] (also known as

the Hutchinson metric). The metric is characterized as the greatest fixed point of a function.

Two states are at distance0 in this metric if and only if they are probabilistic bisimilar. This

is the metric we will use in the solution of our problem. The metric intuitively matches our

notion of the distance between PDESs and accounts for all differences between corresponding

transition probabilities, as opposed to e.g., that of [22] that, roughly speaking, considers only

the maximum of the differences between the corresponding probabilities. Furthermore, as the

metric is suggested for a large class of systems, it allows for an extension of our work to

e.g., nondeterministic systems. The metric discounts the future. The concept of discount has

been widely applied in game theory, economics and optimal control. From an engineering

point of view, one cares more about an error in the near futurethan the one in the distant

future [25]. Also, there is a simple algorithm to compute distances in this metric for our

generative, deterministic model (see Section IV). Further, as presented in [26], the metric has both

logical and trace characterization. The logical characterization measures the distance between

two systems by a[0, 1]-valued formula that distinguishes between the systems themost, while

the trace characterization describes the similarity between the probabilistic traces of similar

systems. More precisely, the trace characterization showsthat the metric measures not only the

difference in (appropriately discounted) occurrence probabilities of strings in two systems, but
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also differences in (appropriately discounted) occurrence probabilities of certain sets of strings

as well as complicated properties of strings.

For reactive systems, the work of [20] is closely related to [27]–[30]. Compared to the

classical reactive models of [27], [29], [30], a generativemodel is more general: for every

state, it contains not only the information about relative probabilities of transitions on the same

event, but also information on relative probabilities of transitions on different events [31], [32].

In the probabilistic model checking literature, the model of [30] is extended with a state labeling

function that assigns to each state a set of atomic propositions valid in that state, i.e.probabilistic

transition systemsof [30] are extended to(labeled) discrete time Markov chains[33], [34].

Our generative model can be transformed to (labeled) discrete time Markov chain [33], [34],

but with a state space expansion by a factor ofO(|Σ|). Also, with the same state expansion

factor, our generators can be converted to thelabeled concurrent Markov chainsof [28] and

partial labeled Markov chainsof [27], [29] (standard Markov decision processes). However,

as the current mathematical apparatus allows for direct reasoning about distance between our

generators, no benefits in regards to the optimal supervisory control of PDESs would have been

gained by a transformation to one of the aforementioned models. For a more detailed discussion

of probabilistic metrics, see [35].

C. The metric

Let G = (Q, Σ, δ, q0, p) be a PDES, whereQ = {q0, q1, . . . qN−1}. This is the system that will

be used throughout the sequel. Our pseudometric is based on the metric suggested in [20] for

a large class of automata which includes our generator: the two metrics are the same up to a

constant.

First, [20] introduces the classM of 1-bounded pseudometrics on states with the (partial)

ordering

d1 � d2 if ∀qq, qr ∈ Q d1(qq, qr) ≥ d2(qq, qr) (2)

as was initially suggested in [28]. It is proved that(M,�) is a complete lattice.

Then, letd ∈ M, and let the constante ∈ (0, 1] be adiscount factorthat determines the degree

to which the difference in the probabilities of transitionsfurther in the future is discounted: the

smaller the value ofe, the greater the discount on future transitions. Next, we introduce some
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useful notation. Letqq, qr ∈ Q and letρqq
andρqr

be the distributions onΣ×Q induced by the

statesqq and qr, respectively. Assume0 ≤ i, j ≤ N − 1. For notational convenience, we will

write ρσ,i instead ofρqq
(σ, qi), and, similarly,ρ′

σ,j instead ofρqr
(σ, qj). Without loss of generality,

we assume that the total mass ofρqq
is greater than or equal to the total mass ofρqr

:

∑

σ∈Σ
0≤i≤N−1

ρσ,i ≥
∑

σ∈Σ
0≤i≤N−1

ρ′
σ,i.

This assumption is not needed for nonterminating automata.Then, the distance between the

distributionsρqq
and ρqr

, d(ρqq
, ρqr

) (note the slight abuse of notation) for our generators is

given as:

Maximize









∑

σ∈Σ
0≤i≤N−1

aσ,iρσ,i









−









∑

σ∈Σ
0≤i≤N−1

aσ,iρ
′
σ,i









(3)

subject to 0 ≤ aσ,i ≤ 1, σ ∈ Σ, 0 ≤ i ≤ N − 1

aσ,i − aα,j ≤ cσα
ij , σ, α ∈ Σ, 0 ≤ i, j ≤ N − 1

where

cσα
ij =











e · d(qi, qj) if σ = α

1 otherwise

If the total mass ofρqq
is strictly less than the total mass ofρqr

, d(ρqq
, ρqr

) is defined to be

d(ρqr
, ρqq

).

The pseudometric on states,dfp, is then given as the greatest fixed-point of the functionD on

M (here, for probabilistic generators, we give a simplified version of that in [20]):

D(d)(qq, qr) = d(ρqq
, ρqr

), d ∈ M, qq, qr ∈ Q (4)

The definition of the metric on distributions is a modified version of that of [20]: the metric

is changed such that the distances between the states indfp are larger by a factor of1/e than the

distances in the metric defined in [20]. This is done so that the distances in our metric are in

[0, 1] interval instead of[0, e]. A number of existing results can be reused in reasoning about our

metric. The distance between distributions (3) is a1-bounded pseudometric, and is consistent

with the ordering (2) (see [28], [30]). The proofs that the function defined by (4) is monotone on

M, and that it does have a greatest fixed point originate from [28]. Also, according to Tarski’s
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fixed point theorem, the greatest fixed point of functionD can be reached through an iterative

process that starts from the greatest element. As the numberof transitions from a state of a

probabilistic generator is finite, the greatest fixed point of the functionD is reached after at

mostω iterations ( [20], [28]) (equivalently, the closure ordinal of D is ω).

The work of [20] does not offer any algorithms for calculation of the distances in their metric.

In the following section, two algorithms for calculating distances in our metric are proposed.

IV. CALCULATING THE METRIC

As a prelude to the solution of the optimal approximation problem, two algorithms that

calculate/approximate distances in the metricdfp are suggested. First, the functionD is simplified,

and then the algorithms are described, and their correctness proven.

A. Simplifying functionD for deterministic generators

The function that represents the pseudometric on distributions is defined as the linear pro-

gramming problem (3). We now show that, for deterministic generators, this function, and

consequently, functionD as defined by (4), can be simplified by explicitly solving the linear

programming problem (3).

First, recall that our generators are deterministic: for aneventσ and a stateq, there is at most

one stateq′ such thatq′ = δ(q, σ). For the purposes of the following analysis of our deterministic

generators, we rewrite the objective function of the optimization problem of (3) as:

∑

σ∈Σ

(aσ,i(qq ,σ)ρσ,i(qq ,σ) − aσ,j(qr,σ)ρ
′
σ,j(qr ,σ)) (5)

wherei(qq, σ) = i such thatqi = δ(qq, σ) if δ(qq, σ)!, andi(qq, σ) = 0, otherwise. We arbitrarily

choosei(qq, σ) to be 0 when δ(qq, σ) is not defined although we could have chosen any other

i ∈ {1, . . . , N − 1}. This is because whenδ(qq, σ)! does not hold, thenρσ,i(qq ,σ) = 0 for any

i(qq, σ) ∈ {1, . . . , N − 1}. Similarly, j(qr, σ) = j such thatqj = δ(qr, σ) if δ(qr, σ)!, and

j(qr, σ) = 0, otherwise. For readability purposes, we will writei instead ofi(qq, σ), and j

instead ofj(qr, σ).

We are now ready to state our first result.

Lemma 1:Let G = (Q, Σ, δ, q0, p) be a PDES. Then, the functionD simplifies to:

D(d)(qq, qr) =
∑

σ∈Σ

max(ρσ,i − ρ′
σ,j + cijρ

′
σ,j , cijρσ,i) (6)
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where, again,cij = e · d(qi, qj) as before, andi and j denotei(qq, σ) and j(qr, σ), respectively,

as defined in (5).

Proof: The objective function (5) can be maximized by maximizing each of its summands

separately. In order to explain this observation, we consider a summandaσ,iρσ,i−aσ,jρ
′
σ,j . Due to

the generator’s determinism, there is no other nonzero summand containingaσ,k, 0 ≤ k ≤ N−1,

k 6= i, k 6= j. Therefore, the last constraint of (3) for any two coefficientsaσ,i andaα,j (0 ≤ i, j ≤

N − 1) from different summands becomesaσ,i − aα,j ≤ 1. This constraint is already implied by

the first constraint, so we can independently pick the coefficientsa in different summands, and,

consequently, independently maximize the summands in order to maximize the sum.

In order to maximize a summand of the objective function (5),we solve the following linear

programming problem forσ ∈ Σ:

Maximize (aσ,iρσ,i − aσ,jρ
′
σ,j)

subject to0 ≤ aσ,i, aσ,j ≤ 1,

aσ,i − aσ,j ≤ cij

where i and j are defined as in (5), andcij = ed(qi, qj) as before. Also, note that the set of

constraints does not contain the inequalityaσ,j − aσ,i ≤ cji. In order to maximize the given

function, the coefficientaσ,i is to be chosen to be greater thanaσ,j since the given constraints

allow it. In that case, sincecij = cji, if aσ,i − aσ,j ≤ cij, then aσ,j − aσ,i ≤ cji follows, so

the latter constraint is redundant. Further, it is not hard to see that the solution of the given

linear programming problem forρσ,i ≥ ρ′
σ,j is equal toρσ,i − ρ′

σ,j + cijρ
′
σ,j . We can solve this

problem using graphical method, simplex method or using thefollowing line of reasoning. In

order to maximize the given function, we can either chooseaσ,i to be 1 and then pickaσ,j so

that it has the minimal value for the given constraints, or wechooseaσ,j to be 0, and then

pick aσ,i so that it has the maximal value under the given constraints.In the first case, we pick

aσ,i to be 1,aσ,j to be 1 − cij, and value of the objective function isρσ,i − ρ′
σ,j + cijρ

′
σ,j . In

the second case, sinceaσ,j is 0, thenaσ,i is equal tocij , and the objective function becomes

cijρσ,i. The latter is our solution, sincecijρσ,i = cij

(

ρσ,i − ρ′
σ,j + ρ′

σ,j

)

≤ ρσ,i −ρ′
σ,j + cijρ

′
σ,j (for

ρσ,i ≥ ρ′
σ,j and cij ∈ [0, 1]). Using the same reasoning, forρσ,i < ρ′

σ,j , the maximum is reached

at (ai, aj) = (cij, 0) and its value iscijρσ,i.
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Now, we put together the presented solution of the linear programming problem (3). The

distance between the distributionsρqq
andρqr

is then:

d(ρqq
, ρqr

) =
∑

σ∈Σ

f(d, qq, qr, σ), where (7)

f(d, qq, qr, σ) =















ρσ,i − ρ′
σ,j + cijρ

′
σ,j if ρσ,i ≥ ρ′

σ,j

cijρσ,i otherwise

or, equivalently,

f(d, qq, qr, σ) = max(ρσ,i − ρ′
σ,j + cijρ

′
σ,j , cijρσ,i),

wherecij = e·d(qi, qj) as before, andi andj denotei(qq, σ) andj(qr, σ), respectively, as defined

as in (5).

To summarize, the functionD(d) for our model is given as:

D(d)(qq, qr) =
∑

σ∈Σ

max(ρσ,i − ρ′
σ,j + cijρ

′
σ,j , cijρσ,i)

where, again,cij = e · d(qi, qj) as before, andi and j denotei(qq, σ) and j(qr, σ), respectively,

as defined in (5).

As stated in Section III-C, the pseudometricdfp is now characterized as the greatest fixed

point of functionD.

B. Calculating the Pseudometric

Fore ∈ (0, 1), we will prove that the functionD has only one fixed point,d∗, and, consequently,

dfp = d∗. Then, two algorithms for calculating the distances in metric dfp are suggested.

First, some useful definitions and results from linear algebra are introduced.

A real n × n matrix A = (aij) defines a linear mapping fromRn to R
n, and we will write

A ∈ L(Rn) to denote either the matrix or linear function, as no distinction between the two will

be made. Also, the absolute value of column vectorx = (x1, . . . , xn)T ∈ R
n will be denoted by

|x|, and defined as|x| = (|x1|, . . . , |xn|)
T . A partial ordering onRn is defined in a natural way:

∀x, y ∈ R
n x ≤ y ⇔ (∀i = 1, . . . , n xi ≤ yi)
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Definition 2: For any complexn × n matrix A, the spectral radius ofA is defined as the

maximum of|λ1|, · · · , |λn|, whereλ1, · · · , λn are the eigenvalues ofA.

The spectral radius ofA, denotedϕ(A), satisfiesϕ(A) ≤ ||A||, where ||A|| is an arbitrary

norm on R
n. During the course of the following proof, we will make use ofinfinity norm

||A||∞ = max
1≤i≤n

∑n
j=1 |aij |.

Definition 3 ( [36]): An operatorG : D ⊆ R
n → R

n is called aP -contraction on a set

D0 ⊆ D if there exists a linear operatorP ∈ L(Rn) such thatP ≥ 0, ϕ(P ) < 1 and

|G(x) − G(y)| ≤ P |x − y| for all x, y ∈ D0. (8)

Now, let d ∈ M. Next, we define the functionV : M → [0, 1]N
2

:

V(d) = (d(q0, q0), d(q0, q1), . . . , d(qN−1, qN−2), d(qN−1, qN−1))
T .

Note that the vectorV(d) could be further cut down, asd(s, s) = 0 and d(s, t) = d(t, s) for

any s, t ∈ Q. However, for ease of presentation, we will not decrease thesize of the vector.

Therefore,V(d) = (V1(d),V2(d), · · · ,VN2(d))T , whereVk(d) for k ∈ {1, . . . , N2} is given as:

Vk(d) = d(qi, qj), i = k div (N + 1), j = (k − 1) mod N.

Now, the functionD is redefined in a natural way asD(V(d)) = (D1(V(d)), . . . ,DN2(V(d)))T ,

where for anyk ∈ {1, . . . , N2}:

Dk(V(d)) = d(ρqi
, ρqj

), i = k div (N + 1), j = (k − 1) mod N. (9)

Further, letD0 = {V(d)|d ∈ M}.

Lemma 2:The functionD is a P -contraction onD0.

Proof: Let d′, d′′ ∈ M, andd
′ = V(d′), andd

′′ = V(d′′). Let k ∈ {1, . . . , N2}, and leti

and j (0 ≤ i, j ≤ N − 1) be given as in (9). Also, lett(i, σ) = t such thatδ(qi, σ) = qt if

δ(qi, σ)!, andt(i, σ) = 0, otherwise. Similarly,l(j, σ) = l such thatδ(qj , σ) = ql if δ(qj, σ)!, and

l(j, σ) = 0, otherwise. Again, for notational convenience, we will write t instead oft(i, σ), and

l instead ofl(j, σ). Also, we will write ρσ,t instead ofρqi
(σ, qt), and, similarly,ρ′

σ,l instead of
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ρqj
(σ, ql) for qt, ql ∈ Q. Then:

|Dk(d
′) −Dk(d

′′)| =
∣

∣

∣d′(ρqi
, ρqj

) − d′′(ρqi
, ρqj

)
∣

∣

∣

= |
∑

σ∈Σ

max(ρσ,t − ρ′
σ,l + ed′(qt, ql)ρ

′
σ,l, ed

′(qt, ql)ρσ,t)

−
∑

σ∈Σ

max(ρσ,t − ρ′
σ,l + ed′′(qt, ql)ρ

′
σ,l, ed

′′(qt, ql)ρσ,t)|

= |
∑

σ∈Σ

(max(ρσ,t − ρ′
σ,l + ed′(qt, ql)ρ

′
σ,l, ed

′(qt, ql)ρσ,t)

− max(ρσ,t − ρ′
σ,l + ed′′(qt, ql)ρ

′
σ,l, ed

′′(qt, ql)ρσ,t))|

=

∣

∣

∣

∣

∣

∑

σ∈Σ

e(d′(qt, ql) − d′′(qt, ql))min(ρσ,t, ρ
′
σ,l)

∣

∣

∣

∣

∣

















since, for anyd ∈ M, it holds that:

max(ρσ,t − ρ′
σ,l + ed(qt, ql)ρ

′
σ,l, ed(qt, ql)ρσ,t) =















ρσ,t − ρ′
σ,l + ed(qt, ql)ρ

′
σ,l, if ρσ,t ≥ ρ′

σ,l

ed(qt, ql)ρσ,t, otherwise

















≤ e
∑

σ∈Σ

min(ρσ,t, ρ
′
σ,l) |d

′(qt, ql) − d′′(qt, ql)| (10)

≤ e
∑

σ∈Σ
m=tN+l+1

min(ρσ,t, ρ
′
σ,l) |d

′
m − d

′′
m| . (11)

Note thatt = t(i, σ) and l = l(j, σ) are also functions ofk (sincei and j are functions ofk).

Now, without the explicit construction of matrixP , we can see from (11) that there existsP

such that|D(d′) −D(d′′)| ≤ P |d′ − d
′′| where

||P ||∞ = max
k

{e
∑

σ∈Σ

min(ρσ,t, ρ
′
σ,l)}

≤ e

(since
∑

σ∈Σ
t∈{0,...,N−1}

ρσ,t = 1,
∑

σ∈Σ
l∈{0,...,N−1}

ρ′
σ,l = 1)

< 1 (sincee ∈ (0, 1))

Therefore,ϕ(P ) < 1 and, since, obviously,P ≥ 0, thenD is P -contraction.

Lemma 3:Let d′, d′′ ∈ M, andd
′ = V(d′), andd

′′ = V(d′′). For anyk ∈ {1, . . . , N2}, there

existsm ∈ {1, . . . , N2} such that:

|Dk(d
′) −Dk(d

′′)| ≤ e |d′
m − d

′′
m|
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Proof: See the Appendix.

Theorem 2:For anyd
0 ∈ D0, the sequence

d
n+1 = D(dn), n = 0, 1, . . .

converges to the unique fixed point ofD in D0, d
∗, and the error of convergence is given

componentwise (k ∈ {1, . . . , N2}) as:

|dn
k − d

∗
k| ≤ (1 − e)−1en, n = 1, 2, . . . (12)

Proof: Note that this is a variant of the contraction-mapping theorem extended toP -

contractions ( [36], Theorem 13.1.2.). A similar proof technique is employed.

Let n, m ≥ 1. Then:

|dn+m
k − d

n
k | (13)

≤
m
∑

t=1

|dn+t
k − d

n+t−1
k |

≤
m
∑

t=1

et|dn
i(t) − d

n−1
i(t) |

(applying Lemma 3t times, wherei(t) ∈ {1, . . . , N2})

≤
m
∑

t=1

etmax
i(t)

{|dn
i(t) − d

n−1
i(t) |}

≤

(

m
∑

t=1

et

)

|dn
j − d

n−1
j | (for somej ∈ {1, . . . , N2})

≤ (1 − e)−1 e|dn
j − d

n−1
j | (since

m
∑

t=0

et ≤ (1 − e)−1 for m ≥ 0)

≤ (1 − e)−1en|d1
l − d

0
l | (for somel ∈ {1, . . . , N2}, using Lemma 3(n − 1) times)

≤ (1 − e)−1en (14)

Therefore, the sequence{dn
k}n≥0 is a Cauchy sequence and hence converges to somed

∗
k, and,

consequently, the sequence{dn}n≥0 converges to somed∗ ∈ D0. Also, we have:

|d∗ −D(d∗)| ≤ |d∗ − d
n+1| + |D(dn) −D(d∗)| ≤ |d∗ − d

n+1| + P |dn − d
∗|

When we letn → ∞, we see thatd∗ = D(d∗). Also, the componentwise error estimate of (12)

follows from (14) whenm → ∞ in (13).
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Finally, it should be proven thatd∗ is the only fixed point inD0. Assume that there is another

fixed point ofD in the same setD0, d
+. Then,

|d∗ − d
+| = |D(d∗) −D(d+)| ≤ P |d∗ − d

+|

Hence,(I − P )|d∗ − d
+| ≤ 0. However, sinceϕ(P ) < 1, (I − P )−1 =

∑∞
i=0 P i ≥ 0 (see [36],

2.4.5.), then|d∗ − d
+| ≤ 0. Therefore,d∗ = d

+.

Now, using the presented analysis, the following two algorithms for the calculation of the

distances between the states of PDESs in the chosen pseudometric are suggested.

Algorithm 1 Theorem 2 proves that the system of equations

d = D(d) (15)

has a unique solution. The system (15) is a system of linear equations. Therefore, the system (15)

can be rewritten into the standard formAd = b, whereA is aN2×N2 matrix andb is a column

vector of dimensionN2. Therefore, the distances in the metricdfp can be calculated by solving

this system of linear equations. The distances found are exact solutions (if the round-off error

is disregarded).

Algorithm 2 Theorem 2 also suggests an iterative algorithm to calculatedistances in the metric

dfp between the states of a probabilistic generator. The algorithm turns out to be a straightforward

modification of that of [30] that calculates distances in a pseudometric suggested for a different

kind of probabilistic system, derived by using terminal coalgebras. Letd0(qq, qr) = 0 for any

two statesqq, qr ∈ Q. As before, letρqq
andρqr

be the distributions induced by the statesqq and

qr, respectively. Then-th iteration of the algorithm calculates the distancedn between each two

statesqq, qr ∈ Q:

dn(qq, qr) =
∑

σ∈Σ

max(ρσ,i − ρ′
σ,j + cijρ

′
σ,j , cijρσ,i)

wherecij = e · dn−1(qi, qj), andi = i(qq, σ) andj = j(qr, σ) are defined as in (5). The accuracy

of the solution found at then-th iteration is(1 − e)−1en.

The iterative method can be useful for systems with largeN2, where the direct method can

be rather expensive. Furthermore, the mathematical apparatus used to reach the iterative method

will be reused in the solution of the closest approximation problem in Section V.

An important feature ofdfp is to be noted: metricdfp is defined on any two states of a single

PDES, not on two states that belong to different PDESs. In order to define the distance between
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two PDESs (with disjoint sets of states) as the distance between their initial states, a new PDES

is created that represents the union of the two PDESs (the union is defined in a natural way as

will be presented formally in Section V-B).

Also, it should be stressed that the presented algorithm works for e ∈ (0, 1). However, [37]

presented an algorithm for calculating distances in the pseudometric of [29] for a variant of

Markov chains for the case whene = 1. The key element in the algorithm is Tarski’s decision

procedure for the first order theory of real closed fields. We believe that this algorithm can

be modified to calculatedfp between the states of probabilistic generators. However, as this

algorithm is impractical, an efficient calculation of distances in the metric fore = 1 is still an

open problem.

V. CLOSEST APPROXIMATION: ALGORITHM

In this section the algorithm that solves the closest approximation problem is presented. All

the results in the sequel are applicable fore ∈ (0, 1).

First, the formulation of the closest approximation problem is repeated. Assume that the

plant is given as PDESGp = (Qp, Σ, δp, qp0
, pp), and the requirements specification is given

as Gr = (Qr, Σ, δr, qr0
, pr). If there is no probabilistic supervisorVp such thatLp(Vp/Gp) =

Lp(Gr), the optimal solution is sought. The solution is optimal in the following sense. It is

assumed that the nonprobabilistic language of the requirement is a safety requirement: no other

strings are allowed in the plant. Then, it is required that maximal permissible behaviour (in the

nonprobabilistic sense) is achieved. In this case, the probabilistic behaviour of the controlled

plant should be as close as possible to the requirements specification that is now normalized

so that it is constrained to the supremal controllable nonprobabilistic language. The proposed

algorithm uses this separation of probabilistic and nonprobabilistic aspects of optimality so that

it deals with each aspect separately: the first part handles the “nonprobabilistic optimality”, and

the second part handles the “probabilistic optimality”.

A. Algorithm: Part I

Before we start looking for the closest approximation in thesense of probability matching, we

resort to the classical supervisory theory of supremal controllable languages. First, the classical

controllability condition (i) of Theorem 1 is checked whileconstructingL(Gp) ∩ L(Gr). Then,
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if the condition is not satisfied, the goal is to findK, the deadlock-free supremal control-

lable sublanguage ofL(Gp) ∩ L(Gr) (with respect toGp). The languageK is required to be

deadlock-free as only nonterminating PDESs are considered. Then, the DES that represents

this languageK, further equipped with distributionpp (appropriately normalized) becomes

the modified plant PDESG1. Also, a DES corresponding to languageK equipped with the

distribution pr appropriately normalized, becomes the desired behaviour PDES G2. Formally,

let the reachable and deadlock-free DESG1a = (T, Σ, ζ, t0) represent languageK. We define a

PDESG1 = (T, Σ, ζ, t0, p1), where the distributionp1 : T × Σ → [0, 1], for any q ∈ T, σ ∈ Σ,

is defined as:

p1(q, σ) =
pp(qp, σ)
∑

σ∈{σ∈Σ|ζ(q,σ)!}
pp(qp, σ)

whereqp = δp(qp0
, s) for any s ∈ K such thatq = ζ(t0, s).

Similarly, let G2a = (Q, Σ, δ, q0) be a DES isomorphic toG1a up to renaming of states, and,

without loss of generalization, assumeT ∩ Q = ∅. Obviously, the nonprobabilistic language

generated byG2a is K, too. Similarly, we define a PDESG2 = (Q, Σ, δ, q0, p) where the

distributionp : Q × Σ → [0, 1], where, for anyq ∈ Q, σ ∈ Σ:

p(q, σ) =
pr(qr, σ)
∑

σ∈{σ∈Σ|δ(q,σ)!}
pr(qr, σ)

whereqr = δr(qr0
, s) for any s ∈ K such thatq = δ(q0, s). Note thatp1 andp are well-defined

as no state minimization on automaton representing language K is performed.

B. Algorithm: Part II

Now, the probability matching equations and inequalities from Theorem 1 are checked. If they

are not satisfied (i.e., there is no probabilistic supervisor Vp such thatLp(Vp/G1) = Lp(G2)),

the goal is to findG′
2 = (Q′, Σ, δ′, q′0, p

′) such that there exists a probabilistic supervisorVp so

that Lp(Vp/G1) = Lp(G
′
2) holds, andG′

2 is closest toG2 in our chosen metric. Without loss of

generality, it is assumed thatQ∩Q′ = ∅. Also, without loss of generality, it is assumed that the

nonprobabilistic automata underlyingG2 andG′
2 are isomorphic (with labeling of events being

preserved). Therefore, the nonprobabilistic automata underlying G2 andG′
2 are identical up to

renaming of states. This assumption is not restrictive as there cannot be any string in the desired

system that does not belong toK, and, therefore, sinceK = L(G2), there cannot be any string

August 19, 2010 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 22

in the desired system that does not belong toL(G2). This comes from the fact thatL(G2) is the

reachable and deadlock-free supremal controllable sublanguage: if any string not inL(G2) would

be allowed in the controlled plant, either the safety or nontermination requirement might not be

met. As our metric is defined on the states of a single system, in order to define distances between

the states of different systems, namelyG2 andG′
2, the union PDESGu = (Q∪Q′, Σ, δu, q0, pu)

is considered, where forσ ∈ Σ andq ∈ Q ∪ Q′:

δu(q, σ) =















δ(q, σ), if q ∈ Q

δ′(q, σ), otherwise
and p(q, σ) =















p(q, σ), if q ∈ Q

p′(q, σ), otherwise.

GeneratorGu is merely a PDES consisting of the union ofG2 and G′
2 with the initial state

arbitrarily chosen (betweenq0 andq′0) to beq0.

Then,M is the set of 1-bounded pseudometrics on the states of this union system with the

same ordering as in (2).

First, note that, considering the isomorphism betweenGnp
2 andG′np

2 , only the distances between

(probability measures on) statesq ∈ Q of G2 andq′ = f(q) ∈ Q′ of G′
2 are of interest, wheref

is the isomorphism betweenGnp
2 andG′np

2 . Also, leth be an isomorphism betweenGnp
2 andGnp

1 .

It is assumed that PDESG2 is in stateq after the occurrence of strings ∈ L(G2) (δ(q0, s) = q).

Then, the closest approximationG′
2 is in stateq′, respectively, whereq′ = f(q). Let ρq be the

probability distribution induced by the stateq ∈ Q of PDESG2 and letρ′
q′ be the probability

distribution induced by the stateq′ ∈ Q′ of PDESG′
2.

Next, a classA of partial functionsa : Q × Q′ → [0, 1] is defined, such that∀q ∈ Q, q′ =

f(q) ∈ Q′ a(q, q′) = d(q, q′), where d ∈ M. Therefore, the classA is the class of all 1-

bounded pseudometrics with domain reduced toQ×Q′, and only distances betweenq ∈ Q and

q′ = f(q) ∈ Q′ defined since the algorithm is independent of the distance between the other

states. Next, we define a family∆ as a set of probability distributions onΣ×Q′. Now, for each

ρ′ ∈ Q′ → ∆, we define functionDρ′ : A → A as (q ∈ Q, q′ = f(q) ∈ Q′, d ∈ A):

Dρ′(d)(q, q′) = d(ρq, ρ
′
q′) andρ′(q′) = ρ′

q′ ,

where, as before,d is lifted to the metric on distributions, andd(ρq, ρ
′
q′) is defined as in (7).

Also, the reversed ordering onA is introduced to match the one in (2):

d1 �
′ d2 if ∀q ∈ Q, q′ = f(q), d1(q, q

′) ≥ d2(q, q
′).
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The fact that(A,�′) is a complete lattice follows from the fact that(M,�) is a complete lattice.

Further, for eachρ′ ∈ Q′ → ∆, we define functiondρ′

fp as the greatest fixed point of function

Dρ′. The problem of finding the optimal approximation reduces now to finding ρ′
m ∈ Q′ → ∆

such thatdρ′m
fp (q0, q

′
0) = m

ρ′
in{dρ′

fp(q0, q
′
0)|ρ

′ ∈ Q′ → ∆} and the conditions for the existence of a

probabilistic supervisor of Theorem 1 are satisfied. It follows straight from the definitions ofDρ′

anddρ′

fp that, for anyρ′ ∈ Q′ → ∆, q ∈ Q, q′ = f(q) ∈ Q′, the distancesdρ′

fp(q, q
′) are distances

in our pseudometric.

We assume thatT = {t0, t1, . . . tN−1}, Q = {q0, q1, . . . qN−1}, and Q′ = {q′0, q
′
1, . . . q

′
N−1},

whereq′i = f(qi), ti = h(qi), i = 0, . . . , N−1. Note that, for probability distributions, a different

notation will be used than the one used in the previous section. Let d ∈ A, 0 ≤ i ≤ N − 1,

Ψ(qi) = Pos(qi), Ψu(qi) = Pos(qi) ∩Σu, andΨc(qi) = Pos(qi) ∩Σc. Also, we will write j for

j(i, σ), thenρqi,σ instead ofρqi
(σ, qk), andρ′

q′
i
,σ instead ofρ′

q′
i
(σ, q′k), k = 0, 1, . . .N − 1. Now,

the functionP : A → A is defined as:

P(d)(qi, q
′
i) = Minimize

ρ′qi,σ

∑

σ∈Ψ(qi)

max(ρqi,σ − ρ′
q′
i
,σ + cjρ

′
q′
i
,σ, cjρqi,σ), (16)

wherecj = e · d(qj, q
′
j) s.t. qj = δ(qi, σ)

subject to

p1(ti, σ)
∑

α∈Ψu(qi)
p1(ti, α)

=
ρ′

q′
i
,σ

∑

α∈Ψu(qi)
ρ′

q′
i
,α

, σ ∈ Ψu(qi), (17)

∑

α∈Ψu(qi) p1(ti, α)

p1(ti, σ)
ρ′

q′
i
,σ +

∑

α∈Ψc(qi)

ρ′
qi,α

≤ 1, σ ∈ Ψc(qi), (18)

∑

α∈Ψ(qi)

ρ′
q′
i
,α = 1, (19)

ρ′
q′
i
,σ ≥ 0, σ ∈ Ψ(qi). (20)

The constraints (17) and (18) represent the conditions for the existence of probabilistic su-

pervisor given by Theorem 1. The functionP is well-defined since, ifρ′
q′
i
,σ = p1(ti, σ) for all

σ ∈ Σ, the constraints (17), (18), (19), (20) are satisfied. Therefore, the optimization problem

has a feasible origin. SinceA is a complete lattice, and the functionP can be easily shown to

be monotone, it has a greatest fixed point. Next, a useful lemma is stated.

Lemma 4:Let (L,�) be a complete lattice, and letf, g : L → L be two monotone functions
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such that∀x ∈ L : g(x) � f(x). Let gfp(f) and gfp(g) denote the greatest fixed point of

functionsf andg, respectively. Then,gfp(g) � gfp(f).

Proof: See the Appendix.

Obviously, because of the definition of functionP, for any functionDρ′ , whereρ′ ∈ Q′ → ∆,

it holds that∀d ∈ A Dρ′(d) �′ P(d). Using Lemma 4, we conclude that the greatest fixed point

of P is greater than or equal to anydρ′

fp, ρ′ ∈ Q → ∆. This greatest fixed point corresponds to

the minimal distance betweenq0 and q′0 because of the reversed ordering onA. Therefore, the

greatest fixed point of functionP corresponds to the distances in our pseudometric where the

distance betweenq0 andq′0 is minimized under the conditions of Theorem 1 for the existence of

a probabilistic supervisor. Consequently, the values of decision variablesρ′
q′ for q′ ∈ Q′ when

the greatest fixed point ofP is reached correspond to the statewise probability distributions of

the optimal approximation.

We suggest an iterative algorithm to calculate the minimum achievable distance (i.e. the only

fixed point of the functionP) up to a desired accuracy and provide the probability distribution

of the system’s achievable behaviour when this distance is reached. The proof pattern used for

the algorithm from Section IV-B is followed. However, as mentioned before, the only relevant

distances are the ones betweenq ∈ Q andq′ = f(q) ∈ Q′.

Let d ∈ A. Again, we assume thatQ = {q0, q1, . . . qN−1}, andQ′ = {q′0, q
′
1, . . . q

′
N−1}, where

q′i = f(qi), i = 0, . . . , N − 1. Further, let us define function̂V : M → [0, 1]N as:

V̂(d) = (d(q0, q
′
0), d(q1, q

′
1), . . . , d(qN−1, q

′
N−1))

T .

Therefore,V̂(d) = (V̂1(d), . . . , V̂N(d))T , where, fork = 1, . . . , N :

V̂k(d) = d(qk−1, q
′
k−1). (21)

The functionP is redefined in a natural way asP(V̂(d)) = (P1(V̂(d)), . . . ,PN(V̂(d)))T , where

for any k ∈ {1, . . . , N}:

Pk(V̂(d)) = P(d)(qk−1, q
′
k−1),

whereq′k−1 = f(qk−1). Also, let P0 = {V̂(d)|d ∈ A}.

Theorem 3:FunctionP is P-contractive onP0.

Proof: Let d′, d′′ ∈ A, andd̂
′ = V̂(d′), andd̂

′′ = V̂(d′′). Next, forq ∈ Q, q′ = f(q) ∈ Q′, we

define setΦ(q) to be the set of all distributionsρ′
q′ that satisfy conditions given by (17), (18), (19),
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and (20). Letk ∈ {1, . . . , N}. Then,Pk(d̂′) = P(d′)(qk−1, q
′
k−1), andPk(d̂′′) = P(d′′)(qk−1, q

′
k−1).

Assume that the minumum of the objective function in (16) in function P(d′)(qk−1, q
′
k−1) is

reached forρ′
q′ = µ for µ ∈ Φ(q). Further, assume that the minumum of the objective function

in (16) in functionP(d′′)(qk−1, q
′
k−1) is reached forρ′

q′ = ν for ν ∈ Φ(q). Let Ψ = Ψ(qk−1).

Also, let j(k, σ) = j such thatqj = δ(qk−1, σ), andf(qj) = q′j . Assume thatPk(d̂
′) ≥ Pk(d̂

′′).

Then:
∣

∣

∣Pk(d̂
′) − Pk(d̂

′′)
∣

∣

∣

= |
∑

σ∈Ψ

max(ρqk−1,σ − µq′
k−1

,σ + ed′(qj , q
′
j)µq′

k−1
,σ, ed′(qj, q

′
j)ρqk−1,σ)

−
∑

σ∈Ψ

max(ρqk−1,σ − νq′
k−1

,σ + ed′′(qj , q
′
j)νq′

k−1
,σ, ed′′(qj , q

′
j)ρqk−1,σ)|

≤ |
∑

σ∈Ψ

max(ρqk−1,σ − νq′
k−1

,σ + ed′(qj, q
′
j)νq′

k−1
,σ, ed

′(qj , q
′
j)ρqk−1,σ)

−
∑

σ∈Ψ

max(ρqk−1,σ − νq′
k−1

,σ + ed′′(qj , q
′
j)νq′

k−1
,σ, ed′′(qj , q

′
j)ρqk−1,σ)| (22)

(for ρ′
q′
k−1

,σ = µq′
k−1

,σ the minimum inPk(d̂′) is reached)

≤ |
∑

σ∈Ψ

(max(ρqk−1,σ − νq′
k−1

,σ + ed′(qj, q
′
j)νq′

k−1
,σ, ed

′(qj , q
′
j)ρqk−1,σ)

− max(ρqk−1,σ − νq′
k−1

,σ + ed′′(qj , q
′
j)νq′

k−1
,σ, ed

′′(qj , q
′
j)ρqk−1,σ))|

≤
∑

σ∈Ψ

|max(ρqk−1,σ − νq′
k−1

,σ + ed′(qj, q
′
j)νq′

k−1
,σ, ed

′(qj , q
′
j)ρqk−1,σ)

− max(ρqk−1,σ − νq′
k−1

,σ + ed′′(qj , q
′
j)νq′

k−1
,σ, ed

′′(qj , q
′
j)ρqk−1,σ)| (23)

(Similarly, whenPk(d̂
′) ≤ Pk(d̂

′′), we get (23), withµq′
k−1

,σ instead ofνq′
k−1

,σ.) Every summand

in (23) has one of the following forms:
∣

∣

∣ρqk−1,σ − νq′
k−1

,σ + ed′(qj , q
′
j)νq′

k−1
,σ − (ρqk−1,σ − νq′

k−1
,σ + ed′′(qj, q

′
j)νq′

k−1
,σ)
∣

∣

∣ or
∣

∣

∣ed′(qj , q
′
j)ρqk−1,σ − ed′′(qj , q

′
j)ρqk−1,σ)

∣

∣

∣ , where

∣

∣

∣ρqk−1,σ − νq′
k−1

,σ + ed′(qj , q
′
j)νq′

k−1
,σ − (ρqk−1,σ − νq′

k−1
,σ + ed′′(qj , q

′
j)νq′

k−1
,σ)
∣

∣

∣

= eνq′
k−1

,σ

∣

∣

∣d′(qj, q
′
j) − d′′(qj, q

′
j)
∣

∣

∣ ≤ eρqk−1,σ

∣

∣

∣d′(qj, q
′
j) − d′′(qj, q

′
j)
∣

∣

∣

and
∣

∣

∣ed′(qj, q
′
j)ρqk−1,σ − ed′′(qj, q

′
j)ρqk−1,σ)

∣

∣

∣ = eρqk−1,σ

∣

∣

∣d′(qj, q
′
j) − d′′(qj, q

′
j)
∣

∣

∣
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Hence,
∣

∣

∣Pk(d̂
′) − Pk(d̂

′′)
∣

∣

∣ ≤
∑

σ∈Ψ

eρqk−1,σ

∣

∣

∣d′(qj , q
′
j) − d′′(qj , q

′
j)
∣

∣

∣

Further, using the same reasoning as in the proof of Lemma 2, it is straightforward to show that

P is P-contractive.

Lemma 5:Let d′, d′′ ∈ A, and d̂
′ = V̂(d′), and d̂

′′ = V̂(d′′). For anyk ∈ {1, . . . , N}, there

existsm ∈ {1, . . . , N} such that:
∣

∣

∣Pk(d̂
′) −Pk(d̂

′′)
∣

∣

∣ ≤ e
∣

∣

∣d̂
′
m − d̂

′′
m

∣

∣

∣

Proof: See the Appendix.

Theorem 4:For anyd̂
0 ∈ P0, the sequence

d̂
n+1 = P(d̂n), n = 0, 1, . . .

converges to the only fixed point ofP in P0, d̂
∗, and the error of convergence is given compo-

nentwise (k ∈ {1, . . . , N}) as:

|d̂n
k − d̂

∗
k| ≤ (1 − e)−1en, n = 1, 2, . . .

Proof: See the Appendix.

The problem of (16 – 20) is not a linear programming problem, but it is transformable into

one by using additional variablesyqi,σ, and by transforming (17) into (24):

Minimize
∑

σ∈Ψ(qi)

yqi,σ

subject to

ρqi,σ − ρ′
q′
i
,σ + cjρ

′
q′
i
,σ ≤ yqi,σ, σ ∈ Ψ(qi),

cjρqi,σ ≤ yqi,σ, σ ∈ Ψ(qi),

wherecj = e · d(qi, q
′
i) s.t. qj = δ(qi, σ),

p1(ti, σ)
∑

α∈Ψu(qi)

ρ′
qi,α

, = ρ′
q′
i
,σ

∑

α∈Ψu(qi)

p1(ti, α), σ ∈ Ψu(qi), (24)

∑

α∈Ψu
p1(ti, α)

p1(ti, σ)
ρ′

q′
i
,σ +

∑

α∈Ψc(qi)

ρ′
q′
i
,α ≤ 1, σ ∈ Ψc(qi),

∑

α∈Ψ(qi)

ρ′
q′
i
,α = 1,

ρ′
q′
i
,σ ≥ 0, σ ∈ Ψ(qi).

August 19, 2010 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 27

It might look as if (24) is weaker than (17) as it allows the possibility of ρ′
q′
i
,σ = 0 for all

σ ∈ Ψu(qi), which (17) forbids. However, this is not the case. Letρ′
q′
i
,σ = 0 for everyσ ∈ Ψu(qi).

From (18) it follows that:
∑

α∈Ψu
p1(ti, α)

p1(ti, σ)
ρ′

q′
i
,σ ≤

∑

α∈Ψu(qi)

ρ′
q′
i
,α = 0

which would mean thatρ′
q′
i
,σ = 0 for everyσ ∈ Ψc(qi) which contradicts the condition (19).

We now present the iterative algorithm for finding the fixed point of functionP.

Let d0(qi, q
′
i) = 0, i = 0, 1, ...N − 1. The distancedn(qi, q

′
i) in the n-th iteration (n > 0) is

given as:

Minimize
∑

σ∈Ψ(qi)

yqi,σ (25)

subject to

ρqi,σ − ρ′
q′
i
,σ + cjρ

′
q′
i
,σ ≤ yqi,σ, σ ∈ Ψ(qi)

cjρqi,σ ≤ yqi,σ, σ ∈ Ψ(qi)

wherecj = e · dn−1(qj , q
′
j) s.t. qj = δ(qi, σ),

p1(ti, σ)
∑

α∈Ψu(qi)

ρ′
qi,α

= ρ′
q′
i
,σ

∑

α∈Ψu(qi)

p1(ti, α), σ ∈ Ψu(qi),

∑

α∈Ψu
p1(ti, α)

p1(ti, σ)
ρ′

q′
i
,σ +

∑

α∈Ψc(qi)

ρ′
q′
i
,α ≤ 1, σ ∈ Ψc(qi),

∑

α∈Ψ(qi)

ρ′
q′
i
,α = 1,

ρ′
q′
i
,σ ≥ 0, σ ∈ Ψ(qi).

After the n-th iteration, the value of decision variablesρ′
q′
i
,σ that represent the unknown

transition probabilities, are such that the distance between the (initial states of) systemsG2

andG′
2 is within (1 − e)−1en of the minimal achievable distance between the two systems (in

our pseudometric). Note that the aforementioned results hold for e ∈ (0, 1).

Also, it should be noted that the presented algorithm can be modified for the case when

the requirements specification is not revised (see [26]). More precisely, a modification of the

presented algorithm can be used to solve the control problempresented in Section III-A with

requirement 2) changed so that the distance between the controlled plant and the unmodified

requirement is minimized.
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C. Summarizing the algorithm

We now summarize the presented algorithm and give a brief complexity analysis.

1) First, the classical algorithm for finding the supremal controllable sublanguage is modified.

The automatonGs, the synchronous product of the nonprobabilistic automataunderlyingGp

and Gr is constructed. While constructing the product, the classical controllability conditions

are checked for each state. If the conditions are satisfied for each state of the product, then

G = Gs, and go to 2). If there is at least one state of the product for which the classical

conditions do not hold, the rest of the algorithm for finding the automaton representing the

supremal controllable sublanguage is then applied. The algorithm can easily be modified to

exclude deadlock states: these states are considered uncontrollable. Let (reachable and deadlock-

free) DESG = (Q, Σ, δ, q0) represent this supremal controllable language.

2) Let G1, G2, and G′
2 be defined as previously in this section. Check the equalities and

inequalities of Theorem 1 for each state: if they are satisfied, a supervisor exists, andG2 is

the optimal approximation. If not, then letd0(qi, q
′
i) = 0 for all 0 ≤ i ≤ N − 1. The distance

dn(qi, q
′
i) in the n-th iteration (n > 0) is given by (25).

For each of the states ofG2 (typically, the number of states ofG2 is much smaller than

|Qp| · |Qr|), either the simplex method or an interior point method can be used to solve the

linear programming problem (25). Depending on what method is used, the running time of

the algorithm is either exponential (simplex method) or polynomial (interior point methods) in

the maximal number of events possible from a state of the supremal controllable sublanguage

of the specification (with respect to the plant). Even the worst-case exponential complexity

of the simplex method is not problematic for two reasons: first, the method is very efficient in

practice, and second, the number of possible events from a state is small in practical applications.

Furthermore, the number of iterations needed to reach the accuracy ofǫ is ⌈(loge ǫ+loge(1−e))⌉.

This term is obtained from the fact that the number of iterationsn for which an accuracyǫ is

achieved should be the smallest natural number for whichǫ ≥ (1 − e)−1en is satisfied.

D. Example

For plantGp depicted in Fig. 1, there does not exist a probabilistic supervisor Vp such that

G(Vp/Gp) = Gr. Fig. 2 shows the modified plantG1 and modified specificationG2, defined as

suggested in Section V-A. For PDESG2, let ρq be the probability distribution induced by the
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stateq ∈ Q and, for PDESG′
2, let ρ′

q′ be the probability distribution induced by the stateq′ ∈ Q′.

As before, we will writeρq,σ instead ofρq(σ, qi), andρ′
q′,σ instead ofρ′

q′(σ, q′j), i, j = 0, 1, 2.

At the n-th iteration, distancesdn(q0, q
′
0), d

n(q1, q
′
1), anddn(q2, q

′
2) are calculated as follows:

dn(q0, q
′
0) = Minimize (yq0,α + yq0,β)

subject to

ρq0,α − ρ′
q′
0
,α + e · dn−1(q1, q

′
1)ρ

′
q′
0
,α ≤ yq0,α, e · dn−1(q1, q

′
1)ρq0,α ≤ yq0,α,

ρq0,β − ρ′
q′
0
,β + e · dn−1(q2, q

′
2)ρ

′
q′
0
,β ≤ yq0,β, e · dn−1(q2, q

′
2)ρq0,β ≤ yq0,β,

p(q0, β)

p(q0, α)
ρ′

q0,α + ρ′
q0,α ≤ 1, ρ′

q′
0
,α + ρ′

q′
0
,β = 1, ρ′

q′
0
,α ≥ 0, ρ′

q′
0
,β ≥ 0.

dn(q1, q
′
1) = Minimize (yq1,β + yq1,γ)

subject to

ρq1,β − ρ′
q′
1
,β + e · dn−1(q2, q

′
2)ρ

′
q′
1
,β ≤ yq1,β, e · dn−1(q2, q

′
2)ρq1,β ≤ yq1,β,

ρq1,γ − ρ′
q′
1
,γ + e · dn−1(q0, q

′
0)ρ

′
q′
1
,γ ≤ yq1,γ, e · dn−1(q0, q

′
0)ρq1,γ ≤ yq1,γ,

p(q1, β)

p(q1, γ)
ρ′

q0,γ + ρ′
q1,γ ≤ 1, ρ′

q′
1
,β + ρ′

q′
1
,γ = 1, ρ′

q′
1
,β ≥ 0, ρ′

q′
1
,γ ≥ 0.

dn(q2, q
′
2) = Minimize (yq2,β + yq2,θ + yq2,τ )

subject to

ρq2,β − ρ′
q′
2
,β + e · dn−1(q2, q

′
2)ρ

′
q′
2
,β ≤ yq2,β, e · dn−1(q2, q

′
2)ρq2,β ≤ yq2,β,

ρq2,θ − ρ′
q′
2
,θ + e · dn−1(q0, q

′
0)ρ

′
q′
2
,θ ≤ yq2,θ, e · dn−1(q0, q

′
0)ρq2,θ ≤ yq2,θ,

ρq2,τ − ρ′
q′
2
,τ + e · dn−1(q0, q

′
0)ρ

′
q′
2
,τ ≤ yq2,τ , e · dn−1(q0, q

′
0)ρq2,τ ≤ yq2,τ ,

p(q2, τ)
(

ρ′
q′
2
,τ + ρ′

q′
2
,β

)

= ρ′
q′
2
,τ (p(q2, τ) + p(q2, β)) ,

p(q2, β) + p(q2, τ)

p(q2, θ)
ρ′

q2,θ + ρ′
q2,θ ≤ 1,

ρ′
q′
2
,β + ρ′

q′
2
,θ + ρ′

q′
2
,τ = 1, ρ′

q′
2
,β ≥ 0, ρ′

q′
2
,θ ≥ 0, ρ′

q′
2
,τ ≥ 0.

Note that, for eachdn(q0, q
′
0), anddn(q1, q

′
1), the equation that corresponds to the controllability

condition for the sole uncontrollable event is missing, as it is trivially satisfied. Also, for

dn(q2, q
′
2), the controllability equation was generated only for one oftwo uncontrollable events,

as the two equations can be derived from each other.

For the accuracyǫ = 0.001, and e = 0.5, 11 iterations of the algorithm are needed. It is
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found that the closest behaviour achievable with probabilistic control is as given in Fig. 2. It

took 0.3 seconds on a 2.6GHz dual core Opteron processor with 8GB of RAM running Red

Hat Enterprise Linux Server 5.5. In order to find the corresponding probabilistic supervisor, the

algorithm of [18], [19] can be used. For the stateq′0 and eventα, the control input is0.6, for q′1

and eventγ, the input is1, and forq′2 and eventθ, the input is0.625.

G′
2

q′1

β : 0.2
α : 0.1

β : 0.9

γ : 0.6667

G2

q0

β : 0.3333

β : 0.125 β : 0.3125

q2 q′2

α : 0.1667

G1

θ : 0.6

β : 0.5556

γ : 0.4444

β : 0.8333

τ : 0.2

q1

τ : 0.5 τ : 0.3125

θ : 0.375 θ : 0.375

t0 t2

t1

γ : 0.4444

β : 0.5556

q′0

α : 0.1

β : 0.9

Fig. 2. GeneratorsG1, G2, and optimal approximationG′

2

VI. CONCLUSIONS

This paper solves the classical problem of finding the closest approximation in the framework

of probabilistic control of PDESs. Two algorithms for the calculation of distances (in the

chosen pseudometric) between the states of a probabilisticgenerator used to model a PDES are

suggested. Then, a modification of the iterative algorithm is proposed to minimize the distance

(in this pseudometric) between the desired behaviour of thesystem and its achievable behaviour.

Although the rate of convergence of the algorithm to the minimal distance is known, we would

like to investigate how unknown, desired probabilities of the closest approximation change as

the distance converges. Experimental results indicate that the probabilities converge very quickly.

Also, operators on probabilistic generators should be defined and their desired property of non-

expansiveness with the respect to the metric should be checked. Non-expansiveness means that

the distance between two systems does not increase when theyare put in the same environment.

This would allow for compositional reasoning. Further, thequestion of uniqueness of the closest

approximation remains open as well as probabilistic control with marking.
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APPENDIX

1) Proof of Lemma 3

We use the notation from Lemma 2.

|Dk(d
′) −Dk(d

′′)| ≤ e
∑

σ∈Σ

min(ρσ,t, ρ
′
σ,l) |d

′(qt, ql) − d′′(qt, ql)| (from (10))

≤ e
∑

σ∈Σ

min(ρσ,t, ρ
′
σ,l) max

(t,l)∈

{(t(σ,i),l(σ,j))|σ∈Σ}

{|d′(qt, ql) − d′′(qt, ql)|}

≤ e
∑

σ∈Σ

min(ρσ,t, ρ
′
σ,l) |d

′(qr, qs) − d′′(qr, qs)|

for somer, s ∈ {0, . . . , N − 1}

≤ e|d′(qr, qs) − d′′(qr, qs)|

(since
∑

σ∈Σ
t∈{0,...,N−1}

ρσ,t =
∑

σ∈Σ
l∈{0,...,N−1}

ρ′
σ,l = 1)

≤ e |d′
m − d

′′
m| for somem ∈ {1, . . . , N2}

2) Proof of Lemma 4

According to Knaster-Tarski theorem, the functionsf andg have the greatest fixed points

gfp(f) and gfp(g), respectively, wheregfp(f) = sup({x|x � f(x)}), and gfp(g) =

sup({x|x � g(x)}). Since ∀x : g(x) � f(x), then {x|x � g(x)} ⊆ {x|x � f(x)};

hencegfp(g) � gfp(f).

3) Proof of Lemma 5

First, use the proof of Theorem 3 up to (22), and, then, analogous to the proof of Lemma 3.

4) Proof of Theorem 4

Analogous to the proof of Theorem 2 (with using Lemma 5 instead of Lemma 3).
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