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Abstract

Probabilistic discrete event systems (PDESs) are modalaptaerators of probabilistic languages
and the supervisors employed are a probabilistic genataliz of deterministic supervisors used in
standard supervisory control theory. In the case when thgigts no probabilistic supervisor such
that the behaviour of a plant under control exactly matclmesgrobabilistic language given as the
requirements specification, we want to find a probabilistintmol such that the behaviour of the plant
under control is “as close as possible” to the desired behbavFirst, as a measure of this proximity,
a pseudometric on states of generators is defined. Two #igwifor the calculation of the distance
between states in this pseudometric are described. Thea)ganithm to synthesize a probabilistic
supervisor that minimizes the distance between generaggmresenting the achievable and required

behaviour of the plant is presented.

. INTRODUCTION

The supervisory control theory of discrete event systentsS§) was developed in the sem-
inal work of Ramadge and Wonham [1]. A supervisor (contrdlieontrols a plant by en-
abling/disabling controllable events based on the observaf the previous behaviour of the
plant. DESs are most often modeled by finite automata whassitrons are labeled with events:
therefore, the behaviour of a DES can be represented as mrdgnguage. The supervisory

control problem considered is to supervise the plant sonegees a given specification language.
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Many models of stochastic behaviour of discrete event systhave been proposed (e.g.,
Markov chains [2], Rabin’s probabilistic automata [3], dtastic Petri nets [4]). The work of
[5]-[7] uses an algebraic approach. A stochastic discreentesystem is represented as an
automaton with transitions labeled with events and prdiigs. We use this approach. The
model is generative: the probabilities of all the events itedain state add up to at most one.
On the other hand, with reactive models, such as Rabin pilgiebautomata [3], the sum
of the transition probabilities of one event at a state is. &ieo, unlike Markov chains [2],
the emphasis of the approach of [5]-[7] is on event tracdserathan state traces. However,
as opposed to the nondeterministic model of [5]-[7], outbphmlistic automatonprobabilistic
generatoj is deterministic in the following sense: for each statehd automaton, there is at
most one next state to which the automaton can move on a guagri.e

The control of different models of stochastic discrete ewstems has been investigated in
[8], [9], etc. Rabin’s probabilistic automata are used ihd8 the underlying model. The optimal
control theory of Markov chains is widely investigated ire tamework of controlled Markov
chains, also known as Markov decision processes (e.g., ¥eeA deterministic supervisory
control framework for stochastic discrete event systems aeveloped in [10] using the model
of [5]-[7]. In [10], controllable events are disabled dyrieatly as first suggested in [11], sO
that the probabilities of their execution become zero, d&dprobabilities of the occurrence of
other events proportionally increase. The control obyectonsidered in [10] is to construct a
supervisor such that the controlled plant does not exeqaeified illegal traces, and occurrences
of the legal traces in the system are greater than or equapeoified values. The paper
gives necessary and sufficient condition for the existerica supervisor. Further, in [12],
a technique to compute a maximally permissive supervisalinenis given. In [13], [14],
the deterministic version of probabilistic automata used5]—[7] (our model) is used. The
requirements specification is given by weights assignedaties of a plant and the control goal
is, roughly speaking, to reach the states with more weigltréntesirable states) more often.
A deterministic control is synthesized for a given requieens specification so that a measure
based on the specification and probabilities of the planpisrozed. Optimal supervisory theory
of probabilistic systems was considered in [15], where thstesn is allowed to violate the
specification, but with a probability lower than a prespedifialue.

Controller synthesis for probabilistic systems has alt@aetied attention in the formal methods
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community. E.g., [16], [17] consider different control miés: deterministic or randomized

(probabilistic) on one hand; memoryless (Markovian) otdrigindependent on the other. The
systems considered are finite Markov decision processesgavthe state space is divided into two
disjoint sets: controllable states and uncontrollableestdn [16], the controller synthesis problem
for a requirements specification given as a probabilistioatation tree logic (PCTL) formula

is shown to be NP-hard, and a synthesis algorithm for aut@mspécifications is presented.
Controller synthesis was considered in [17] for a requineisispecification given as a formula
of PCTL extended with long-run average propositions. Ithsven that the existence of such
a controller is decidable, and an algorithm for the synthedia controller, when it exists, is

presented. Further, controller robustness with respestight changes in the probabilities of the
plant is discussed. The paper shows that the existence o$trabntrollers is decidable and the
controller, if it exists, is effectively computable.

Deterministic control of PDES is easier to deal with thanbatalistic control, both from
the viewpoint of analysis, and practice. However, probstiil control of PDES is much more
powerful. It has been shown in [11], [18] that probabilissigpervisory control can generate
a much larger class of probabilistic languages than detestic control. In the sense of the
supervisory control problem discussed in this paper, the afsdeterministic control might
be too restrictive for a designer. Hence, [11], [18], [19Yestigate probabilistic supervisory
control: conditions under which a probabilistic controhagenerate a prespecified probabilistic
language, and, if the supervisor exists, the algorithm t®rsynthesis. PDESs are modeled as
the probabilistic generators from [5]-[7]. Probabilistapervisors are so named because they
employ the control method afindom disablemengfter observing a string, the probabilistic
supervisor enables an eventwith a certain probability.

Our work focuses on optimal supervisory control theorydeghis framework. Analogous to a
problem in classical supervisory control theory, it cangepthat, given a plant to be controlled
and a probabilistic specification language, no supervigmtesuch that the plant under control
generates the prespecified language. In this case, whenx#toe¢ solution is not achievable,
a designer tries to find a supervisor such that the plant ucdatrol generates @&losest
approximationof the desired behaviour. The nonprobabilistic behaviouthe requirements
specification is considered to be a safety constraint in taedard supervisory control sense

similar to [10]. Therefore, the supremal controllable suigluage of the intersection of the plant
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and the specification is generated as the maximal achieleddé nonprobabilistic behaviour of
the plant under control. Then, the closest approximatiaraisulated by minimizing the distance
between the achievable probabilistic behaviour of the tplerder control and the probabilistic
behaviour of the specification (whose nonprobabilisticawebur is reduced to the mentioned
supremal controllable sublanguage). The distances usededined by a pseudometric on states
of probabilistic transition systems. This paper also affevo algorithms for the calculation of
distances in this pseudometric.

In Section Il, PDESs are presented as generators of pradiablanguages, and the proba-
bilistic control of PDES is introduced. The proposed psenelwic is presented in Section Ill.
The rationale for choosing the pseudometric is given, asctlitaracterization as the greatest
fixed point of a monotone function (as taken from [20]) is prasd. Section IV uses this
characterization for the derivation and proof of corresthef two algorithms for the calculation
of the distances between the states of a PDES in this psetidonfection V presents the
algorithm for finding the closest approximation to within eegpecified accuracy. Section VI
concludes with avenues for future work.

This paper represents the journal version of results of.[2130, the paper offers the full
literature review, informal reasoning and formal proofskiag in [21]. Still, due to space
restrictions, not all the proofs can be presented here. &aew purposes, they are included
in the Appendix.

[I. PRELIMINARIES

In this section, PDESs modeled as generators of probabilssiguages are presented. Then,
the probabilistic control of PDESSs, the probabilistic smmory problem, and the main results
of [11], [18], [19] are introduced.

A. Modeling PDES

Following [11], [18], a probabilistic DES is modeled as a pabilistic generatoty = (Q, %,
J, g0, ), Where(@ is the nonempty finite set of states,is a finite alphabet whose elements we
will refer to as event labels,: Q xX — @ is the (partial) transition function, € Q is the initial
state, anth : Q x ¥ — [0, 1] is the statewise event probability distribution, i.e. foya € Q,
Y sex P(q,0) < 1. The probability that the event € 3 is going to occur at the statee @ is
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p(q, o). For generatoG to be well-defined(i) p(q,o) = 0 should hold if and only if§(q, o)
is undefined andii) Vq > ,cx p(q,0) < 1. The probabilistic generatak is nonterminating fif,
for every reachable staiee @, >, .5 p(q,0) = 1. ConverselyG is terminating if there is at
least one reachable stajec ) such that}", .5, p(¢,0) < 1. The probability that the system
terminates at state is 1 — > .5 p(q, o). Throughout the sequel, unless stated otherwise, we
assume nonterminating generators. If a PDES is terminaticgn easily be transformed into a
nonterminating generator using the technique describgdilih

The state transition function is traditionally extendedibguction on the length of strings to
J: QxX* — @ in anatural way. For a statg and a strings, the expression(q, s)! will denote
thato is defined for the string in the state;. Note that the definition of PDES does not contain
marking states since the probabilistic specification laggs considered in this paper are prefix
closed languages.

The languagd.(G) generated by a probabilistic DES generatb+ (@, 3, 0, qo, p) IS L(G) =
{s € ¥* | d(qo, s)!}. The probabilistic language generated &yis defined as:

Ly(G)(e) =1

LG so) { L(G)($) - p(6an.5), o), 1 6an, )
0, otherwise.

Informally, L,(G)(s) is the probability that the string is executed inG. Also, L,(G)(s) > 0

iff s e L(G).

For each state € ), we define the functionp, : ¥ x ¢ — [0, 1] such that for any; € @,

o € X, we havep,(o,q¢) = p(q,o) if ¢ = 6(¢,0), and O otherwise. The functiop, is a
probability distribution on the set x (). Also, for a state;, we definethe set of possible events
to be Pos(q) := {0 € X|p(q, o) > 0}, or, equivalently,Pos(q) := {o € X|(q, 0)!}.

Next, the synchronous product of (nonprobabilistic) diserevent systems (DESSs) that un-
derlie PDESs is defined in a standard manner. For a prolabtisnerator; = (Q, X, 6, qo, p),
the (nonprobabilistic) discrete event system (DES) thateulies G will be denotedG™ (i.e.,
G" = (Q, %, 0,q)) throughout the sequel. L&t}” and G5” be the nonprobabilistic generators
(DESs) underlyingG; = (Q1,%,61,q0,,p1) and Go = (Q2, %, 92, qo,, p2), respectively, i.e.,
G’ = (Q1,%1,01,q0,) and G5" = (Q2, %, 02, qo,)-
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Definition 1: The synchronous product @f1” = (Q1,%, 01, qo,) and G5¥ = (Q-, 3, 2, qo, ),
denotedGi” || G357, is the reachable sub-DES of DES, = (Q,, X%, 0,q), where@, = @Q; X
@2, 90 = (q,,9,), and, for anyoc € %, ¢; € Q;, i = 1,2, it holds thatj((¢;,¢2),0) =
(01(q1,0),02(q2, o)) Wheneverd, (¢;,0)!, andds(gq, o)!.

B. Probabilistic Supervisors: Existence and Synthesis

As in classical supervisory control theory, the Seis partitioned intoX. and,, the sets of
controllable and uncontrollable events, respectivelytebrainistic supervisors for DES are gen-
eralized toprobabilistic supervisorsThe control technique used is callemhdom disablement
Instead of deterministically enabling or disabling cotitiole events, probabilistic supervisors
enable them with certain probabilities. This means thagnupeaching a certain statg the
control pattern is chosen according to supervisor’s pridipadistributions of controllable events.
Consequently, the controller does not always enable the san@nts when in the state

Let z : L(G) — [0,1]*. For a PDESG = (Q,%,4,q,p), a probabilistic supervisoris a
functionV, : L(G) — [0, 1]* such that

(Vs € L(Q))(Yo € £)V,(s)(0) = 1, if 0 €%,
! | w(s)(e), otherwise.

Therefore, after observing a stringthe supervisor enables eventvith probability V,(s)(o).
After a set of controllable events to be enabled has beerdel@aipon (uncontrollable events
are always enabled), the system acts as if supervised byeardeistic supervisor. Given sets
A, B, we will denote the power set of by P(A), and the set difference of and B by A\B.
Let ¢ € @ be the state of the plant afterc L(G) has been observed. The pladtunder the
control of the supervisol/, will be denotedV,,/G. The probability that the event € X will

occur in the controlled planit, /G after strings has been observed is equal to:

P(ain V,/G|s) = > P(a|V, enablesO afters) - P(V, enablesO|s) (1)
O€eP(Pos(q)NZe)
where
p(q, @) _
, faeBOUX,
P(a|V, enablesd after s)= > plg,0)
oceBUY,
0, otherwise
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P(V, enablesO|s) = [[ Vi(s)(o) - [I (1—V(s)(0))

oEB o€(Pos(q)NEe:)\©

The goal is to match the behaviour of the controlled plantwvaitgiven probabilistic speci-
fication language. We call this problem tReobabilistic Supervisory Control Problem (PSCP)
More formally:

Given a plant PDES~, and a specification PDEE,,, find, if possible, a probabilistic supervisor
V, such thatL,(V,/G,) = L,(G,).
An example of probabilistic generators representing atmawl a requirements specification

is shown in Fig. 1. Controllable events are marked with a matheir edges.

Fig. 1. PlantG,, and requirements specificati@n.

Next, we present the conditions for the existence of a pritibib supervisor for the PSCP
from [11], [18].

Theorem l:Let G, = (Qp, 2, 0y, ¢y, p) @NA G, = (Q,, 2, 6,, ¢y, pr) bE two nonterminating
PDESs with disjoint state setg, and(,. Then, letG;” andG? be the nonprobabilistic gener-
ators underlying~, and G,, respectively, i.eG}? = (Q,, X, 0, @p,) ANAGYP = (Qr, 3, 07, @ry )-
Also, let G, = (Qs, %, ds,qo,) be the synchronous product of generat6t® and G717, G, =
G || G, There exists a probabilistic supervisdy such thatl,(V,/G,) = L,(G,) iff for all
(q,7) € Qs, the following two conditions hold:

() Pos(q) N3, = Pos(r)NX,, and for allo € Pos(q) N %,,

pp(¢,0) _ _ pe(r,0)
> ol ) X p(r,a)
a€Xly, Q€D
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(i)  Pos(r)nX. C Pos(q) N X, and, if Pos(q) N X, # ), then for allo € Pos(q) N X,

pr(r,0) S om(ga)+ Y p(ra) <L

p;;(q; O') a€Yy a€Pos(q)Ne

Conditions (i) and (ii) together are necessary and suffidfi@nthe existence of a probabilistic
supervisor. The first part of both conditions correspondsawtrollability as used in classical
supervisory theory (namely, the conditiétvs(q) "X, = Pos(r)N %, of (i), and Pos(r)NX. C
Pos(q) N %, of (ii)). The remaining equations and inequalities corcegpto the conditions for
probability matching.

The results hold for nonterminating generators. TermmggBPDESs can be transformed into
nonterminating as shown in [11].

Also, it should be stressed that a special case was implaotisidered in the previous theorem.
This special case arises when all the possible events inedtéhe plant are controllable. Then,
disabling all the events can cause termination. In ordevdéadahis (as nonterminating generators
are considered), there is always at least one event enaloleddtails, an interested reader is
referred to [18]).

When the conditions are satisfied, a solution to the PSCRseXike probabilistic supervisor

can then be computed by the fixpoint iteration algorithm as@nted in [18], [19].

[1l. THE METRIC FOR THE CLOSEST APPROXIMATION

In this section, the problem of optimal supervisory contiolour probabilistic setting is
described, related research done on pseudometrics os efgieobabilistic systems is reviewed,

and the chosen metric is presented.

A. Problem Formulation

In the case when the conditions for the existence of a solutidhe probabilistic supervisory
control problem are not satisfied, we search for a suitalppeciimation. We define the problem
as follows.

Optimal Probabilistic Supervisory Control Problem (OPSCRet G, = (Q,, %, d;, ¢p,» Pp) bE
a plant PDES, and let7, = (Q,, %, d,, ¢, p-) be a requirements specification represented as
a PDES. If there is no probabilistic supervisgy such thatL,(V,/G,) = L,(G,) (i.e., the

conditions of Theorem 1 fail), find, if it exist$;, such that
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1) L(V,/G,) € L(G,) and supervisolt/, is maximally permissive in the nonprobabilistic
sense (i.e.L(V,/G,) is the supremal controllable sublanguagelot-,) with the respect
to G)).

2) The probabilistic behaviour of the controlled plant is ‘@ose as possible” to the proba-
bilistic behaviour of the requirements specification liestd to the supremal controllable
sublanguage of.(G,) with the respect td@,,.

Let G =V,/G, = (S,%,4, s0,p) be the closest approximation.

The first criterion is straightforward. The requiremént represents a safety constraint: the
controlled plant is not allowed to generate strings notZifz,) even with the smallest of
probabilities. Further, the criterion of maximal permigsiess is a standard one for optimality
of supervisory control. The second criterion, on the otrerdj is probabilistic: gseudometric
on the initial states of the probabilistic generatérsnd an appropriately modified, is chosen
as a measure of probabilistic similarity. The requiremesgscificationG, is modified such
that its nonprobabilistic behaviour is reduced to the makipermissible legal nonprobabilistic
behaviour of the plant under control. In other words, thenfmobabilistic) language of the
modified specification is the supremal controllable sublagyg of L(G,) with respect toG,,.
Consequently, the probabilities of the specification arprapriately normalized as it makes
sense to revise the specification so that probabilities@ttlents inadmissible for not satisfying

the first criterion are redistributed over the admissibleson

B. Probabilistic pseudometrics

Probabilistic bisimulationis commonly used to define an equivalence relation betweel- pr
abilistic systems. However, probabilistic bisimulati@not a robust relation: roughly speaking,
two states of probabilistic systems are bisimilar if andyoiflthey have the same transitions
with exactly the same probabilities to states in the samévalgunce classes.

As a more robust way to compare probabilistic systems, @natipseudometrics introduced.

A pseudometric on a set of statésis a functiond : Q x Q — R that defines a distance
between two elements @, and satisfies the following conditiong(x,y) > 0, d(z,z) = 0,
d(z,y) = d(y,x), andd(zx, z) < d(z,y)+d(y, z), for anyz,y, z € Q. If all distances are if0, 1],

the pseudometric i&-boundedIn the sequel, we will use the terms metric and pseudometric

interchangeably.
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Little work on metrics has focused on generative models. fiigse paper that discussed the
use of a metric as a way to measure the distance between twalplistic processes is [22].
This early work considers deterministic generative prdaisiic systems. The distance between
processes is a number betweemand 1, and represents a measure of a behavioural proximity
between the processes: the smaller the number, the sniedldistance. The work of [5] suggests
a metric based on probabilities of occurrence of stringsumgliages generated by two automata.
More precisely, the distance between two automata in theienet defined as a maximal
difference in occurrence probabilities of strings in theresponding languages. Probabilistic
generators are used to model probabilistic systems in [B3& symbolic pattern recognition
application, a metric is introduced to measure the distaret@veen the original model and
the transformed one, where the transformed model has the samg term distribution over
the states as the original one. The work of [20] introducesseugometric on states for a
large class of probabilistic automata, including reactwel generative probabilistic automata.
The pseudometric is based on the Kantorovich metric oniligions [24] (also known as
the Hutchinson metric). The metric is characterized as teatgst fixed point of a function.
Two states are at distan€ein this metric if and only if they are probabilistic bisimilarhis
is the metric we will use in the solution of our problem. Thetneintuitively matches our
notion of the distance between PDESs and accounts for édrelifces between corresponding
transition probabilities, as opposed to e.g., that of [2tt roughly speaking, considers only
the maximum of the differences between the correspondinfatilities. Furthermore, as the
metric is suggested for a large class of systems, it allowsafo extension of our work to
e.g., nondeterministic systems. The metric discounts titeré. The concept of discount has
been widely applied in game theory, economics and optimakrob From an engineering
point of view, one cares more about an error in the near futba® the one in the distant
future [25]. Also, there is a simple algorithm to computetai€es in this metric for our
generative, deterministic model (see Section V). Furtagpresented in [26], the metric has both
logical and trace characterization. The logical charédéon measures the distance between
two systems by &0, 1]-valued formula that distinguishes between the systemsnibst, while
the trace characterization describes the similarity betwthe probabilistic traces of similar
systems. More precisely, the trace characterization shiatsthe metric measures not only the

difference in (appropriately discounted) occurrence pholities of strings in two systems, but
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also differences in (appropriately discounted) occureepmbabilities of certain sets of strings
as well as complicated properties of strings.

For reactive systems, the work of [20] is closely related 23]+[30]. Compared to the
classical reactive models of [27], [29], [30], a generatimedel is more general: for every
state, it contains not only the information about relativebabilities of transitions on the same
event, but also information on relative probabilities @frsitions on different events [31], [32].
In the probabilistic model checking literature, the model3®] is extended with a state labeling
function that assigns to each state a set of atomic propasitialid in that state, i.g@robabilistic
transition system®f [30] are extended t@labeled) discrete time Markov chairf83], [34].
Our generative model can be transformed to (labeled) descmme Markov chain [33], [34],
but with a state space expansion by a factorOgfX|). Also, with the same state expansion
factor, our generators can be converted to ldigeled concurrent Markov chainsf [28] and
partial labeled Markov chain®f [27], [29] (standard Markov decision processes). Howeve
as the current mathematical apparatus allows for direorgag about distance between our
generators, no benefits in regards to the optimal supewsmntrol of PDESs would have been
gained by a transformation to one of the aforementioned teoBer a more detailed discussion

of probabilistic metrics, see [35].

C. The metric

Let G = (Q, %, 6, q,p) be a PDES, wher® = {q, q1, .. .qnv_1}. This is the system that will
be used throughout the sequel. Our pseudometric is baselddeometric suggested in [20] for
a large class of automata which includes our generator:Woentetrics are the same up to a
constant.

First, [20] introduces the clas$1 of 1-bounded pseudometrics on states with the (partial)

ordering
dl j d2 if qu7QT’ € Q dl(qtla(]r) Z dZ(qlqu) (2)

as was initially suggested in [28]. It is proved tha, <) is a complete lattice.
Then, letd € M, and let the constamtc (0, 1] be adiscount factothat determines the degree
to which the difference in the probabilities of transitidosther in the future is discounted: the

smaller the value o€, the greater the discount on future transitions. Next, weoduce some
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useful notation. Let,, ¢, €  and letp,, andp,, be the distributions o x ) induced by the

statesq, and ¢,, respectively. Assumé < i,57 < N — 1. For notational convenience, we will
write p,; instead ofp,, (, ¢;), and, similarly,o; ; instead ofp,, (o, ¢;). Without loss of generality,

we assume that the total massQf is greater than or equal to the total massgf

Z Poi = Z P:m

oex oeX
0<i<N-1 0<i<N-—-1
This assumption is not needed for nonterminating autonitttan, the distance between the

distributions p,, and p,,, d(p,,,p,.) (note the slight abuse of notation) for our generators is

given as:
Maximize > Goipei| — Y Gl (3)
gEYN oeY
0<i<N-—1 0<i<N-—1
subjectto 0 <a,; <1, cex, 0<i<N-1

ao,i_aa,jécgja, o, €Y OSZ,]SN—]_

where

e-d(g,q;) ifo=a

oo
] .
1 otherwise

If the total mass ofp,, is strictly less than the total mass pf., d(p,,p,.) is defined to be
d(pQ'r"qu])'
The pseudometric on stateg,, is then given as the greatest fixed-point of the funcfibon

M (here, for probabilistic generators, we give a simplifiedsien of that in [20]):

D(d)(qq, @) = d(pgys Pq,)s  d €M, qq,q € Q (4)

The definition of the metric on distributions is a modifiedsien of that of [20]: the metric
is changed such that the distances between the statiysare larger by a factor of /e than the
distances in the metric defined in [20]. This is done so thatdistances in our metric are in
0, 1] interval instead of0, e]. A number of existing results can be reused in reasoningtaigu
metric. The distance between distributions (3) i$-bBounded pseudometric, and is consistent
with the ordering (2) (see [28], [30]). The proofs that thadtion defined by (4) is monotone on

M, and that it does have a greatest fixed point originate fro8h. [&lso, according to Tarski’s
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fixed point theorem, the greatest fixed point of functiBrcan be reached through an iterative
process that starts from the greatest element. As the nuofbieansitions from a state of a
probabilistic generator is finite, the greatest fixed poihth® functionD is reached after at
mostw iterations ( [20], [28]) (equivalently, the closure ordimtd D is w).

The work of [20] does not offer any algorithms for calculatiof the distances in their metric.

In the following section, two algorithms for calculatingsthnces in our metric are proposed.

IV. CALCULATING THE METRIC

As a prelude to the solution of the optimal approximationbbem, two algorithms that
calculate/approximate distances in the meffiare suggested. First, the functidnis simplified,

and then the algorithms are described, and their correxioesen.

A. Simplifying functioriD for deterministic generators

The function that represents the pseudometric on distobstis defined as the linear pro-
gramming problem (3). We now show that, for deterministiagators, this function, and
consequently, functiorD as defined by (4), can be simplified by explicitly solving tlireear
programming problem (3).

First, recall that our generators are deterministic: foea@ntos and a state, there is at most
one state/ such thaty’ = d(q, o). For the purposes of the following analysis of our deterstioi
generators, we rewrite the objective function of the optation problem of (3) as:

ZZ:<aU,i(Qq,U)pU,7;(Qq,U) - a0'7j(qr-70')p;',j(qr,o')) (5)
S

wherei(q,, o) = i such thatyg;, = d(q,, o) if d(¢,, 0)!, andi(q,, o) = 0, otherwise. We arbitrarily
choosei(q,, o) to be0 whend(q,, o) is not defined although we could have chosen any other
i€ {l,...,N —1}. This is because whefi(q,,o)! does not hold, them, ;, » = 0 for any
i(g,0) € {1,...,N — 1}. Similarly, j(¢q,,0) = j such thatg; = (q,,0) if §(¢.,0)!, and
Jj(gr,0) = 0, otherwise. For readability purposes, we will writeinstead ofi(q,, o), and j
instead ofj(g., o).

We are now ready to state our first result.

Lemma 1:Let G = (Q, %, 0, g0, p) be a PDES. Then, the functidd simplifies to:

D(d)(4g: @) = D max(pe; — plyj + CijPy s CiPoi) (6)

oey
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where, againg;; = e - d(qg;, ¢;) as before, and and j denotei(q,, o) andj(q,, o), respectively,
as defined in (5).

Proof: The objective function (5) can be maximized by maximizingteaf its summands
separately. In order to explain this observation, we carssdsummand, ; p,.; —aavjp;j. Due to
the generator’s determinism, there is no other nonzero sandroontainingi,,, 0 < £ < N —1,

k #1i, k # j. Therefore, the last constraint of (3) for any two coeffitsen, ; anda, ; (0 <i,j <
N —1) from different summands becomes; — a, ; < 1. This constraint is already implied by
the first constraint, so we can independently pick the coeffisa in different summands, and,
consequently, independently maximize the summands inr aodemaximize the sum.

In order to maximize a summand of the objective function (&, solve the following linear

programming problem fos € X:
Maximize (ao.ipoi — Goj0% ;)
subject to0 < a,;, a,; < 1,

(g — Qg j < Cij

)

wherei and j are defined as in (5), and; = ed(q;, q;) as before. Also, note that the set of
constraints does not contain the inequality; — a,; < c;;. In order to maximize the given
function, the coefficient,,; is to be chosen to be greater thayn; since the given constraints
allow it. In that case, since;; = cj;, if a,; — a,; < ¢;;, thena,; — a,; < c;; follows, so
the latter constraint is redundant. Further, it is not hardsée that the solution of the given
linear programming problem fas,; > o/, ; is equal top,; — p,, ; + cijp,, ;- We can solve this
problem using graphical method, simplex method or usingféiewing line of reasoning. In
order to maximize the given function, we can either choaseto be 1 and then pick, ; so
that it has the minimal value for the given constraints, or eh@osea, ; to be 0, and then
pick a,, so that it has the maximal value under the given constraintthe first case, we pick
a,; to be 1,a,; to bel — ¢;;, and value of the objective function js,; — o, ; + cijp, ;- In
the second case, sineg; is 0, thena,; is equal toc;;, and the objective function becomes
Ciipsi- The latter is our solution, sineg;p,; = ¢;j (,o(m- — P+ p;j) < Poi— P+ cijpl, ; (for
Poi = P, ; @ndcy; € [0,1]). Using the same reasoning, fpx; < p., ;, the maximum is reached

at (a;,a;) = (¢;5,0) and its value is;;p,.;.
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Now, we put together the presented solution of the lineagmmming problem (3). The
distance between the distributiopg andp,, is then:

d(qu7 p‘b‘) - Zf(dv qu qr, U)) Where (7)

oeY

Poi = Pyi + CijPy; 1 poi 2> Py

fd qq.qr,0) = CijPoi otherwise

or, equivalently,
f(d, qq, G, 0) = max(po; — P + CijPy i CijPoi);

wherec;; = e-d(¢;, q;) as before, andand; denotei(q,, o) andj(q,, o), respectively, as defined
as in (5).

To summarize, the functio®(d) for our model is given as:

D(d)(qq, @) = Y_max(pe; — Pl + CijPy ;s CijPosi)

oeX
where, againg;; = e - d(g;, ¢;) as before, and and j denotei(g,, o) andj(g,, o), respectively,
as defined in (5). ]
As stated in Section IlI-C, the pseudometrg is now characterized as the greatest fixed
point of functionD.

B. Calculating the Pseudometric

Fore € (0, 1), we will prove that the functio® has only one fixed point}*, and, consequently,
di, = d*. Then, two algorithms for calculating the distances in meff, are suggested.

First, some useful definitions and results from linear algedre introduced.

A real n x n matrix A = (a;;) defines a linear mapping fro" to R™, and we will write
A € L(R™) to denote either the matrix or linear function, as no distorcbetween the two will

be made. Also, the absolute value of column veatet (z4,...,z,)T € R™ will be denoted by

|z|, and defined agr| = (|z1],...,|z.|)T. A partial ordering oriR" is defined in a natural way:

Ve,yeR" e <y VMi=1,...,n z; <y,
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Definition 2: For any complexn: x n matrix A, the spectral radius ofl is defined as the
maximum of [A{|,--- | |\,|, where)q,--- |\, are the eigenvalues of.

The spectral radius ofi, denotedp(A), satisfiesp(A) < ||A||, where||A]| is an arbitrary
norm onR"™. During the course of the following proof, we will make use iafinity norm
|A]]oo = mar 3, |ai].

Definition 3 ( [36]): An operatorG : D C R"™ — R" is called aP-contractionon a set
Dy C D if there exists a linear operatd? € L(R™) such thatP > 0, o(P) < 1 and

|G(z) = G(y)| < Plz—yl forall z,y € Dy. (8)
Now, let d € M. Next, we define the functiol : M — [0, 1]V’

V(d) = (d<q07 QO>7 d(CIO, Q1), ceey d(QN—la QN—z), d<QN—17 QN—l))T-

Note that the vectod'(d) could be further cut down, ag(s,s) = 0 andd(s,t) = d(t,s) for
any s,t € Q. However, for ease of presentation, we will not decreasesibe of the vector.
Therefore,V(d) = (Vi(d), Va(d), - -+, Vn2(d))T, whereV,(d) for k € {1,..., N?} is given as:

Vi(d) = d(qi,q5), i =k div (N+1), j=(k—1) mod N.

Now, the functionD is redefined in a natural way &(V(d)) = (D;(V(d)), ..., Dx2(V(d)))7,
where for anyk € {1,..., N?}:

DeV(A) = d(pys puy)s i = k div (N +1),j = (k— 1) mod N. (9)

Further, letDy = {V(d)|d € M}.
Lemma 2:The functionD is a P-contraction onD,.

Proof: Let d',d" € M, andd’ = V(d'), andd” = V(d"). Let k € {1,..., N?}, and let:
andj (0 < 4,57 < N —1) be given as in (9). Also, let(i,0) = ¢ such thati(¢;,0) = ¢ if
d(gi,0)!, andt(i, o) = 0, otherwise. Similarly/(j, o) = [ such thatj(q;, o) = ¢ if 6(¢;,0)!, and
I(j,0) = 0, otherwise. Again, for notational convenience, we will t&ri instead oft(i, o), and

[ instead ofl(j,o). Also, we will write p,, instead ofp,, (7, ¢), and, similarly,p., ; instead of
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pg; (o, q) for ¢, ¢ € Q. Then:
|D,(0) — D(0")] =

d'(pgs Pg;) — A" (Pgis Pg;)

= |Zmax<p0,t - p/O',l + ed,(qh ql)p/mh ed,(qh Ql)Po,t)
oex

- Zmax<po,t - /)/071 + ed”(qt7 ql)p;,b ed”(qta QI)/)a,t)|
oey

= ‘ Z (max<p0',t - pir,l + ed/<qt7 ql)p;,b ed/(qh QI)/)a,t)
ceX

— max(pey — Py +ed" (g, @)y ed” (g, @) pos))]

= |>_e(d (g, q) — d" (g, @) min(pes, o)

oey
since, for anyd € M., it holds that:

Pot = Pog + €d(qe, )5y 1 por 2 Py
max(pa',t - p:r,l + ed(qt7 ql)p;,b ed(qt7 ql)po,t) ==

ed(qr, @) poyt, otherwise
< ey min(pes, Pry) d (g, ) — d" (g, @) (10)
oEeY
<e > min(pey, Po1) 10, =001 (11)
oEY]
m:t]\€7+l+1

Note thatt = ¢(i,0) andl = I(j, o) are also functions of (since: andj are functions ofk).
Now, without the explicit construction of matri®, we can see from (11) that there exigts
such thatD(d') — D(d")| < P [d' —9”| where

1Pl = mae{e S min(pr, 0.}

oex
<e
(since > peu=1, > pL=1)
A oey
t€{0,...,.N—1} 1€{0,...N—1}

< 1 (sincee € (0,1))

Therefore,p(P) < 1 and, since, obviouslyl” > 0, thenD is P-contraction. [
Lemma 3:Let d',d" € M, andd’ = V(d'), andd” = V(d"). For anyk € {1,..., N?}, there
existsm € {1, ..., N*} such that:

Di(0') = Dr(d)] < ey, — 0y

m
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Proof: See the Appendix. [ ]
Theorem 2:For any?® € Dy, the sequence

"t =DO"), n=0,1,...

converges to the unique fixed point @&f in Dy, ?*, and the error of convergence is given

componentwisek( € {1,..., N?}) as:

P -5 < (1—e)te", n=1,2,... (12)

Proof: Note that this is a variant of the contraction-mapping teeorextended taP-
contractions ( [36], Theorem 13.1.2.). A similar proof teifue is employed.
Let n,m > 1. Then:

03" — 0| (13)

< Z |az+t o az+t—1|

t=1
<> el — i

t=1
(applying Lemma 3 times, wherei(t) € {1,..., N?})
< > e'max{]oj,) — o)}

=1 i(t)
< (Z et> o7 —077!| (for somej € {1,...,N?})

t=1
<(L—e) efol — 277! (since Y e < (1—e¢)~! for m > 0)
t=0

<(1—e)te"o; —0)| (for somel € {1,...,N?}, using Lemma 3n — 1) times)
<(lL—e)te (14)

Therefore, the sequende} },.>( is a Cauchy sequence and hence converges to spnad,

consequently, the sequen{®”’},~, converges to some* € D,. Also, we have:
0" = DO < [0* =" + |D(Q™) — D(0*)| < [0F — " + Po" — 0|

When we letn — oo, we see thad* = D(d*). Also, the componentwise error estimate of (12)

follows from (14) whenm — oo in (13).
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Finally, it should be proven that" is the only fixed point inD,. Assume that there is another

fixed point of D in the same seb,, 0. Then,
0" =27 =|D(0") = D(")| < Plp" — 0]

Hence,(I — P)[o* — "] < 0. However, sincep(P) < 1, (I — P)~' =32, P > 0 (see [36],
2.4.5)), theno* — 2*| < 0. Therefored* = 0™ . [

Now, using the presented analysis, the following two alpons for the calculation of the
distances between the states of PDESSs in the chosen pseuidcsme suggested.

Algorithm 1 Theorem 2 proves that the system of equations
0 ="D(0) (15)

has a unique solution. The system (15) is a system of linasatemns. Therefore, the system (15)
can be rewritten into the standard ford = b, whereA is a N? x N? matrix andb is a column
vector of dimensionVZ2. Therefore, the distances in the metiig can be calculated by solving
this system of linear equations. The distances found aret esadutions (if the round-off error
is disregarded).

Algorithm 2 Theorem 2 also suggests an iterative algorithm to calcdiatances in the metric
d, between the states of a probabilistic generator. The dlgoriurns out to be a straightforward
modification of that of [30] that calculates distances in aysometric suggested for a different
kind of probabilistic system, derived by using terminal Igedras. Letd’(q,,q,) = 0 for any
two statesy,, ¢. € ). As before, letp,, andp,, be the distributions induced by the statgsand

q-, respectively. The:-th iteration of the algorithm calculates the distantebetween each two

statesy,, ¢, € Q:

dn(Qqa QT) = meax(pa,i - p:;,j + Cijpfr,jv Cijpo,i)
(2SS

wherec;; = e-d" (¢, q;), andi = i(q,, o) andj = j(q,, o) are defined as in (5). The accuracy
of the solution found at the-th iteration is(1 — e)~te".

The iterative method can be useful for systems with lakge where the direct method can
be rather expensive. Furthermore, the mathematical ajpisanged to reach the iterative method
will be reused in the solution of the closest approximatioobtem in Section V.

An important feature ofls, is to be noted: metrids, is defined on any two states of a single

PDES, not on two states that belong to different PDESSs. leraia define the distance between
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two PDESs (with disjoint sets of states) as the distance dmtwheir initial states, a new PDES
is created that represents the union of the two PDESs (ttenusidefined in a natural way as
will be presented formally in Section V-B).

Also, it should be stressed that the presented algorithnksvfmr e € (0, 1). However, [37]
presented an algorithm for calculating distances in theugsmetric of [29] for a variant of
Markov chains for the case when= 1. The key element in the algorithm is Tarski’s decision
procedure for the first order theory of real closed fields. \ééele that this algorithm can
be modified to calculatel;, between the states of probabilistic generators. Howegethis
algorithm is impractical, an efficient calculation of distas in the metric for = 1 is still an

open problem.

V. CLOSEST APPROXIMATION ALGORITHM

In this section the algorithm that solves the closest appration problem is presented. All
the results in the sequel are applicable daf (0, 1).

First, the formulation of the closest approximation problés repeated. Assume that the
plant is given as PDES$:, = (Q,, %, J,. . pp), and the requirements specification is given
asG, = (@Q,,%,0,,¢,,p-). If there is no probabilistic supervisdr, such thatL,(V,/G,) =
L,(G,), the optimal solution is sought. The solution is optimal fre tfollowing sense. It is
assumed that the nonprobabilistic language of the reqeiném a safety requirement: no other
strings are allowed in the plant. Then, it is required thakimal permissible behaviour (in the
nonprobabilistic sense) is achieved. In this case, thegtitibtic behaviour of the controlled
plant should be as close as possible to the requirement#isgon that is now normalized
so that it is constrained to the supremal controllable nolpgilistic language. The proposed
algorithm uses this separation of probabilistic and nobabdistic aspects of optimality so that
it deals with each aspect separately: the first part hanbkeSnonprobabilistic optimality”, and

the second part handles the “probabilistic optimality”.

A. Algorithm: Part |

Before we start looking for the closest approximation ingkase of probability matching, we
resort to the classical supervisory theory of supremalrotiable languages. First, the classical
controllability condition (i) of Theorem 1 is checked whitenstructingL(G,) N L(G,). Then,
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if the condition is not satisfied, the goal is to find, the deadlock-free supremal control-
lable sublanguage of(G,) N L(G,) (with respect toG,). The languages is required to be
deadlock-free as only nonterminating PDESs are considérbdn, the DES that represents
this languagelk, further equipped with distributiomp, (appropriately normalized) becomes
the modified plant PDES~,. Also, a DES corresponding to languagé equipped with the
distribution p, appropriately normalized, becomes the desired behavidEFG,. Formally,
let the reachable and deadlock-free D&ES, = (T, %, (, ty) represent languagk’. We define a
PDESG, = (T,%,(, to, p1), Where the distributionp; : 7' x ¥ — [0,1], for anyq € T, 0 € ¥,

is defined as:
pp(qzav o)

Pp(ap, o)
oce{oeX|C¢(q,0)'}

whereg, = 0,(¢y,, s) for any s € K such thaty = ( (¢, s).

pi(q,0) =

Similarly, let G5, = (Q, %, d,qo) be a DES isomorphic t6:1, up to renaming of states, and,
without loss of generalization, assuriien @ = (). Obviously, the nonprobabilistic language
generated byG,, is K, too. Similarly, we define a PDE®&/; = (Q,%,0,q,p) Where the
distributionp : @ x ¥ — [0, 1], where, for any; € Q,0 € X:

pr(‘]rv U)

pr(QTa U)
oe{oeXl|d(q,0)!}

plq,0) =

whereq, = 0,(¢.,, s) for any s € K such thaty = (qo, s). Note thatp, andp are well-defined

as no state minimization on automaton representing lareghags performed.

B. Algorithm: Part Il

Now, the probability matching equations and inequalitresf Theorem 1 are checked. If they
are not satisfied (i.e., there is no probabilistic supervigposuch thatL,(V,/G1) = L,(G2)),
the goal is to findG,, = (@', X, &', ¢, p’) such that there exists a probabilistic supervigpiso
that L,(V,/G:1) = L,(G%) holds, andG), is closest toG, in our chosen metric. Without loss of
generality, it is assumed thatN @’ = . Also, without loss of generality, it is assumed that the
nonprobabilistic automata underlyirtg, and G, are isomorphic (with labeling of events being
preserved). Therefore, the nonprobabilistic automatsedyidg G, and GG/, are identical up to
renaming of states. This assumption is not restrictive esetbannot be any string in the desired

system that does not belong 16, and, therefore, sinc& = L(G,), there cannot be any string
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in the desired system that does not belond.tG';). This comes from the fact thdt(Gs) is the
reachable and deadlock-free supremal controllable sgbkge: if any string not if.(G5) would

be allowed in the controlled plant, either the safety or eomination requirement might not be
met. As our metric is defined on the states of a single systeonrder to define distances between
the states of different systems, namély and GG, the union PDES7, = (QU Q', X, 04, g0, Pu)

is considered, where far € ¥ andg € Q U Q":

6(q,0), ifqeq plq,0), ifqeq@

du(q,0) = and p(g,0) =

¥ (q,0), otherwise 7' (q,0), otherwise.

GeneratorGG,, is merely a PDES consisting of the union 6% and G/ with the initial state
arbitrarily chosen (betwees, and ¢)) to be .

Then, M is the set of 1-bounded pseudometrics on the states of tlhi® wystem with the
same ordering as in (2).

First, note that, considering the isomorphism betw@&handG,"”, only the distances between
(probability measures on) states @ of G, andq’ = f(q) € Q' of G, are of interest, wher¢
is the isomorphism betwee®,” andG5”. Also, leth be an isomorphism betwee,” and G7”.
It is assumed that PDES; is in stateq after the occurrence of stringe L(G2) (0(qo, ) = q).
Then, the closest approximatid, is in stateq’, respectively, wherg' = f(q). Let p, be the
probability distribution induced by the statec @ of PDESG, and letp;, be the probability
distribution induced by the staig € )" of PDESG,,.

Next, a classA of partial functionsa : Q x @ — [0, 1] is defined, such thatg € Q,q¢ =
flq) € @ alqg,q¢) = d(q,q¢'), whered € M. Therefore, the classl is the class of all 1-
bounded pseudometrics with domain reduced)ta ', and only distances betweere ) and
¢ = f(q) € @ defined since the algorithm is independent of the distantedsn the other
states. Next, we define a family as a set of probability distributions anx Q". Now, for each

P €Q — A, we define functioD” : A — Aas g€ Q.¢ = flq) € Q',d € A):
D" (d)(q,¢") = d(py. pl,) andp'(¢') = p,

where, as befored is lifted to the metric on distributions, and(p,, p;,) is defined as in (7).

Also, the reversed ordering oA is introduced to match the one in (2):
di 2" dy if Vg € Q, ¢ = f(q), di(q.q) > d2(q, q).

August 19, 2010 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 23

The fact that.4, <’) is a complete lattice follows from the fact that1, <) is a complete lattice.
Further, for eachy’ € Q' — A, we define functiortl{’[; as the greatest fixed point of function
D', The problem of finding the optimal approximation reducew o finding o, € Q" — A
such thatdfg”(qo, q) = a}m{dﬁ;(qo, q,)|p € Q" — A} and the conditions for the existence of a
probabilistic supervisor of Theorem 1 are satisfied. ltdat straight from the definitions @’
and d;’[; that, for anypy’ € Q' — A, g € Q,¢ = f(q) € @, the distanceslé’[;(q,q/) are distances
in our pseudometric.

We assume thal’ = {to,t1,...tn-1}, @ = {90, q1,-.-qn-1}, and Q' = {q}, ¢, - dy_1}
whereq, = f(¢:), ti = h(g;), i = 0,..., N —1. Note that, for probability distributions, a different
notation will be used than the one used in the previous sectietd € A, 0 <1 < N — 1,
U(q;) = Pos(q;), Yu(q;) = Pos(q;) N X, and¥.(q;) = Pos(¢;) N E.. Also, we will write 5 for
j(i,o), thenp,, , instead ofp,, (o, qi), andp;;,o instead Ofpgé(a, q.), k=0,1,...N — 1. Now,
the function? : A — A is defined as:

P(d)(a; ) = Minimize > maz(py,.o = Py o + 3Pl 00 CiPaio): (16)
7 oe¥(gi)

wherec; = e - d<Qj, q;) S.t.g; = 8(qi,0)

subject to
ti, p//. o
pi(ti, o) _ a4, — o€ Uo(q), (17)
> mt,a) > Pya
a€Wy(q:) a€W,(q;)
Zae\ll (q~)p1(ti7a) / /
. Phot 2 Pua<l o€ V(q), (18)
pi(ti, o) K a€Wo(q;) !
Y. Ppa=1 (19)
a€¥(q;)
Pyo = 0, o€ V(g). (20)

The constraints (17) and (18) represent the conditionsHerexistence of probabilistic su-
pervisor given by Theorem 1. The functign is well-defined since, ifoﬁw = p1(t;,0) for all
o € %, the constraints (17), (18), (19), (20) are satisfied. Tioeee the optimization problem
has a feasible origin. Sincd is a complete lattice, and the functigh can be easily shown to
be monotone, it has a greatest fixed point. Next, a useful kensnstated.

Lemma 4:Let (£, <) be a complete lattice, and I¢tg : £ — L be two monotone functions
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such thatvx € £ : g(x) < f(z). Let gfp(f) and gfp(g) denote the greatest fixed point of
functions f and g, respectively. Thengfp(g) < afp(f).
Proof: See the Appendix. [ |

Obviously, because of the definition of functi@h for any functionD”’, wherep’ € @) — A,
it holds thatvd € A D*'(d) =’ P(d). Using Lemma 4, we conclude that the greatest fixed point
of P is greater than or equal to ardﬁr;, P € Q — A. This greatest fixed point corresponds to
the minimal distance betweep and ¢, because of the reversed ordering .4n Therefore, the
greatest fixed point of functio® corresponds to the distances in our pseudometric where the
distance betweeq, andg; is minimized under the conditions of Theorem 1 for the exiséeof
a probabilistic supervisor. Consequently, the values afsiien variablesy), for ¢ € " when
the greatest fixed point dP is reached correspond to the statewise probability digiobs of
the optimal approximation.

We suggest an iterative algorithm to calculate the minimginevable distance (i.e. the only
fixed point of the functiorP?) up to a desired accuracy and provide the probability distion
of the system’s achievable behaviour when this distancedshed. The proof pattern used for
the algorithm from Section IV-B is followed. However, as rtiened before, the only relevant
distances are the ones betweea @ andq¢’ = f(q) € @'.

Let d € A. Again, we assume th& = {q, q1,...qv-1}, and Q" = {¢, ¢, - . . ¢y_1 }, Where
¢ = f(¢),i=0,...,N —1. Further, let us define functiod : M — [0,1]" as:

~

V(d) = (d(a0,90), d(a1, 1) - - dlan—1,qv-1))"
Therefore,V(d) = (Vi(d), ..., Vn(d))”, where, fork = 1,..., N:

Vi(d) = d(gr-1, ¢ —1)- (21)
The functionP is redefined in a natural way &(V(d)) = (P.(V(d)), ..., Pxy(V(d)))T, where
foranyk e {1,...,N}:
Pi(V(d)) = P(d) (g1, Gj—1);

whereq,_, = f(qu1). Also, let Py = {V(d)|d € A}.
Theorem 3:FunctionP is P-contractive orP,.
Proof: Letd’, d" € A, andd’ = V(d'), andd” = V(d"). Next, forqg € Q, ¢ = f(q) € Q', we
define setb(q) to be the set of all distributions, that satisfy conditions given by (17), (18), (19),
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and (20). Let € {1,...,N}. Then,P, (') = P(d')(qx—1.q}_,), andP,(0") = P(d")(qe-1, @, )-
Assume that the minumum of the objective function in (16) umdtion P(d’)(qx_1,q;._;) IS
reached forp,, = u for ;i € ®(g). Further, assume that the minumum of the objective function
in (16) in functionP(d”)(qx-1,q;_,) is reached forp;, = v for v € ®(q). Let ¥ = W(q;_1).
Also, let j(k,o) = j such thaty; = 6(qx—1,0), and f(q;) = ¢;. Assume thafP,(d') > Pi(d").
Then:

PL) — Pr(d")

= |>_max(pg, o — tg o+ ed (g, ¢ig o ed (4, 0))pg, o)
oev

o Zmax(qu*1’0 ~ Vg1 + ed//(qj7 q;)yq;ﬁl’o’ ed//(%ﬁ q;')p%f1,0>|
ocVv

<Y max(py_, o — vy o+ ed (g, 4V o ed (65, 4)Pgy o)
oev

— > max(py,_, o —Vy o+ ed" (g5, )y o ed" (45, 0)) Pg_y.0)| (22)
oev

(for pgl,cflﬁ = lig,_, o the minimum inP,(d") is reached)

< | Z (max(quq,a — Vg o + 6d/(Qja C.I;—)Vq;H,m ed,(qj> q;)quflﬁ)
oew

—max(pg, 10— Vg o+ ed (a4 0red" (35, 05)Pg1.0))]

< Y max(pg, .o — Vg o+ ed (45,45 o0 ed (4, 45)Pg_ o)
ocv

— max(Pg,_y0 = Vo_,0 +€d" (65, 6)Vq 00 ed" (4, 45)Pg 1 .0)] (23)
(Similarly, whenP,(2') < Py (0”), we get (23), withy,, , instead ofy, ,.) Every summand

in (23) has one of the following forms:

}quﬂ,o Vg ot ed/(qj, q;')’/q;,l,o — (Pay_1,0 — Vg ot ed//(qj, q;‘)Vq;’c,l,cr)‘ or

’Ed,(q]', q;)quth - 6d”(qj7 q;)qu717o) ) where

! / 1 /
’quqva Vg ot ed (qj, qj)’/q;,l,o — (Pgp_r0 — Vgl o ed”(qj, qj)’/q;,l,o)

d' (g5, q;) — d" (g5, 4;) d'(g;,q;) — d"(g;, 4;)

=€lVy o < €Pg 1,0

and

d'(q5,q;) — d"(q;,4;)

led/(%a Q;)qu,1,0 - 6d”(q3'7 q;)p%flﬂ)‘ = €Pq_1,0
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Hence,
PL(d) = Pr(d")

S Zep%fl,a

d'(q;,q;) — d"(q;, q)
oe¥
Further, using the same reasoning as in the proof of Lemmiai2straightforward to show that
P is P-contractive. [ |
Lemma 5:Let ', d” € A, andd’ = V(d'), andd” = V(d"). For anyk € {1,..., N}, there

existsm € {1,..., N} such that:

~

/ {1
am - am

PL) = Pu(d")

<e

Proof: See the Appendix. [ |

Theorem 4:For any?d® € P, the sequence
Tl =PR"), n=0,1,...
converges to the only fixed point @ in P, 0*, and the error of convergence is given compo-
nentwise k¢ € {1,...,N}) as:
P —0i < (1—e)te”, n=1,2,...
Proof: See the Appendix. [ |

The problem of (16 — 20) is not a linear programming problent, ibis transformable into

one by using additional variableg, ,, and by transforming (17) into (24):

Minimize Y yy.0
o€¥(q;)

subject to
Par = Py ot CiPyo < Yqor 0 € ¥(a),
CjPqi,o < Yagi,o OIS ‘Il(qi)a

wherec; = e - d(g;, ¢)) s.t.q; = 0(¢;, 0),
pl(tia U) Z p;i,m = p;ﬁw Z pl(tiv Oé), = \Ilu(qi)7 (24)
aeWy(q;) a€Wu(g:)

tiu
Zae\llu pl( Oé) p;;,a —+ Z pég’a <1, oc \I]c(%),

P1 (tlu U) A€W (q;)
Z p;g,a = 17
a€¥(q;)
Pao 2> 0, o€ ¥(g)
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It might look as if (24) is weaker than (17) as it allows the gibsity of o}, , = 0 for all
o € V,(g;), which (17) forbids. However, this is not the case. }ajgta = 0 for everyo € ¥, (¢;).
From (18) it follows that:

ti, «
ZaE‘I/u pl( )p;{p < Z p;{7a -0
pi(ti o) ' 0€¥u(q)

which would mean thap;, , = 0 for everyo € V.(g;) which contradicts the condition (19).

We now present the iterative algorithm for finding the fixednp@f function P.
Let d°(¢;,¢)) = 0,7 = 0,1,..N — 1. The distancel"(¢;, ¢}) in the n-th iteration @ > 0) is

given as:

Minimize Y yg.0 (25)

o€V (q;)
subject to
p(Ii,U - pi]z’.,cr + ij;;,g S yqi,CH o W(QZ)
CiPq;,o < Yqi,o o€ ‘II(QZ')

wherec; = e d"(g;. q;) st.q; = (g, 0),

it o) D Py = P;;,o Y. nltia), o€ Ty(q),

aeW,(g;) acWy(q;)

Zae\ll P1 (tla Oé) / /
y Py o + Z Pq .o < 17 S \Ilc(%,),
P (tia U) “ a€Wo(g;) &

Z p:];.,a = 17

a€V(q;)

Peo 2 0, o€ ¥(g)

After the n-th iteration, the value of decision variable@_,o that represent the unknown
transition probabilities, are such that the distance betwthe (initial states of) systems,
and G, is within (1 — e)~'e™ of the minimal achievable distance between the two systéms (
our pseudometric). Note that the aforementioned resuli foo e € (0, 1).

Also, it should be noted that the presented algorithm can bdifired for the case when
the requirements specification is not revised (see [26])reMwrecisely, a modification of the
presented algorithm can be used to solve the control prolple®sented in Section IlI-A with
requirement 2) changed so that the distance between theoltedtplant and the unmodified

requirement is minimized.
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C. Summarizing the algorithm

We now summarize the presented algorithm and give a briefotmaty analysis.

1) First, the classical algorithm for finding the supremattcollable sublanguage is modified.
The automatorn,, the synchronous product of the nonprobabilistic automatderlying G,
and G, is constructed. While constructing the product, the ctadstontrollability conditions
are checked for each state. If the conditions are satisfiectdch state of the product, then
G = G, and go to 2). If there is at least one state of the product foichvthe classical
conditions do not hold, the rest of the algorithm for findirige tautomaton representing the
supremal controllable sublanguage is then applied. Therigtign can easily be modified to
exclude deadlock states: these states are consideredtroiiadre. Let (reachable and deadlock-
free) DESG = (Q, %, d, qo) represent this supremal controllable language.

2) Let G4, G2, and G, be defined as previously in this section. Check the equsilaied
inequalities of Theorem 1 for each state: if they are satisfée supervisor exists, and, is
the optimal approximation. If not, then lef(¢;,¢/) = 0 for all 0 < i < N — 1. The distance
d"(q;, ¢}) in the n-th iteration @ > 0) is given by (25).

For each of the states af, (typically, the number of states dF, is much smaller than

|QP| ’ |Qr

linear programming problem (25). Depending on what metiodided, the running time of

), either the simplex method or an interior point method canused to solve the

the algorithm is either exponential (simplex method) orypomial (interior point methods) in
the maximal number of events possible from a state of theesog@ir controllable sublanguage
of the specification (with respect to the plant). Even the stvonse exponential complexity
of the simplex method is not problematic for two reasonst,fitee method is very efficient in
practice, and second, the number of possible events froata@istsmall in practical applications.
Furthermore, the number of iterations needed to reach theacy ofe is [ (log, e+log, (1—e))].
This term is obtained from the fact that the number of iterain for which an accuracy is

achieved should be the smallest natural number for whigh(1 — e)~'e" is satisfied.

D. Example

For plantG, depicted in Fig. 1, there does not exist a probabilistic stiper 1, such that
G(V,/G,) = G,. Fig. 2 shows the modified plaidf, and modified specificatioty,, defined as
suggested in Section V-A. For PDES,, let p, be the probability distribution induced by the
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stateq € @ and, for PDESY,, let p;, be the probability distribution induced by the states )"
As before, we will writep, , instead ofp,(c,q;), andp], , instead ofp;, (o, q;), i,j = 0,1, 2.
At the n-th iteration, distanceg"(qo, ¢;), d"(q1,q;), andd"(¢2, ¢) are calculated as follows:
d"(qo, Q(/)) = Minimize (y40.0 + Y4o,5)

subject to
Pave = Py o+ € A" Ha1,01) 04 0 < Yagar € A" 1,0 Pgo0 < Ygoran

-1 —1
Paos = Py st e d" (a2, 0)Pp 5 < Yaop € A" (42,45)Pa0,8 < Yao,55

p(Q07ﬁ) / p/ <1
plgo, o) 40 T T

dn(Ql»‘]i) = Minimize (y4, 5 + Yg:.~)

/ / o / /
'+ P + Pay.6 = 1, P, =0, Pay.8 = 0.

subject to
Par s — Py gt e A" a2 )Py 5 < Yarsr € A" (02, 80)Par 5 < Yar 5

Pay — p:;’lgy +e- dn_l(QOa Q(l))p;’l,y SYpyr € dn_l(QOa C_IS)qu < Yar s

p(q1, B3)
p(q1,7)

d" (g, ‘Jé) = Minimize (yqz,ﬁ + Ygo,0 + yQ27’F)

/ / / / o / /
Pgo .y + Pa1 <1, Pq,.p + Pgin = L, Py, > 0, Py, ~ = 0.

subject to
Pass — Py € A" a2 00) 0y 5 < Ypps € A" (02, 8)Par5 < Yoo
Paro = P+ € A" 00,900y 0 < Yaror €+ A" (00, 90)Pg 0 < Y 0

—1 -1
Paa,m — P;;,T +e-d” (QQ, Q6>p:1é77 < Ygorrr € d" (QO7 Q(l))qu,-r < Ygorrs

p(g2, B) + p(g2, 7)
p(q2, 7) (P;Q,T + ,0:15,5) = ,0:15,7 (p(qa, 7) + p(ga, 3)) , (¢, 6) :0:12,9 + P;2,9 <1

/ / / o / / /
Pays + Payo T Py = 1, Paj.8 =0, Paj.0 20, Pl = 0.

Note that, for eacld™(qo, q,), andd™(q1, q;), the equation that corresponds to the controllability
condition for the sole uncontrollable event is missing, &ssitrivially satisfied. Also, for
d"(q2, ¢5), the controllability equation was generated only for onéved uncontrollable events,
as the two equations can be derived from each other.

For the accuracy = 0.001, ande = 0.5, 11 iterations of the algorithm are needed. It is

August 19, 2010 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 30

found that the closest behaviour achievable with probsthglicontrol is as given in Fig. 2. It
took 0.3 seconds on a 2.6GHz dual core Opteron processor with 8GB dfl R&ning Red
Hat Enterprise Linux Server 5.5. In order to find the corresidog probabilistic supervisor, the
algorithm of [18], [19] can be used. For the stafeand eventy, the control input i9.6, for ¢

and eventy, the input isl, and forg, and even®, the input is0.625.

a: 01667 3:0.5556 3:0.3333 1 3 :0.5556
y 0.4444 3 0.2 , 0.6667 /3 0.125 w 0.4444 3A0.3125

B:0.8333

7:0.2 7:0.5 7:0.3125
0:0.6 0:0.375 0:0.375

Fig. 2. Generatorgs;, G2, and optimal approximation:

VI. CONCLUSIONS

This paper solves the classical problem of finding the closggroximation in the framework
of probabilistic control of PDESs. Two algorithms for thelatdation of distances (in the
chosen pseudometric) between the states of a probabdistierator used to model a PDES are
suggested. Then, a modification of the iterative algoriterproposed to minimize the distance
(in this pseudometric) between the desired behaviour ofylseem and its achievable behaviour.

Although the rate of convergence of the algorithm to the madidistance is known, we would
like to investigate how unknown, desired probabilities loé tclosest approximation change as
the distance converges. Experimental results indicatehkegrobabilities converge very quickly.
Also, operators on probabilistic generators should be ddfand their desired property of non-
expansiveness with the respect to the metric should be elleton-expansiveness means that
the distance between two systems does not increase whear@yt in the same environment.
This would allow for compositional reasoning. Further, theestion of uniqueness of the closest

approximation remains open as well as probabilistic comtith marking.
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APPENDIX

1) Proof of Lemma 3

We use the notation from Lemma 2.

Dr(d) = Dx(d")] < ey _min(pos, o) |d'(a, @) — d" (g, )| (from (10))

oEY
< ey min(poy, py) maz {|d (@ q) — d" (@ )|}
oEY ’

{(t(o,0),l(0:5))|o€X}

< e> min(pog, phy) |d (g a5) — d" (g, G5))|

ceY

for somer,s € {0,...,N — 1}
< e‘d/<%"7 QS) - dﬂ(‘]?"v qs)‘

(since Y por= > phi=1)
oEY oEX
te{0,....N—1} 1€{0,...,.N—1}

<elo, —0"| for somem € {1,...,N?}

2) Proof of Lemma 4
According to Knaster-Tarski theorem, the functiofigand g have the greatest fixed points
gfp(f) and gfp(g), respectively, wheregfp(f) = sup({zlz = f(z)}), and gfp(g) =
sup({zlz 2 g(x)}). SinceVa : g(z) 2 f(z), then{z|z = g(x)} C {zfz = f(2)}
hencegfp(g) < gfp(f).
3) Proof of Lemma 5
First, use the proof of Theorem 3 up to (22), and, then, amaisgo the proof of Lemma 3.
4) Proof of Theorem 4

Analogous to the proof of Theorem 2 (with using Lemma 5 indteLemma 3).
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