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Abstract: This work represents a natural extension of our work on optimal probabilistic su-
pervisory control of probabilistic discrete event systems (PDESs). In that work, a pseudometric
on the initial states of two probabilistic generators that represent probabilistic systems is used
to measure the distance between the two systems. The pseudometric is given a fixed point
characterization. This paper gives a logical characterization of the same pseudometric such that
the distance between two systems is measured by a formula that distinguishes between the
systems the most. A trace characterization of the pseudometric is then derived from the logical
characterization. Further, the solution of the problem of approximation of a given probabilistic
generator with another generator of a prespecified structure is suggested such that the new
model is as close as possible to the original one in the pseudometric. The significance of the
approximation is then discussed.
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1. INTRODUCTION

A supervisory control framework for PDESs was proposed
in Lawford and Wonham (1993). PDESs are modeled as
probabilistic generators inspired by Garg et al. (1999).
Further, deterministic supervisors for DES are general-
ized to probabilistic supervisors: after observing a string
s, the probabilistic supervisor enables an event σ with
a certain probability. The supervisory control problem
considered in Lawford and Wonham (1993) is to find, if
possible, a supervisor under whose control the behaviour
of a plant is identical to a given probabilistic specification.
Further, Lawford and Wonham (1993) show that a plant
under probabilistic control can generate a much larger
class of probabilistic languages than deterministic control,
and give the necessary and sufficient conditions for the
existence of a supervisor for a class of PDESs. A formal
proof of the necessity and sufficiency of the conditions and
an algorithm for the calculation of the supervisor, if it
exists, are presented in Pantelic et al. (2009). Analogous
to a problem in classical supervisory control theory, it can
happen that, given a plant to be controlled and a proba-
bilistic specification language, no probabilistic supervisor
exists such that the plant under control generates the
prespecified probabilistic language. In this case, when the
exact solution is not achievable, a designer tries to find
a supervisor such that the plant generates the behavior
closest to the desired behaviour (Pantelic and Lawford
(2009)). Therefore, the supervisor is synthesized by min-
imizing the distance between the achievable probabilistic
behavior of the plant under control and the probabilistic
behaviour of the requirement. The distance is measured
by a pseudometric on the states of probabilistic transition
systems which was introduced in Deng et al. (2006). The
pseudometric is characterized as the greatest fixed point

of a function. For reactive systems, the work of Deng
et al. (2006) is closely related to Desharnais et al. (2002),
Desharnais et al. (2004), van Breugel and Worrell (2001a),
van Breugel and Worrell (2001b, 2005).

The pseudometric of Deng et al. (2006) is slightly modified
in Pantelic and Lawford (2009). The pseudometric intu-
itively matches a notion of the distance between PDESs,
accounting for all differences between corresponding tran-
sition probabilities. Furthermore, as it is suggested for
a large class of systems, the pseudometric allows for an
extension of the work to e.g., nondeterministic systems.
Also, there is a simple algorithm to compute distances in
this pseudometric for our generative, deterministic model
(Pantelic and Lawford (2009)).

This paper further motivates the choice of the pseudomet-
ric in the solution of the control problem of Pantelic and
Lawford (2009) by characterizing the pseudometric using a
real-valued logic along the lines of Desharnais et al. (2002).
However, the logic itself is different than that of Desharnais
et al. (2002) as our models are generative. Also, the main
part of the characterization proof is, to the best of our
knowledge, novel. The idea of logical characterization is
that the distance between two systems is measured by a
logical formula that distinguishes between the systems the
most. Further, in this paper, this logical characterization is
used as useful information on how the probabilistic traces
of the systems are related.

In the control theory of PDESs, Chattopadhyay and Ray
(2008) introduce a pseudometric in a symbolic pattern
recognition application to measure the distance between
the original model and the one with prespecified structure,
where the latter has the same long term distribution
over the states as the original one. In this paper, the



problem of a similar probabilistic model transformation
(probabilistic model fitting) is discussed in our setting.
A probabilistic generator is approximated by another
one with a prespecified structure such that the distance
between the two is as small as possible in the pseudometric
of Pantelic and Lawford (2009). The significance of the
fitting, especially with respect to the control algorithm of
Pantelic and Lawford (2009) is then discussed.

In Section 2, the probabilistic control of PDESs is re-
viewed. Section 3 presents the logical characterization of
the pseudometric. The trace characterization that stems
from the logical one is presented in Section 4. The prob-
abilistic model fitting problem, its solution, and its ap-
plications in control theory are introduced in Section 5.
Section 6 concludes with avenues for future work.

In this paper, the proofs are omitted due to space restric-
tions. They can be found in Pantelic (2009).

2. PRELIMINARIES

In this section, PDESs modeled as generators of probabilis-
tic languages are presented. Then, the problem of optimal
supervisory control of PDESs, and the pseudometric used
in the solution of the problem are introduced (for more
details, see Pantelic and Lawford (2009)).

2.1 Modeling PDES

The probabilistic DES (PDES) can be modeled as a prob-
abilistic generator G = (Q,Σ, δ, q0, p), where Q is the
nonempty finite set of states, Σ is a finite alphabet whose
elements we will refer to as event labels, δ : Q×Σ → Q is
the (partial) transition function, q0 ∈ Q is the initial state,
and p : Q × Σ → [0, 1] is the statewise event probability
distribution (Lawford and Wonham (1993)). The results to
be presented are for prefix closed probabilistic specification
languages; hence the lack of marking states in the defini-
tion of a probabilistic generator. The transition function is
traditionally extended by induction on the length of strings
to δ : Q× Σ∗ → Q in a natural way. For a state q, and a
string s, the expression δ(q, s)! will denote that δ is defined
for the string s in the state q.

The probability that the event σ ∈ Σ is going to occur
at the state q ∈ Q is p(q, σ). For the generator G to be
well-defined, (i) p(q, σ) = 0 should hold if and only if
δ(q, σ) is undefined, and (ii) ∀q

∑

σ∈Σ p(q, σ) ≤ 1. The
probabilistic generator G is nonterminating if, for every
reachable state q ∈ Q,

∑

σ∈Σ p(q, σ) = 1. Conversely,
G is terminating if there is at least one reachable state
q ∈ Q such that

∑

σ∈Σ p(q, σ) < 1. The probability that
the system terminates at state q is 1 −

∑

σ∈Σ p(q, σ).
Throughout the sequel, we will consider nonterminating
generators. A terminating plant can easily be transformed
into a nonterminating one using the technique described
in Lawford and Wonham (1993).

The language L(G) generated by a probabilistic DES
generator G = (Q,Σ, δ, q0, p) is L(G) = {s ∈ Σ∗ |δ(q0, s)!}.
The probabilistic language generated by G is defined as:

Lp(G)(ǫ) = 1

Lp(G)(sσ) =

{

Lp(G)(s) · p(δ(q0, s), σ), if δ(q0, s)!
0, otherwise.

Informally, Lp(G)(s) is the probability that the string s is
executed in G. Also, Lp(G)(s) > 0 iff s ∈ L(G).

For each state q ∈ Q, function ρq : Σ × Q → [0, 1]
is defined such that for any q′ ∈ Q, σ ∈ Σ, we have
ρq(σ, q

′) = p(q, σ) if q′ = δ(q, σ), and 0 otherwise. The
function ρq is a probability distribution on the set Σ×Q.
Also, for a state q, the set of possible events is defined to
be Pos(q) := {σ ∈ Σ|δ(q, σ)!}.

2.2 Control Problem

As usual, the event set Σ is partitioned into disjoint sets Σc
and Σu, the sets of controllable and uncontrollable events,
respectively. Deterministic supervisors for DES are gener-
alized to probabilistic supervisors. Instead of deterministi-
cally enabling or disabling controllable events, probabilis-
tic supervisors enable them with certain probabilities.

Optimal Probabilistic Supervisory Control Problem (OP-
SCP): Let G1 = (Q,Σ, δ1, q0, p1) be a plant PDES, and
let G2 = (R,Σ, δ2, r0, p2) be a requirements specification
PDES. The plant G1 under the control of the supervisor
Vp will be denoted Vp/G1. If there is no probabilistic
supervisor Vp such that Lp(Vp/G1) = Lp(G2) (i.e., the
conditions of Lawford and Wonham (1993) fail), find Vp
such that

(1) L(Vp/G1) ⊆ L(G2) and supervisor Vp is maxi-
mally permissive in the nonprobabilistic sense (i.e.,
L(Vp/G1) is the supremal controllable sublanguage
of L(G2) with the respect to G1).

(2) The probabilistic behaviour of the controlled plant is
“as close as possible” to the probabilistic behaviour
of the requirements specification, now restricted to
supremal controllable sublanguage of L(G2) with the
respect to G1.

The solution to the problem is given in Pantelic and
Lawford (2009). The supremal controllable sublanguage
of L(G2) with the respect to G1 is generated as the
maximally permissive behaviour of the controlled plant.
Then, the distance (in the pseudometric to be described
in Section 2.3) between the generators representing the
controlled plant, and the probabilistic requirement (now
restricted to the supremal controllable sublanguage) is
minimized such that the probabilistic controllability condi-
tions of Lawford and Wonham (1993) are satisfied. An iter-
ative algorithm is given to approximate the probabilities of
the controlled plant. As the underlying graphs of the two
generators are isomorphic, the distance is minimized by
minimizing the distance between each pair of isomorphic
states. The algorithm is linear in the number of states
of both the plant and the requirement generator, and
polynomial in the number of events.

2.3 The pseudometric

Probabilistic bisimulation as commonly used to define an
equivalence relation between probabilistic systems is not
a robust relation: two states of probabilistic systems are
bisimilar if and only if they have the same transitions with
exactly the same probabilities to states in the same equiv-
alence classes. As a more flexible way to compare proba-
bilistic systems, a notion of pseudometric is introduced. A



pseudometric on a set of states Q is a function d : Q×Q→
R that defines a distance between two elements of Q, and
satisfies the following conditions: d(x, y) ≥ 0, d(x, x) = 0,
d(x, y) = d(y, x), and d(x, z) ≤ d(x, y) + d(y, z), for any
x, y, z ∈ Q. If all distances are not greater than 1, the
pseudometric is 1-bounded. In the sequel, the terms metric
and pseudometric will be used interchangeably.

The work of Deng et al. (2006) introduces a pseudometric
on states for a large class of probabilistic automata,
including reactive and generative probabilistic automata.
The pseudometric is based on the Kantorovich metric on
distributions. Two states are at distance 0 in this metric
if and only if they are probabilistic bisimilar. Here, the
metric is presented only for probabilistic generators.

Let G = (Q,Σ, δ, q0, p) be a nonterminating PDES, where
Q = {q0, q1, . . . qN−1}. First, in Desharnais et al. (2002)
and Deng et al. (2006), the class M of 1-bounded pseudo-
metrics on states is defined with the ordering (d1, d2 ∈ M)

d1 � d2 if ∀qq, qr d1(qq, qr) ≥ d2(qq, qr). (1)

Further, it is proved that (M,�) is a complete lattice.

Next, let d ∈ M, and let the constant e ∈ (0, 1] be
a discount factor that determines the degree to which
the difference in the probabilities of farther transitions
is discounted: the smaller the value of e, the greater the
discount on future transitions. Let qq, qr ∈ Q, and let ρqq

and ρqr
be the distributions on Σ×Q induced by the states

qq and qr, respectively. Next, let i(qq, σ) = i such that qi =
δ(qq, σ) if δ(qq, σ)!, and i(qq, σ) = 0, otherwise. Similarly,
j(qr, σ) = j such that qj = δ(qr, σ) if δ(qr, σ)!, and
j(qr, σ) = 0, otherwise. For readability purposes, we will
write i instead of i(qq, σ), and j instead of j(qr, σ). Further,
we will write ρσ,i instead of ρqq

(σ, qi), and, similarly, ρ′σ,j
instead of ρqr

(σ, qj). Then, the pseudometric on states dfp
is given as the greatest fixed-point of the function D on
M, that, in the special case of probabilistic generators,
can be shown to be (see Pantelic and Lawford (2009)):

D(d)(qq , qr)

=
∑

σ∈Σ

max(ρσ,i − ρ′σ,j + eρ′σ,jd(qi, qj), eρσ,id(qi, qj))

=
∑

σ∈{σ∈Σ|ρσ,i≥ρ′σ,j
}

(

ρσ,i − ρ′σ,j + eρ′σ,jd(qi, qj)
)

+
∑

σ∈{σ∈Σ|ρσ,i<ρ
′

σ,j
}

eρσ,id(qi, qj) (2)

We arbitrarily choose i(qq, σ) to be 0 (similarly for j(qr, σ))
when δ(qq, σ) is not defined although we could have chosen
any other i ∈ {1, . . . , N−1}. This is because when δ(qq, σ)!
does not hold, then ρσ,i(qq ,σ) = 0 for any i(qq, σ) ∈
{0, . . . , N − 1}.

The distances between the states in dfp are larger by the
factor 1/e than the distances in metric defined in Deng
et al. (2006). This has been done so that the distances are
in the range [0, 1], instead of [0, e].

The pseudometric dfp is defined on the states of a single
PDES. The distance between two PDESs (with disjoint
sets of states) is the distance between their initial states
in a new PDES that represents the union of the PDESs
defined in a natural way (Pantelic and Lawford (2009)).

In the sequel, the union will not be formalized as it does
not change the distance between the states.

Remark 1. According to Tarski’s fixed point theorem, the
greatest fixed point of function D can be reached through
an iterative process that starts from the greatest element.
As the number of transitions from a state of a probabilistic
generator is finite, the greatest fixed point of the function
D is reached after at most ω iterations (Deng et al. (2006),
Desharnais et al. (2002)) (equivalently, the closure ordinal
of D is ω). Therefore, the metric dfp can be reached
through the following iterative process.

Definition 1. The distance function d0
fp is defined as d0

fp =

0, and the distance function dn+1
fp , n ∈ N, is given as

dn+1
fp = D(dnfp), where D is given in (2).

3. LOGICAL CHARACTERIZATION

The aforementioned metric has been given a fixed point
characterization. This section presents a logical character-
ization of the same metric. The logic used is real-valued
so that it can handle probabilities. If the systems are
probabilistic bisimilar, there should not be a formula that
distinguishes between the systems. The distance between
the states in the metric is achieved through a formula that
distinguishes between the systems the most.

As before, let G = (Q,Σ, δ, q0, p) be a nonterminating
generator, where Q = {q0, q1, . . . qN−1}.

Definition 2. Given an alphabet Σ, the logic L is defined
as follows:

φ ::= 1 | 〈σ〉φ |
∨

σ∈Θ

〈σ〉φ | 1 − φ | φ⊖ p,

where p is a rational number in [0, 1], σ ∈ Σ, and Θ ⊆ Σ.

The formula φ evaluated at a state q ∈ Q, φ(q), is a
measure of how much φ is satisfied at the state. The
semantics of the logic L is given next.

Definition 3. Let q ∈ Q, and ρq be the probability dis-
tribution on Σ × Q induced by state q. Let φ ∈ L, and
ψ : Σ → L. The notation ψσ will be used for ψ(σ), σ ∈ Σ.
Then:

1(q) = 1

〈σ〉φ(q) = eρq(σ, qi(q,σ))φ(qi(q,σ))
∨

σ∈Θ

〈σ〉ψσ(q) =
∑

σ∈Θ

eρq(σ, qi(q,σ))ψσ(qi(q,σ))

(1 − φ)(q) = 1 − φ(q)

(φ ⊖ p)(q) = max(φ(q) − p, 0)

where σ ∈ Σ, and, as before, i(q, σ) = i such that
qi = δ(q, σ) if δ(q, σ)!, and i(q, σ) = 0, otherwise.

The presented logic represents a probabilistic modification
of Hennessy-Milner logic (Hennessy and Milner (1985)).
The formula 1 corresponds to the constant true, 〈σ〉φ
is the next operator, 1 − φ corresponds to negation, and
φ⊖p provides for the testing of the value of φ (Desharnais
et al. (2002)). The logic supports only a specific disjunction
of form

∨

〈σ〉φ; extending it to
∨

φ would require a
more complicated formalization not necessary for the main
result to be presented.



The metric dL is defined next. The distance between two
states are measured by a formula that differentiates them
the most.

Definition 4. For every qq, qr ∈ Q, the metric dL is defined
as:

dL(qq, qr) = sup
φ∈L

{|φ(qq) − φ(qr)|}.

In this logical setting, the smaller the factor e is, the more
discounted the difference is for complex formulae.

An example is given in Figure 1. The states q0 and r0 are

β : 0.5

r1

G2

r2

r0

γ : 1.0

γ : 1.0
β : 0.75

α : 0.25

G1

q0

q1

q2

τ : 1.0

τ : 1.0

α : 0.5

Fig. 1. Example

at the distance 0.25e+ 0.75e2 in the metric dL, witnessed
by the formula φ =

∨

σ∈{α,β}〈σ〉φσ , where φα = 1 − 〈γ〉1,

and φβ = 〈τ〉1. Further, states q1 and r1 (also, q1 and r2)
are at the distance e as witnessed by the formula φ = 〈τ〉1.

The goal is to show that the metric dfp is equal to the
metric dL up to constant e.

Lemma 1. Let qq, qr ∈ Q. For a function ψ : Σ → L, the
shorthand notation ψσ will be used for ψ(σ). Then:

dL(qq, qr) = sup
ψσ∈L

{∣

∣

∣

∣

∣

∨

σ∈Σ

〈σ〉ψσ(qq) −
∨

σ∈Σ

〈σ〉ψσ(qr)

∣

∣

∣

∣

∣

}

.

The main result relating the two metrics is presented next.
It states that dL and dfp are equal up to constant e.

Theorem 1. dL = edfp

4. FROM LOGIC TO TRACES

First, Lp(G)(s) is modified to define the discounted prob-
ability of a string s in G, denoted Pd(G)(s).

Definition 5. Let Pd(G) : L(G) → [0, 1] be defined as:

Pd(G)(ǫ) = 1

Pd(G)(sσ) =

{

e · Pd(G)(s) · p(δ(q0, s), σ), if δ(q0, s)!
0, otherwise

where s ∈ L(G), σ ∈ Σ. Then, Pd(G)(s) is the discounted
probability of a string s in G.

Informally, the discounted probability of a string is the
probability of occurrence of a string discounted by factor
e for every event in the string, Pd(G)(s) = e|s|Lp(G).

Let G1 and G2 be two probabilistic generators. An im-
portant result states that there is not a string whose
discounted probabilities differ more than the distance dL
between corresponding generators.

Theorem 2.

dL(G1, G2) ≥ sup
s∈Σ∗

{|Pd(G1)(s) − Pd(G2)(s)|} (3)

Further, it can be shown that distance in the metric dL
between the two systems is also greater than the difference
in discounted probabilities of a set of strings such that none
of strings is a substring of another. Let Γ ⊆ Σ∗, such that
no string in Γ is a prefix of another string in Γ. Then:

Theorem 3.

dL(G1, G2) ≥ sup
Γ⊆Σ∗

{∣

∣

∣

∣

∣

∑

s∈Γ

Pd(G1)(s) −
∑

s∈Γ

Pd(G2)(s)

∣

∣

∣

∣

∣

}

Similarly, the correspondence between the discounted
probability of strings and formulae in L can be made
for the remaining formulae of Definition 3. Therefore, the
metric measures not only the difference in probabilities of
strings in two languages (discounted for their length), but
also the difference in discounted probabilities of a certain
set of strings, or some more complicated properties of
strings, e.g., whether the discounted probability of a string
is greater than a prespecified value.

5. PROBABILISTIC MODEL FITTING

First, the problem of probabilistic model fitting is defined,
and a solution for the fitting is suggested. Next, its signifi-
cance in control theory, and especially, with regards to the
algorithm of Pantelic and Lawford (2009), is discussed.

5.1 Probabilistic Model Fitting: Problem and Solution

For a probabilistic generator G = (Q,Σ, δ, q0, p), the (non-
probabilistic) discrete event system (DES) that underlies
G will be denoted G′ = (Q,Σ, δ, q0). The synchronous
product of two (nonprobabilistic) discrete event systems
(DESs) that underlie two PDESs is defined as follows. Let
G1 = (Q1,Σ, δ1, q01, p1) and G2 = (Q2,Σ, δ2, r0, p2) be
probabilistic generators.

Definition 6. The synchronous product of G′
1 = (Q1,Σ,

δ1, q01) and G′
2 = (Q2,Σ, δ2, r0), denoted G′

1 ‖ G′
2, is

the reachable sub-DES of DES Ga = (Qa,Σ, δ, q0), where
Qa = Q1 ×Q2, q0 = (q01, r0), and, for any σ ∈ Σ, qi ∈ Qi,
i = 1, 2, it holds that δ((q1, q2), σ) = (δ1(q1, σ), δ2(q2, σ))
whenever δ1(q1, σ)!, and δ2(q2, σ)!.

Note that no minimization is done in the construction of
the synchronous product as defined above.

Probabilistic Model Fitting Problem: Let G1 = (Q1,Σ, δ1,
q01, p1) be a probabilistic generator. Given a nonproba-
bilistic generator G′

2 = (Q2,Σ, δ2, r0) such that G′
1 ‖ G′

2
is isomorphic to G′

2, find the statewise event probability
distribution p2 such that probabilistic generator G2 =
(Q2,Σ, δ2, r0, p2) is as close as possible to G1 in metric
dfp.

The idea of solving the problem is as follows. The generator
G1 is to be modified to make G′

2 isomorphic (identical up
to renaming of states) to a subautomaton of G′

1, while
the probabilistic language of G1 is preserved. Then, the
distance between G1 and G2 is minimized by minimizing
the distance between the modified G1, and G2. This is
allowed as the two distances are the same, since G1 and
its modified version are probabilistic bisimilar:

Theorem 4. Let G1 and G2 be two probabilistic genera-
tors. Then, if Lp(G1) = Lp(G2), then dfp(G1, G2) = 0.
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Fig. 2. Model fitting: an example

Next, as previously stated, we seek to represent Lp(G1)
with an automaton G1a such that G′

2 is isomorphic to
a subautomaton of G′

1a. Figure 2 illustrates an example.
The part of G1a drawn by a solid line corresponds to the
subautomaton of G′

1a isomorphic to G′
2. In general, the

automaton G1a will represent a non-minimal realization
of Lp(G1) (in the sense that it might have more states
than G1, but Lp(G1) = Lp(G1a)). Generator G1a can be
constructed in the following manner.

(1) Self-loop each state of G′
2 with events not possible

from that state. Formally, G′
2a = (Q2,Σ, δ2a, r0),

where, for q ∈ Q2, σ ∈ Σ:

δ2a(q, σ) =

{

δ2(q, σ), if δ2(q, σ)!
q, otherwise.

(2) Next, let G′
1a = (Q1a,Σ, δ1a, q0) = G′

1 ‖ G′
2a.

(3) The probabilistic version of G′
1a is G1a = (Q1a,Σ, δ1a,

q0, p1a), such that, for all q ∈ Q1a, σ ∈ Σ p1a(q, σ) =
p1(r, σ), where r = δ1(q01, s) for any s ∈ L(G1a) such
that q = δ1a(q0, s).

Lemma 2. Lp(G1) = Lp(G1a).

Now, let f : Q2 → Q1a be an embedding (a monomor-
phism) of G′

2 into G′
1a, i.e.:

(1) f(r0) = q0,
(2) ∀q ∈ Q2∀σ ∈ Pos(q)f(δ2(q, σ)) = δ1a(f(q), σ).

The function f always exists and is unique. This fact
follows from the construction of G1a and the determinism
of generators.

Without loss of generality, it is assumed that, Q1a =
{q0, . . . , qM−1}, Q2 = {r0, . . . , rN−1}, and M ≥ N > 0,
d ∈ M, q ∈ Q2. Next, i(f(q), σ) = i such that qi =
δ1a(f(q), σ) if δ1a(f(q), σ)!, and i(f(q), σ) = 0, otherwise.
Let j(q, σ) = j such that rj = δ2(q, σ) if δ2(q, σ)!, and
j(q, σ) = 0, otherwise. For readability purposes, we will
write i instead of i(f(q), σ), and j instead of j(q, σ).
The distance between G1a and G2 is dfp(q0, r0). Also,
f(r0) = q0, and

D(d)(f(q), q)

=
∑

σ∈Σ

max(ρσ,i − ρ′σ,j + eρ′σ,jd(qi, rj), eρσ,id(qi, rj))

=
∑

σ∈Pos(f(q))\Pos(q)

ρσ,i

+
∑

σ∈Pos(q)

max(ρσ,i − ρ′σ,j + eρ′σ,jd(f(rj), rj),

eρσ,id(f(qj), qj)) (4)

(since f(rj) = qi, by the definition of f)

where ρf(q) and ρq are the distributions on Σ×Q induced
by the states f(q) and q, respectively, and ρσ,i is writ-
ten instead of ρf(q)(σ, qi), and, similarly, ρ′σ,j instead of

ρq(σ, rj).

Remark 2. Based on (4), it can be concluded that, for
q ∈ Q2, the distance between state f(q) ∈ Q1a and state
q ∈ Q2 depends only on distances between f(t) and t,
t ∈ Q2. In Figure 2, the distance between G1a and G2

depends only on distances between states of pairs (q0, r0),
(q1, r1), and (q2, r2); states q3, q4, q5 are irrelevant.

Therefore, in order to calculate the distance between G1a

and G2, only the distances dfp(f(q), q), q ∈ Q2, are of
interest. Hence, the distance between G1a and G2, for
a fixed p2, can be found by at most ω iterations given
in Definition 1, where the domain of dnfp is restricted to

Q1a × Q2 and only distances between f(q) ∈ Q1a and
q ∈ Q2 are defined.

This reasoning leads to the solution of the probabilistic
model fitting problem as presented next.

Theorem 5. Let G1 = (Q1,Σ, δ1, q01, p1) be a probabilistic
generator. For given G′

2 = (Q2,Σ, δ2, r0) (such that G′
1 ‖

G′
2 is isomorphic to G′

2), the statewise event probability
distribution p2 such that G2 = (Q2,Σ, δ2, r0, p2) is as close
as possible to G1 in the metric dfp should satisfy, for all
r ∈ Q2, σ ∈ Σ:

p2(r, σ) ≥ p1(q, σ) (5)

where q = δ1(q01, s) for any s ∈ L(G2) such that r =
δ2(r0, s).

Therefore, the new model is not unique: as long as the
probabilities of the events possible in the new model do
not decrease, the new model is as close as possible to
the original one. For the example from Figure 2, one
of the possible solutions is represented by the rightmost
generator of the figure. In another possible solution, the
probabilities of occurrence of β and γ at the state r1
would be 0.2 and 0.8, respectively. Therefore, the fitting
can be performed by any redistribution of the probabilities
of events that are not possible anymore over the possible
ones. Hence, model fitting can accommodate some further
requirements on p2.

5.2 Applications of model fitting

Other than the obvious use of the presented fitting to sim-
plify and reduce the state space of probabilistic systems,
the fitting has much more significant control implications.

As mentioned before, it is possible to choose probabilities
of events in the new system to a certain extent: as



long as they are greater or equal to the original ones.
However, some of the further requirements on p2 cannot
be accommodated by Theorem 5 (e.g., an obvious one
would be that the probability of an event still possible
in the new system should be smaller than in the original
system). If the restrictions are given on probabilities of
events, statewise, a straightforward modification of the
algorithm of Pantelic and Lawford (2009) for e ∈ (0, 1)
would suffice.

Further, in the solution of the optimal supervisory problem
of Pantelic and Lawford (2009), in order for the first, maxi-
mal permissiveness requirement as presented in Section 2.2
to be satisfied, the supremal controllable sublanguage of
L(G2) with the respect to G1 is generated. Then, the dis-
tance between the controlled plant, and the probabilistic
requirement now restricted to the supremal controllable
sublanguage, with normalized probabilities, is minimized.
Intuitively, after satisfying the nonprobabilistic require-
ment, and before the probabilistic part is handled, it makes
sense for a designer to modify the original requirement
so that its nonprobabilistic behaviour matches the one
achievable. Then, the probabilities are revised accordingly:
probabilities of the events inadmissible for not satisfying
the nonprobabilistic requirement are redistributed over
the admissible ones. In Pantelic and Lawford (2009), the
redistribution is such that the probability of an event in
the new system is proportional to its original probability.
Theorem 5 proves that this normalization is justified in
a strict mathematical sense, as the new model that is
normalized is as close as possible to the original one in
the metric dfp. However, a revised specification is going
to be at a minimal distance from the original one as long
as the probabilities of remaining events are greater than
or equal to the original ones: a designer has a freedom to
choose how to redistribute the probabilities over the events
that are still possible.

Further, the transformation of G1 into G1a presented here
can be used in a modification of the algorithm of Pan-
telic and Lawford (2009) to handle the control problem
presented in Section 2.2 with requirement 2) changed so
that the distance between the controlled plant and the
unmodified requirement is minimized. More precisely, the
probabilistic language Lp(G2) of the requirements speci-
fication G2 can be exactly represented by a probabilistic
generator G2a with nonprobabilistic automaton G′

2a that
has a subautomaton that is isomorphic to the automaton
Gs representing the supremal controllable sublanguage of
the controlled plant (see Section 2.2). Then, using the rea-
soning of Remark 2, the distance between the requirement
and the controlled plant depends only on the distances
between isomorphic states of the subautomaton ofG′

2a and
Gs. Hence, the algorithm of Pantelic and Lawford (2009)
can be modified to minimize the distance between the two
systems under the probabilistic controllability conditions
of Lawford and Wonham (1993).

6. CONCLUSIONS

A metric was used in a control algorithm to measure
distance between two probabilistic generators in Pantelic
and Lawford (2009). This paper gives a logical characteri-
zation of the metric that offers better insight into the core

of the metric from both logic and language standpoints.
Further, the metric is used in the probabilistic model
fitting problem: a probabilistic language is represented
using a specified automaton structure such that that the
new representation is as close as possible to the original
one. Probabilistic model fitting has significant implications
with respect to the work of Pantelic and Lawford (2009).
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