
Forced repetitions over alphabet lists

Neerja Mhaskar1 and Michael Soltys2

1 McMaster University
Dept. of Computing & Software

1280 Main Street West
Hamilton, Ontario L8S 4K1, CANADA

pophlin@mcmaster.ca
2 California State University Channel Islands

Dept. of Computer Science
One University Drive

Camarillo, CA 93012, USA
michael.soltys@csuci.edu

Abstract. Thue [14] showed that there exist arbitrarily long square-free strings over an
alphabet of three symbols (not true for two symbols). An open problem was posed in [7],
which is a generalization of Thue’s original result: given an alphabet list L = L1, . . . , Ln,
where |Li| = 3, is it always possible to find a square-free string, w = w1w2 . . .wn, where
wi ∈ Li? In this paper we show that squares can be forced on square-free strings over
alphabet lists iff a suffix of the square-free string conforms to a pattern which we term
as an offending suffix. We also prove properties of offending suffixes. However, the
problem remains tantalizingly open.

Keywords: Strings, square-free, repetition, Thue morphisms

1 Introduction

The study of repetitions in words is an attractive field for both theoretical and ap-
plied research. It dates back to the early 20th century and the seminal work of Axel
Thue [14, 15], who proved the existence of square-free strings over an alphabet of
three letters, using iterated morphism. Since his work was not known for a long time,
this result was rediscovered by many others independently. For example, the following
authors each gave different morphisms to show the existence of a square-free string
over a ternary alphabet: [1, 10, 6, 8].

Many different morphisms have been proposed besides Thue’s original one. But
all these morphisms construct a string over a fixed finite alphabet. A natural gen-
eralization of the problem is to allow a (possibly) infinite alphabet of symbols, but
to restrict the i-th symbol of the word to come from a particular subset. Thus, we
are interested in constructing an arbitrarily long square-free string with constraints
imposed on the positions. This generalization has been studied by [7, 12, 9], among
others.

The authors of [7] showed that as long as each position is required to be filled
with a symbol from a subset of size at least four, then we can always construct a
square-free string over such a list (the i-th symbol of this string comes from the i-th
alphabet in the list, and each alphabet is of size at least four). However, the question
whether the same holds if the alphabets are restricted to be of size three is still an
open question. Note that Thue’s original result applies to only a particular case of

the problem where all the alphabets in the list are of size three, and contain the same
elements, but for the generalized case the problem remains open. Also note that if all
subsets are {a, b}, we cannot construct an arbitrarily long square-free string. In this
paper, we show that squares can be forced on certain type of square-free strings over
an alphabet list and we give a characterization for such strings.

The outline of the paper is as follows: in Section 2, we give a brief introduction
to the terminology. In Section 3, we define a pattern “Offending Suffix,” and show
that having strings over alphabet lists with a suffix conforming to this pattern is a
necessary and sufficient condition to force squares: Theorem 1. In section 4, we give
a characterization of square-free strings using borders. In Section 5, we show using
rudimentary Kolmogorov complexity that given any alphabet list, there always exists
a string w without squares longer than 1

5
|w|. In other words, we are able to eliminate

a few huge squares in every case.

2 Background

An alphabet is a set of symbols, and Σ is usually used to represent a finite alphabet.
The elements of an alphabet are referred to as symbols (or letters). In this paper,
we assume |Σ| 6= 0. A string (or a word) over Σ, is an ordered sequence of symbols
from it. Formally, w = w1w2 . . .wn, where for each i, wi ∈ Σ, is a string. In order to
emphasize the array structure of w, we sometimes represent it as w[1..n]. The length
of a string w is denoted by |w|. The set of all finite length strings over Σ is denoted
by Σ∗. The empty string is denoted by ε, and it is the string of length zero. The set
of all finite strings over Σ not containing ε is denoted by Σ+. We denote Σk to be
a fixed generic alphabet of k symbols, and Σ≥j to be the set of all strings over Σ of
size at least j.

A string v is a subword (also known as a substring or a factor) of w, if v =
wiwi+1 . . .wj, where i ≤ j. If i = 1, then v is a prefix of w and if j < n, v is a proper
prefix of w. If j = n, then v is a suffix of w and if i > 1, then v is a proper suffix of
w. We can express that v is a subword more succinctly using array representation as
v = w[i..j]. A word v is a subsequence of a string w if the symbols of v appear in the
same order in w. Note that the symbols of v do not necessarily appear contiguously
in w. Hence, any subword is a subsequence, but the reverse is not true.

A string w is said to have a repetition if there exists a subword of w consisting
of consecutive repeating factors. The most basic type of repetition is a square and
we define it as follows: a string w is said to have a square if there exists a string v
such that vv is a subword of w and it is square-free if no such subword exists. A map
h : Σ∗ → ∆∗, where Σ and ∆ are finite alphabets, is called a morphism if for all
x, y ∈ Σ∗, h(xy) = h(x)h(y). A morphism is said to be non-erasing if for all w ∈ Σ∗,
h(w) ≥ w. It is called square-free if h(w) is square-free for every square-free word w
over Σ.

An alphabet list is an ordered list of finite subsets (alphabets), and in our case all
the alphabets have the same cardinality. However for the general case we do not need
to impose this condition on alphabet lists. Let L = L1, L2, . . . , Ln , be an ordered list
of alphabets. A string w is said to be a word over the list L, if w = w1w2 . . .wn where
for all i, wi ∈ Li. Note that there are no conditions imposed on the alphabets Li’s:
they may be equal, disjoint, or have elements in common. The only condition on w is

2

that the i-th symbol of w must be selected from the i-th alphabet of L, i.e., wi ∈ Li.
The alphabet set for the list L = L1, L2, . . . , Ln is denoted by ΣL = L1∪L2∪· · ·∪Ln.
Given a list L of finite alphabets, we can define the set of strings w over L with a
regular expression as follows: RL := L1 ·L2 · . . . ·Ln. Let L+ := L(RL) be the language
of all the strings over the list L. For example, if L0 = {{a, b, c}, {c, d, e}, {a, 1, 2}},
then

RL0 := {a, b, c} · {c, d, e} · {a, 1, 2},

and ac1 ∈ L+
0 , but 2ca 6∈ L+

0 . Also, in this case |L+
0 | = 33 = 27.

Given a square-free string w over a list L = L1, L2, . . . , Ln, we say that the
alphabet Ln+1 forces a square on w if for all a ∈ Ln+1, wa has a square. Note that,
this is not to be confused with forcing a square in w. For example, if L = {a, b, c}7,
and w = abacaba, then the alphabet {a, b, c} forces a square on w, as the strings wa,
wb and wc all have squares.

We introduce the concept of admissibility of lists. We say that an alphabet list
L is admissible if L+ contains a square-free string. For example, the alphabet list
L = {{a, b, c}, {1, 2, 3}, {a, c, 2}, {b, 3, c}}, is admissible as the string ‘a1c3’ over L is
square-free.

Let L represent a class of lists; the intention is for L to denote lists with a
given property. For example, we are going to use LΣk

to denote the class of lists
L = L1, L2, . . . Ln, where for each i, Li = Σk, and Lk will denote the class of all
lists L = L1, L2, . . . , Ln, where for each i, |Li| = k, that is, those lists consisting of
alphabets of size k. Note that LΣk

⊆ Lk. We say that a class of lists L is admissible
if every list L ∈ L is admissible. An example of admissible class of lists is the class
LΣ3 (Thue’s result), and L3 is a class of lists whose admissibility status is unknown,
and the subject of investigation in this paper.

A border β of a string w, is a subword that is both a proper prefix and proper
suffix of w. Note that the proper prefix and proper suffix may overlap. A string can
have many borders. The empty string ε is a border of every string. For example, the
string w = 121324121 has three borders 1, 121 and the empty string ε. See [13] for
many properties of borders.

Given an alphabet Σ, let ∆ = {X1,X2,X3, . . . , a1, a2, a3, . . .} be variables, where
the Xi’s range over Σ∗, and the ai’s range over Σ. A pattern is a non empty string over
∆∗; for example, P = X1a1X1 is a pattern representing all strings where the first half
equals the second half, and the two halves are separated by a single symbol. Intuitively,
patterns are “templates” for strings. Note that some authors define patterns as being
words over variables with no restriction on the size of the variables (see [4]), but we
find the definition given here as more amenable to our purpose.

We say that a word w over some alphabet Σ conforms to a pattern P if there is
a morphism h : ∆∗ −→ Σ∗, such that h(P) = w.

We say that a pattern is avoidable, if strings of arbitrary length exist, such that no
subword of the string conforms to the pattern, otherwise it is said to be unavoidable.
For example, the pattern XX is unavoidable for all strings in Σ≥42 , but there exist
strings in Σ3 of arbitrary length for which it is avoidable (Thue’s result, [14]).

The idea of unavoidable patterns was developed independently in [2] and [16].
Zimin words (also known as sesquipowers) constitute a certain class of unavoidable
patterns. The n-th Zimin word, Zn, is defined recursively over the alphabet ∆ of

3

variables of type string as follows:

Z1 = X1, and for n > 1,

Zn = Zn−1XnZn−1.
(1)

[16] showed that Zimin words are unavoidable for large classes of words. More pre-
cisely, for every n, there exists an N , so that for every word w ∈ Σ≥Nn there
exists a morphism h so that h(Zn) is a subword of w. For instance, the pattern
Z3 = X1X2X1X3X1X2X1 is unavoidable over Σ3 for words of length at least 29, as
can be checked with an exhaustive search. See [5] for bounds on Zimin word avoidance.
For details on Zimin patterns, see [16, 3, 11, 4, 5].

3 Offending Suffix Pattern

In this section, we introduce a pattern that we call an “offending suffix”, and we show
in Theorem 1 that such suffixes characterize in a meaningful way strings over alphabet
lists with squares. Let C(n), an offending suffix, be a pattern defined recursively:

C(1) = X1a1X1, and for n > 1,

C(n) = XnC(n− 1)anXnC(n− 1).
(2)

To be more precise, given a morphism, h : ∆∗ → Σ∗, we call h({a1, a2, . . . , an}) ⊆ Σ
the pivots of h. When all the variables in the set {X1,X2, . . . ,Xn} map to ε, we get
the pattern for the shortest possible offending suffix for a list L ∈ Ln. We call this
pattern the shortest offending suffix, and employ the notation:

Cs(n) = a1a2a1 . . . an . . . a1a2a1. (3)

Note that |Cs(n)| = 2|Cs(n− 1)|+ 1, where |Cs(1)| = 1, and so, |Cs(n)| = 2n − 1.
As we are interested in offending suffixes for L3, we consider mainly:

C(3) = X3X2X1a1X1a2X2X1a1X1a3X3X2X1a1X1a2X2X1a1X1,

Cs(3) = a1a2a1a3a1a2a1,
(4)

and observe that Cs(3)ai, for i = 1, 2, 3, all map to strings with squares.
Pattern C in (2) bears great resemblance to Zimin words (1) discussed at the end

of the previous section. Comparing (1) to (2), one can see that mapping Xi to ai in (1)
yields the same string as mapping Xi to ε in (2). In particular, the shortest offending
suffix Cs(n) can be obtained from the Zimin word Zn by mapping Xi’s to ai’s. Despite
the similarities, we prefer to introduce this new pattern, as the advantage of C(n) is
that it allows for the succinct expression of the most general offending suffix possible.

Given a list L, let h : ∆∗ → Σ∗L, be a morphism. We say that h respects a list
L = L1, L2, . . . , Ln, if h yields a string over L. So, for example, an h that maps each
X1,X2,X3 to ε, and also maps a1 7→ a, a2 7→ b, a3 7→ c, yields h(C(3)) = abacaba.
Such an h respects, for example, a list L = {a, e}, {a, b}, {a, d}, {c}, {a, e}, {b, c, d}, {a}.
In general, papers in the field of string algorithms mix variables over symbols with the
symbols themselves, that is, a may stand for both the symbol a ∈ Σ, and a variable
that takes on values in Σ. In our case, we need to specify exactly what is a variable
and what is a symbol.

The main result of the paper, a characterization of squares in strings over lists in
terms of offending suffixes, follows.

4

Theorem 1. Suppose that w = w1w2 . . .wi−1 is a square-free string over a list L =
L1, L2, . . . , Li−1, where L ∈ L3. Then, the pivots Li = {a, b, c} force a square on w
iff w has a suffix conforming to the offending suffix C(3).

Proof. The proof is by contradiction. We assume throughout that our lists are from
the class L3.
(⇐) Suppose w = w1w2 . . .wi−1 has a suffix conforming to the offending suffix C(3),
where a, b, c are the pivots. Clearly, if we let Li = {a, b, c}, then each wa,wb,wc has
a square, and hence by definition Li forces a square on w.
(⇒) Suppose, on the other hand, that Li = {a, b, c} forces a square on the word w
over L = L1, L2, . . . , Li−1. We need to show that w must have a suffix that conforms
to the pattern C(3), with the symbols a, b, c as the pivots. Since Li forces a square,
we know that wa,wb,wc has a square for a suffix (as w itself was square-free). Let
tata,ubub, vcvc be the squares created by appending a, b and c to w, respectively.
Here t,u, v are treated as subwords of w.

As all three squares tata,ubub, vcvc are suffixes of the string w, it follows that
t,u, v must be of different sizes, and so we can order them without loss of generality
as follows: |tat| < |ubu| < |vcv|. It also follows from the fact that all three are suffixes
of w, the squares from left-to-right are suffixes of each other. Hence, while t may be
empty, we know that u and v are not. We now consider different cases of the overlap
of tat,ubu, vcv, showing in each case that the resulting string has a suffix conforming
to the pattern C(3). Note that it is enough to consider the interplay of ubu, vcv, as
then the interplay of tat,ubu is symmetric and follows by analogy. Also keep in mind
that the assumption is that w is square-free; this eliminates some of the possibilities
as can be seen below.

1. v = pubu as shown in Figure 1, where p is a proper non-empty prefix of v. Since
w is square-free, we assume that pubu has no square, and therefore p 6= u and
p 6= b. From this, we get vcv = pubucpubu. Therefore, this case is possible.

ubup

v c v

Figure 1: v = pubu

2. v = ubu as shown in Figure 2. Then, vcv = ubucubu. This case is also possible.

ubu

v c v

Figure 2: v = ubu

3. cv = ubu as shown in Figure 3, then u1 = c. Let u = cs, where s is a proper non-
empty suffix of u, then vcv = csbcsccsbcs. The subword ‘cc’ indicates a square in
w. This is a contradiction and therefore this case is not possible.

5

ubu

v c v

Figure 3: cv = ubu

4. vcv = qubu and |cv| < |ubu| as shown in Figure 4, where q is a proper prefix of
vcv. Let u = pcs, where p, s are proper prefix and suffix of u. Therefore v = sbpcs.
Since p is also a proper suffix of v, one of the following must be true:

ubscpq

v c v

oo u //

Figure 4: vcv = ngbu and |cv| < |ubu|

(a) |s| = |p| and so s = p. Since s = p, v = sbscs and vcv = sbscscsbscs. The
subword ‘scsc’, indicates a square in w. This is a contradiction and therefore
this case is not possible.

(b) |s| > |p| and so s = rp, where r is a proper non-empty prefix of s. Substituting
rp for s, we have v = sbpcs = rpbpcrp and vcv = rpbpcrpcrpbpcrp. The
subword ‘crpcrp’ indicates a square in w. This is a contradiction and therefore
this case is not possible.

(c) |s| < |p| and so p = rs, where r is a proper non-empty prefix of p. Substituting
rs for p, we have v = sbpcs = sbrscs and vcv = sbrscscsbrscs. The subword
‘scsc’ indicates a square in w. This is a contradiction and therefore this case
is not possible.

From the above analysis, we can conclude that for Li to force a square on a square-
free string w, it must be the case that v = zubu, where z is a prefix (possibly empty)
of v and z 6= u and z 6= b.

Similarly, we get u = ytat, where y is a prefix (possibly empty) of u and y 6=
t and z 6= y. Substituting values of u in v, we get v = zytatbytat and vcv =
zytatbytatczytatbytat. But vcv, is a suffix of the square-free string w, and it conforms
to the offending suffix C(3) where the elements a, b, c are the pivots.

Therefore, we have shown that if an alphabet Li forces a square in a square-free
string w, then w has a suffix conforming to the offending suffix C(3). ut

The following Corollary exploits the fact that an alphabet Li+1 forces a square
on a square-free string v of length i iff v has an offending suffix. But, the size of an
offending suffix grows exponentially in the size of the alphabets in the list.

Corollary 2. If L is a list in Ln of length at most 2n − 1, then L is admissible.

Proof. Suppose that L ∈ Ln and |L| = 2n − 1. We show how to construct a square-
free w over L. Let w1 be any one of the three symbols in L1. Now, inductively for
i ∈ [2n − 2], assume that v = w1w2 . . .wi is square-free. If Li+1 forces a square on
v, then by Theorem 1, v must have an offending suffix. But as the shortest possible

6

offending suffix for |Li+1| = n is Cs(n) of length 2n−1 (see (3)), we get a contradiction
since |v| ≤ 2n − 2. Thus Li+1, for i ∈ [2n − 2], cannot force a square, which means
that we can select at least one symbol σ ∈ Li+1 so that vσ is square free. We proceed
this way until i = 2n − 2 and output a square-free string w of length 2n − 1 over L.
Hence L is admissible. ut

From Theorem 1, we know that an alphabet in a list L ∈ L3 can force a square
on a square-free string w iff w has a suffix s conforming to the offending suffix C(3).
The question is whether s is unique, that is, does the square-free string w contain
more that one suffix that conforms to the offending suffix pattern? In Lemma 3, we
show that any square-free string w over L ∈ L3 has only one suffix s conforming to
the offending suffix (w.r.t fixed pivots) if any, that is s is unique.

Lemma 3. Suppose w is a square-free string over L = L1, L2, . . . , Ln−1, and L ∈ L3.
If w has suffixes s,s′ conforming to C(3) with pivots Ln (where |Ln| = 3), then s = s′.

Proof. The proof is by contradiction. Suppose that the square-free string w over
L ∈ L3 has two distinct suffixes s and s′ conforming to the offending suffix C(3) with
pivots Ln = {a, b, c}. That is ∃h, h(C(3)) = s and ∃h′, h′(C(3)) = s′, and s 6= s′, and
both have pivots in {a, b, c}. Without loss of generality, we assume that |s| < |s′|,
and since they are suffixes of w, s is a suffix of s′. We now examine all possible cases
of overlap. Note that s′ = h′(C(3)) = h′(X2C(2)a3X2C(2)) for some morphism h′. To
examine the cases of overlap, let v = h′(X2C(2)), then s′ = vh′(a3)v, where h′(a3)
represents the middle symbol of s′. Similarly, the middle symbol of s is represented
by h(a3) for some morphism h. We intentionally use h′(a3) in s′ (and h(a3) in s) as
we want to cover all the six different ways in which the variables a1, a2, a3 are mapped
to pivots a, b, c.

1. If |s| ≤ b|s′|/2c, then v = ps (see Figure 5), where p is a prefix of v, and psh′(a3)
is a prefix of s′. Observe that, when |s| = b|s′|/2c, p = ε. Since s is an offending
suffix, we know that sh′(a3) has a square and hence s′ has a square and it follows
that w has a square — contradiction.

sp

v h′(a3) v

oo s′ //

Figure 5: v = ps

2. If |s| = b|s′|/2c + 1, then s = h′(a3)uh(a3)h
′(a3)u (see Figure 6), where u is a

non-empty subword of s, and v = uh(a3)h
′(a3)u. If the morphisms h and h′ map

a3 to the same element in {a, b, c}, that is h′(a3) = h(a3), then s has a square
‘h(a3)h(a3)’ and therefore w has a square — contradiction. When h′(a3) 6= h(a3),
without loss of generality, we assume h′(a3) = c and h(a3) = a, then v = uacu
and s′ = vcv = uacucuacu has a square ‘cucu’ and it follows that w has a square
— contradiction.

7

uh′(a3)h(a3)uh′(a3)

v h′(a3) v

oo s′ //

oo s //

Figure 6: v = uh(a3)h′(a3)u

3. If |s| > b|s′|/2c + 1, then s = ph′(a3)uh(a3)ph
′(a3)u, where p is a non-empty

prefix of s and u is a subword (possibly empty) of s. Also, v = uh(a3)ph
′(a3)u

and s′ = vh′(a3)v = uh(a3)ph
′(a3)uh

′(a3)uh(a3)ph
′(a3)u. We can see that s′ has

a square ‘h′(a3)uh
′(a3)u’, and it follows that w has a square — contradiction.

uh′(a3)ph(a3)uh′(a3)p

v h′(a3) v

oo s′ //

oo s //

Figure 7: v = uh(a3)ph′(a3)u

This ends the proof. ut

Suppose the class of lists L3 is inadmissible, and L ∈ L3 is a minimum length
list that is inadmissible. By Corollary 2 we know that such a list is of length at least
eight. Let L = L1, L2, . . . , Ln+1, where n ≥ 8, and let L′ = L1, L2, . . . , Ln, so that
L = L′, Ln+1. Then by Theorem 1 every square-free word over L′ has a suffix that
conforms to the offending suffix C(3), where the pivot elements are the symbols of
the alphabet Ln+1. That is, if w is a square-free word over L′+, then there is a non
empty suffix s of w and a morphism h such that h(C(3)) = s.

If we are able to replace one of the pivots in s with another element from its
respective alphabet, such that the new string w′ remains square-free and has no
suffix conforming to C(3), then we can show that L is admissible. Simply, use this w′

over L′, and append to it a symbol from the alphabet Ln+1, such that the resulting
string is square-free. We know that such a symbol exists as w′ was square-free with
no offending suffix.

4 Borders and squares

In this section we relate borders of a string to its squares. There is a vast literature
on borders; see for instance [13].

8

Lemma 4. A string w is square-free if and only if for every subword s of w, if β is
a border of s, then |β| < d|s|/2e.

Proof. (⇒) Suppose that s is a subword of w and it has a border β such that |β| ≥
d|s|/2e. From Figure 8 we can see that β must have a prefix p which yields a square
pp in s and hence in w, and so w is not square-free — contradiction.
(⇐) Suppose w has a square s = uu. But s is a subword of w and it has a border
β = u where |β| ≥ d|s|/2e — contradiction. ut

p

s

p

oo β //

oo β //

Figure 8: “⇒” direction of the proof for Lemma 4

5 Repetitions and compression

Suppose that we want to encode the w’s, as 〈w〉, in a way that takes advantage of the
repetitions in w. The intuition, of course, is that strings with long repetitions can be
compressed considerably, and so encoded with fewer bits. We can then use the basic
Kolmogorov observation about the existence of incompressible strings to deduce that
not all strings can have long repetitions. On the other hand, short repetitions are in
some sense local, and so they are easier to avoid. Perhaps we can use this approach
to prove the existence of square-free strings in L3.

Assume that the Li’s are ordered, and since each Li has three symbols, we can
encode the contents of each Li with 2 bits:

Encoding Symbol
00 1st symbol
01 2nd symbol
10 3rd symbol
11 separator
Suppose now that w = w1vvw2, where |w| = n, |v| = `, that is, w is a string over

L of length n containing a square of length `. Then, we propose the following scheme
for encoding w’s: 〈w〉 := 〈w1〉11〈v〉11〈w2〉. A given w does not necessarily have a
unique encoding, as it may have several squares; but we insist that the encoding
always picks a maximal square (in length). Note also that 〈w〉 encodes w over L as a
string over Σ = {0, 1}.

Note that |〈w〉| = 2(n − 2`) + 2` + 4, where the term 2(n − 2`) arises from the
fact that |w1| + |w2| have n− 2` symbols (as strings over L), and each such symbol

9

is encoded with two bits, hence 2(n− 2`). The two separators 11, 11 take 4 bits, and
the length of v is ` (as a string over L), and so it takes 2` bits.

It is clear that we can extract w out of 〈w〉 (uniquely), and so 〈·〉 is a valid
encoding; for completeness, let f decode strings: f : Σ∗ −→ L+ work as follows:

f(〈w〉) = f(〈w1〉11〈v〉11〈w2〉) = w1vvw2,

and if the input is not a well-formed encoding, say it is 111111, then we let f output,
for instance, the lexicographically first string over L+.

On the other hand, 〈·〉 : L+ −→ Σ∗ encodes strings by finding the longest square
v in a given w (if there are several maximal squares, it picks the first one, i.e., the one
where the index of first symbol of vv is smallest), yielding w1vvw2, and outputting
〈w1〉11〈v〉11〈w2〉.

Suppose now that for a given L = L1, L2, . . . , Ln every string has a maximal
square of size at least `0. We want to bound how big can `0 be; to this end, we want
to find `0 such that:

22(n−2`0)+2`0+4 < 3n. (5)

The reason is that the term on the left counts the maximal number of possible en-
codings given the assumption that every string over L has a square of size at least
`0, while the term on the right is the size of |L+|. The inequality expresses that if `0
is assumed to be too big, then we won’t be able to encode all the 3n strings in L+.

Since (5) can be simplified to 22n−2`0+4 < 3n, and using log2 on both sides we
obtain: 2n − 2`0 + 4 < log2 3n < 1.6n, which gives us n − `0 + 2 < 0.8n, and so
`0 > n − 0.8n + 2 > 0.2n. Thus, given any L = L1, L2, . . . , Ln, there always is a
w ∈ L+ with a square no longer than 1

5
n. Can we strengthen this technique to give a

Kolmogorov style proof to prove that L3 is admissible?

References

[1] S. Arson: Proof of the existence of asymmetric infinite sequences (russian). Mat. Sbornik, 2
1937, p. 769779.

[2] D. R. Bean, A. Ehrenfeucht, and G. F. McNulty: Avoidable patters in strings of
symbols. Pacific Journal of Mathematics, 85(2) 1979, pp. 261–294.

[3] J. Berstel, A. Lauve, C. Reutenauer, and F. V. Saliola: Combinatorics on Words:
Christoffel Words and Repetitions in Words, American Mathematical Society, 2008.

[4] J. Berstel and D. Perrin: The origins of combinatorics of words. Electronic Journal of
Combinatorics, 28 2007, pp. 996–1022.

[5] J. Cooper and D. Rorabaugh: Bounds on zimin word avoidance. Electronic Journal of
Combinatorics, 21(1) 2014.

[6] J. D. Currie: Which graphs allow infinite non-repetitive walks? Discrete Mathematics, 87
1991, pp. 249–260.

[7] J. Grytczuk, J. Kozik, and P. Micek: A new approach to nonrepetitive sequences.
arXiv:1103.3809, December 2010.

[8] J. Leech: A problem on strings of beads. Mathematical Gazette, December 1957, p. 277.
[9] N. Mhaskar and M. Soltys: Non-repetitive string over alphabet list, in WALCOM: Al-

gorithms and Computation, vol. 8973 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2015, pp. 270–281.

[10] M. Morse and G. A. Hedlund: Unending chess, symbolic dynamics and a problem in
semigroups. Duke Math. J, 11 1944, pp. 1–7.

[11] N. Rampersad and J. Shallit: Repetitions in words. May 2012.

10

[12] J. Shallit: A second course in formal languages and automata theory, Cambridge Univeristy
Press, 2009.

[13] B. Smyth: Computing Patterns in Strings, Pearson Education, 2003.
[14] A. Thue: Über unendliche Zeichenreichen. Norsek Vid. Selsk. Srk., I Mat. Nat. Kl., 7 1906,

pp. 1–22.
[15] A. Thue: Über die gegenseitige lage gleicher teile gewisser Zeichenreihen. Kra. Vidensk. Selsk.

Skrifter., I. Mat. Nat. Kl., 1 1912, pp. 1–67.
[16] A. I. Zimin: Blocking sets of terms. Mat. Sbornik, 119 1982, pp. 363–375.

11

