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Abstract

We show that shuffle, the problem of determining whether a string w can
be composed from an order preserving shuffle of strings x and y, is not
in AC0, but it is in AC1. The fact that shuffle is not in AC0 is shown
by a reduction of parity to shuffle and invoking the seminal result of Furst
et al., while the fact that it is in AC1 is implicit in the results of Mansfield.
Together, the two results provide a lower and upper bound on the complexity
of this combinatorial problem. We also explore an interesting relationship
between graphs and the shuffle problem, namely what types of graphs can
be represented with strings exhibiting the anti-Monge condition.
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1. Introduction

Suppose that we are given three strings x, y, w over the binary alphabet
Σ = {0, 1}. The shuffle problem asks the following question: can we form
w as a “shuffle” of x and y? That is, can we compose the third string
by weaving together the first two, while preserving the order within each
string? For example, over the binary alphabet Σ = {0, 1}, given 000, 111,
and 010101, we can obviously answer in the affirmative. We give the formal
definition of the shuffle operation in Section 1.1.
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Mansfield [1] shows that a clever dynamic programming algorithm can
determine whether w, is a shuffle of x, y in time O(|w|2), and the same paper
poses the question of determining a lower bound. In this paper we show
a fairly tight upper and lower bound for the shuffling problem in terms of
circuit complexity. We show that:

(i) bounded depth circuits of polynomial size cannot solve shuffle, but that

(ii) logarithmic depth circuits of polynomial size can do so.

This paper is an expanded version of [2], and it contains more detailed
proofs, as well as new results in Section 4.2. The reader is encouraged to
download the Python code shuffle.py, from the corresponding author’s
web page, in order to experiment with the ideas in Section 4.2. Finally, since
the publication of [2], the paper [3] has also appeared, containing the related
but independent result that unshuffling a square is NP-hard.

The paper is structured as follows: in Section 1.3 we give the background
on circuit complexity. In Sections 2 and 3 we give the upper and lower
bounds on the circuit complexity of shuffle, respectively. The bounds are
summarized in Theorem 5. In Section 4.1 we examine other reductions to
shuffle, and we remark on the high expressibility of the shuffle predicate, i.e.,
we show that basic properties of strings can be re-stated in terms of shuffles.
In Section 4.2 we examine the connection between graph properties and the
shuffle predicate. We finish with open problems in Section 5.

1.1. Definitions

A shuffle is sometimes also called a “merge” or an “interleaving”. The
intuition for the definition is that w can be obtained from u and v by an
operation similar to shuffling two decks of cards.

If x, y, and w are strings over an alphabet Σ, then w is a shuffle of
x and y provided there are (possibly empty) strings xi and yi such that
x = x1x2 · · ·xk and y = y1y2 · · · yk and w = x1y1x2y2 · · ·xkyk. Note that
|w| = |x| + |y| is a necessary condition for the existence of a shuffle. The
advantage of the definition given here is that it is very succinct; the problem
is that it can be misleading: there are many ways to shuffle two strings, not
just strict alternation of one symbol from each string. But keep in mind that
some xi and yj may be ε, so for example, if x1 6= ε, x2 6= ε, and y1 = ε, then
this would mean that we take the first two symbols of x before we take any
symbols from y. In short, by choosing certain xi’s and yj’s equal to ε’s, we
can obtain any shuffle from an ostensibly strictly alternating shuffle.
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The predicate Shuffle(x, y, w) holds if and only if w is a shuffle of x, y,
as described in the above paragraph. We define the language Shuffle as,
Shuffle = {〈x, y, w〉 : Shuffle(x, y, w)}. Given this terminology, the bounds
proven in this paper can be stated as: Shuffle 6∈ AC0, but Shuffle ∈ AC1.

Shuffling can be defined over any alphabet, but in this paper we work
mostly with the binary alphabet Σ = {0, 1}. The naming convention we
use is that lower case “shuffle” and “parity” denote the generic problems,
while Shuffle(x, y, w) and Parity(x) denote the corresponding predicates, and
Shuffle and Parity without arguments denote the corresponding languages.

We will work with circuits that compute the predicate Shuffle(x, y, w), or
alternatively decide the language Shuffle. Let a · b denote the concatenation
of two strings, and let 〈x, y, w〉 denote the encoding of three strings. For
shuffle we can simply let 〈x, y, w〉 = x · y · w, as for a well formed input
|x| = |y| = n and |w| = 2n, so we can extract x, y, w from x · y · w. Thus,
a family of circuits C = {Cn} that computes Shuffle(x, y, w) is parametrized
by 4n, that is, the circuit Cn has 4n inputs, corresponding to the 4n bits of
x · y · w. We define circuits in Section 1.3.

1.2. History

Following the presentation of the history of shuffle in [3], we mention that
the initial work on shuffles arose out of abstract formal languages. Shuffles
were later motivated by applications to modeling sequential execution of
concurrent processes. The shuffle operation was first used in formal languages
by Ginsburg and Spanier [4]. Early research with applications to concurrent
processes can be found in Riddle [5, 6] and Shaw [7]. A number of authors,
including [8, 9, 10, 11, 12, 13, 14, 15, 16, 17] have subsequently studied various
aspects of the complexity of the shuffle and iterated shuffle operations in
conjunction with regular expression operations and other constructions from
the theory of programming languages.

In the early 1980’s, Mansfield [1, 18], and Warmuth and Haussler [19],
studied the computational complexity of the shuffle operator on its own.
The paper [1] gave a polynomial time dynamic programming algorithm for
computing Shuffle(x, y, w).

In [18] this was extended to give polynomial time algorithms for deciding
whether a string w can be written as the shuffle of k strings u1, . . . , uk, for
a constant integer k. The paper [18] further proved that if k is allowed to
vary, then the problem becomes NP-complete (via a reduction from Exact
Cover with 3-Sets).
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Warmuth and Haussler [19] gave an independent proof of the above result,
and went on to give a rather striking improvement by showing that this
problem remains NP-complete even if the k strings u1, . . . , uk are equal.
That is to say, the question of, given strings u and w, whether w is equal to
an iterated shuffle of u is NP-complete. Their proof used a reduction from
3-Partition.

In [3] we show that square shuffle, i.e., the problem of determining whether
a given string w is a shuffle of some x with itself, that is, whether the predicate
∃x, |x| < |w| ∧ Shuffle(x, x, w) holds, is NP-hard. The paper [20] gives an
alternative proof of the same result.

1.3. Background on circuits

A Boolean circuit can be seen as a directed, acyclic, connected graph in
which the input nodes are labeled with variables xi and constants 1, 0, rep-
resenting true and false, respectively, and the internal nodes are labeled with
standard Boolean connectives ∧,∨,¬, that is, AND, OR, NOT, respectively.
We often use x̄ to denote ¬x, and the circuit nodes are often called gates.

The fan-in, i.e., number of incoming edges, of a ¬-gate is always one,
and the fan-in of ∧,∨ can be arbitrary, even though for some complexity
classes, such as SAC1 defined below, we require that the fan-in be bounded
by a constant. The fan-out, i.e., number of outgoing edges, of any node can
also be arbitrary. Note that when the fan-out is restricted to be exactly one,
circuits become Boolean formulas. Each node in the graph can be associated
with a Boolean function in the obvious way. The function associated with
the output gate(s) is the function computed by the circuit. Note that a
Boolean formula can be seen as a circuit in which every node has fan-out
one, and ∧,∨ have fan-in 2, and ¬ has fan-in one. Thus, a Boolean formula
is a Boolean circuit whose structure is tree-like.

The size of a circuit is its number of gates, and the depth of a circuit is
the maximum number of gates on any path from an input gate to an output
gate.

A family of circuits is an infinite sequence C = {Cn} = {C0, C1, C2, . . .}
of Boolean circuits where Cn has n input variables. We say that a Boolean
predicate P has polysize circuits if there exists a polynomial p and a family
C such that |Cn| ≤ p(n), and ∀x ∈ {0, 1}∗, P (x) holds iff C|x|(x) = 1. In the
case of shuffle, the family C computes shuffle if:

Shuffle(x, y, w) holds ⇐⇒ C|〈x,y,w〉|(〈x, y, w〉) = 1.
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Note that |〈x, y, w〉| = 4n, as explained at the end of Section 1.1, and the
circuit Cn decides all the different inputs of length 4n.

Let P/poly be the class of all those predicates which have polysize circuit
families. It is a standard result in complexity that all predicates in P have
polysize circuits; that is, if a predicate has a polytime Turing machine, it has
polysize circuits. The converse of the above does not hold, unless we put a
severe restriction on how the n-th circuit is generated; as it stands, there are
undecidable predicates that have polysize circuits. The restriction that we
place here is that there is a Turing machine that on input 1n computes {Cn}
in space O(log n). This restriction makes a family C of circuits uniform.

The predicates (or Boolean functions) that can be decided (or computed)
with polysize, constant fan-in, and depth O(logi n) circuits, form the class
NCi. The class ACi is defined in the same way, except we allow unbounded
fan-in. We set NC =

⋃
i NCi, and AC =

⋃
i ACi, and while it is easy to

see that the uniform version of NC is in P, it is an interesting open question
whether they are equal.

We have the following standard result: for all i,

ACi ⊆ NCi+1 ⊆ ACi+1.

Thus, NC = AC. Finally, SACi is just like ACi, except we restrict the ∧
fan-in to be at most two.

L and NL stand for deterministic and non-deterministic logarithmic space,
respectively, and UL stands for “Unambiguous Logarithmic Space.” We say
that a language is in the class UL if it is decided by a log-space bounded non-
deterministic Turing machine, which has the added property that on “yes”
instances there is exactly one accepting path (while there may be several in
NL). Recall that NC1 ⊆ L ⊆ NL ⊆ NC2 and UL ⊆ NL. It is not known
whether any of these containments are strict. In fact, the question whether
UL equals NL is a long standing problem (see [21, 22]).

2. Upper bound

We start by showing a circuit upper bound for shuffle, that is, we show
that Shuffle ∈ SAC1, which means that shuffle can be decided with a polysize
family of circuits of logarithmic depth (in the size of the input), where all
the ∧-gates have fan-in 2. This result relies on the dynamic programming
algorithm given in [1] and the complexity result of [23, 24] which shows that
NL ⊆ SAC1.
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In this section all our circuit results hold with the uniformity condition
imposed, and so we do not mention it explicitly.

In order to show that Shuffle ∈ NL, we use the fact that shuffle can be
reduced (in low complexity) to the graph reachability problem [25, 1]. The
idea is to construct a grid graph, with (|x|+1)×(|y|+1) nodes; the lower-left
node is represented with (0, 0) and the upper-right node is represented with
(|x|, |y|). For any i < |x| and j < |y|, we have the edges:{

((i, j), (i + 1, j)) if xi+1 = wi+j+1

((i, j), (i, j + 1)) if yj+1 = wi+j+1.
(1)

Note that both edges may be present, which is what introduces the element
of non-determinism in the traversal of the graph, and reflects the fact that
two strings can be shuffled in many ways that initially may seem promising
to form w.

We explain how to interpret this graph. A path starts at (0, 0), and the
i-th time it goes up we pick xi, and the j-th time it goes right we pick yj.
Thus, a path from (0, 0) to (|x|, |y|) represents a particular shuffle.

For example, consider Figure 1. On the left we have a shuffle of 000 and
111 that yields 010101, and on the right we have a shuffle of 011 and 011
that yields 001111. The left instance has a unique shuffle that yields 010101,
which corresponds to the unique path from (0, 0) to (3, 3). On the right,
there are several possible shuffles of 011, 011 that yield 001111 — in fact,
eight of them, each corresponding to a distinct path from (0, 0) to (3, 3).

Figure 1: On the left we have a shuffle of 000 and 111 that yields 010101, and on the right
we have a shuffle of 011 and 011 that yields 001111. The dynamic programming algorithm
in [1] computes partial solutions along the red diagonal lines. The thick blue arrow in the
right diagram is there to symbolize that there are other edges beside the black ones; the
blue edge is ((1, 3), (2, 3)) and it is there because x1+1 = x2 = 1 = w5 = w1+3+1. The
edges are placed according to (1).
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The number of paths is always bounded by:(
|x|+ |y|
|x|

)
and this bound is achieved for 〈1n, 1n, 12n〉. Thus, the number of paths can
be exponential in the size of the input, and so an exhaustive search is not
feasible in general.

Lemma 1. Shuffle ∈ NL.

Proof: The algorithm in [1] reduces shuffle on 〈x, y, w〉, |x| = |y| = n,
|w| = 2n, to directed graph reachability. The graph is an (n + 1) × (n + 1)
grid of nodes, with the lower-left corner labeled (0, 0), and the upper-right
corner labeled (n, n), and the edges placed according to (1).

The correctness of the reduction follows from the assertion that given the
edges of the grid, defined as in the paragraph above, there is a path from
(0, 0) to (i, j) if and only if the first i+j bits of w can be obtained by shuffling
the first i bits of x and the first j bits of y. Thus, node (n, n) can be reached
from node (0, 0) if and only if Shuffle(x, y, w) is true.

Given 〈x, y, w〉, this can be checked with three pointers of size O(log n)
each; one pointer for the i-th position in x, one pointer for the j-th position
in y, and one pointer for the position i + j. If xi+1 = yj+1 = wi+j+1, i + 1 or
j + 1 is picked non-deterministically; if (n, n) is reached, we accept. �

Corollary 2. Shuffle ∈ SAC1

Proof: Since NL ⊆ SAC1 (see [23, 24]) it follows directly from Lemma 1
that Shuffle ∈ SAC1 ⊆ AC1. �

The reachability problem for general graphs is in the class NL. However,
Lemma 1 shows that shuffle reduces to a very particular kind of graph: a
grid graph, where all edges point up or to the right. It would be interesting
to know if the fact that the graphs are so restricted could improve the upper
bound.

Since grid graphs are planar, and [26] shows that reachability in planar
graphs can be decided in UL, it follows that Shuffle ∈ UL. Of course, the
fact that Shuffle ∈ UL does not mean that there is a unique path from (0, 0)
to (n, n); rather, it means that if a shuffle exists (and there may be many),
this is established on a unique computational path.
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Further, since all edges point up or to the right, the grid graph in Lemma 1
is also layered. The reachability in such graphs has been studied in [27]. It
would be interesting to know whether the results contained therein could
improve the upper bound for shuffle.

An interesting question is whether any of the above observations can be
used to show Shuffle ∈ NC1, i.e., shuffle can be decided with a polysize
family of Boolean formulas. We conjecture that the answer is affirmative.

3. Lower bound

We show a circuit lower bound for shuffle, that is, Shuffle 6∈ AC0, which
means that shuffle cannot be decided with a polysize family of circuits of
constant depth where all the ∧,∨-gates may have arbitrary fan-in.

Our proof relies on the seminal complexity result showing that parity is
not in AC0, due to [28]. A very accessible presentation of this result can be
found in [29, Chapters 11 & 12]; many of the details of that presentation are
made explicit in [30, section 5.3].

In Section 2 we showed a uniform SAC1 upper bound for Shuffle. In
this section we show a non-uniform AC0 lower bound. Of course, a uniform
upper bound is stronger than a non-uniform one, and a non-uniform lower
bound is stronger than a uniform one.

We start with a definition: let |x|s be the number of occurrences of a
symbol s in the string x. Obviously, Shuffle(0|x|0 , 1|x|1 , x) is always true.
We can use this observation in order to reduce parity to shuffle, where the
reduction itself is AC0. Let Parity = {x : |x|1 is odd}.

Here is the outline of the argument: suppose that we have a “black-box”
that takes 〈x, y, w〉 as input bits and computes Shuffle(x, y, w). We could
then construct a circuit for Parity with the standard gates ∧,∨,¬, plus black-
boxes for computing shuffle. If the black-boxes for shuffle were computable
with AC0 circuits, we would then obtain an AC0 circuit for Parity, giving
us a contradiction. The details are given below in Lemma 3, Figure 2, and
Corollary 4.

Lemma 3. Parity ∈ AC0[Shuffle].

Proof: In order to compute the Parity of x, run the following algorithm:
for all odd i ∈ {0, . . . , |x|}, check if Shuffle(0|x|−i, 1i, x) is true; if it is the case
for at least one i, then the Parity of x is 1. Note that if it is true for at least
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one i, it is true for exactly one i. In terms of circuits, this can be expressed
as follows:

Parity(x) =
∨

0 ≤ i ≤ |x|
i is odd

Shuffle(0|x|−i, 1i, x). (2)

See Figure 2. This gives us an AC0 circuits with “black-boxes” for shuffle,
and hence the Lemma follows. �

n−i

i=1 i=3 i=5 i=n

0 x 1 1 10 0 0x x x1
ii n−i i in−i n−i

Figure 2: Parity of x computed in terms of Shuffle; note that we assume that n is odd in
this Figure. If n were even the last “black box” for shuffle would be for i = n− 1.

Corollary 4. Shuffle 6∈ AC0.

Proof: Note that the size of the circuit for Parity in the proof of Lemma 3 is
O(|x| ·s(|x|)), where s(|x|) is the size of the circuit for shuffle. Thus, if Shuffle
had polynomial size circuits, then so would Parity. Further, if the family of
circuits computing Shuffle were of constant depth at most c, then the family
of circuits computing Parity would be of constant depth at most c+1. Thus,
if Shuffle were in AC0, so would Parity. Since by [28] Parity 6∈ AC0, it
follows that Shuffle is not in AC0. �

By Corollaries 2 and 4 we have the following Theorem.

Theorem 5. Shuffle 6∈ AC0, but Shuffle ∈ SAC1 ⊆ AC1 ⊆ NC2.

The significance of this result is that shuffle cannot be decided with
bounded depth circuits of polynomial size. On the other hand, shuffle can be
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decided with polynomial size circuits of unbounded fan-in and logarithmic
depth — which in turn implies that shuffle can be decided in the class NC2.
In general, the classes NCi capture those problems that can be solved with
polynomially many processors in poly-logarithmic time, which are problems
that have fast parallel algorithms. See [31] for a discussion of NC2.

4. Further properties of shuffle

Although much progress has been done on understanding shuffle, many
questions regarding shuffle remain open. For example, does Shuffle Square
(given a string w, is it a shuffle of some x with itself), remain NP-hard for
some alphabets with fewer than seven symbols? See [3]. We explore further
properties of shuffle in order to better understand this operation.

In Section 4.1 we show how to express basic string operations with shuffle.
In Section 4.2 we show that a particular type of string w gives rise to a
bipartite graph on the symbols of w, exhibiting non-nesting properties of its
arcs. A bipartite graph Gw on the symbols of the string w is a graph with
nodes being the symbols of w, and edges being arcs joining pairs of the same
symbol. The “Monge condition” allows nested edges but prohibits crossing
edges, and the “anti-Monge condition” allows the opposite: prohibits nesting
edges, and allows crossing edges.

The Monge condition has been widely studied for matching problems and
transportation problems. Many problems that satisfy the Monge condition,
also known as the “quasi-convex” condition, are known to have efficient poly-
nomial time algorithms; for these see [32] and the references cited therein.
There are fewer algorithms known for problems that satisfy the anti-Monge
property, and some special cases are known to be NP-hard [33]. In Sec-
tion 4.2 we explore the connection between Shuffle and the anti-Monge prop-
erty.

4.1. Expressiveness of shuffle
It is interesting that several different string predicates reduce to shuffle

in an easy and natural way. (2) gives a reduction of parity to shuffle, and we
have the same for string equality as x = y ⇐⇒ Shuffle(ε, x, y).

Concatenation also reduces to shuffle. Let p0, p1 be “padding” functions
on strings defined as follows:

p0(x) = p0(x1x2 . . . xn) = 00x100x200 . . . 00xn00

p1(x) = p1(x1x2 . . . xn) = 11x111x211 . . . 11xn11
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that is, pb, b ∈ {0, 1} pads the string x with a pair of b’s between any two
bits of x, as well as a pair of b’s before and after x.

The third argument of Shuffle is just juxtaposition of two strings. We
use “juxtaposition” since we do not want to define concatenation in terms of
concatenation.

Claim 6. w = u · v iff

Shuffle(p0(u), p1(v), p0(w1w2 . . . w|u|)p1(w|u|+1w|u|+2 . . . w|u|+|v|)).

Proof: The direction “⇒” is easy to see; for direction “⇐” we use the
following notation:

r = p0(u) = 00u100 . . .

s = p1(v) = 11v111 . . .

t = p0(w1w2 . . . w|u|)p1(w|u|+1w|u|+2 . . . w|u|+|v|) = 00w100 . . .

If t is a shuffle of r, s, i.e., Shuffle(r, s, t), then we must take the first two bits
of r (00) in order to cover the first two bits of t (00). If u1 = w1 = 1, then
we could ostensibly take the first bit of s (1), but the bit following w1 is 0,
and u1 = 1 and the second bit of s is 1; so taking the first bit of s leads to
a dead end. Thus, we must use u1 to cover w1. We continue showing that
we must first take all of r, and then take all of s in order to cover t. This
argument can be formalized with induction. It follows that Shuffle(r, s, t)
implies t = r · s, which in turn implies w = u · v. �

4.2. Expressing graphs with shuffles

In this section we explore the connection between general graphs, and the
shuffle problem. In particular, we want to explore which graphs can be rep-
resented with strings that have the anti-Monge condition. We start with the
simplest case, where strings are restricted to have exactly two occurrences
of each symbol (so in this section we deal with strings over large alphabets).
The shuffling properties of such strings will reflect the “connectedness” prop-
erties of the corresponding graph2. Let Σw denote the set consisting of the
symbols in w, and so |Σw| < |w|, unless each symbol occurs exactly once, in
which case |Σw| = |w|.

2The reader is encouraged to download the Python program shuffle.py from the
corresponding author’s web page, which implements many of the constructions given here.
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A pair-string is a string where each symbol occurs exactly twice, i.e.,
where ∀s ∈ Σw, |w|s = 2. A pair-string can also be viewed as a shuffle of
some x with some permutation of the symbols of x, when every symbol of
x is distinct. A pair-string w is said to be anti-Monge with respect to two
symbols u, v, if neither uvvu nor vuuv is a subsequence of w. This is related
to the usual anti-Monge condition in that the arcs that join u to u and v to
v are nested if uvvu or vuuv is a subsequence of w.

Given a graph G = (V,E), we want to construct a string wG with the
following property: if (u, v) is an edge in E, then wG is anti-Monge with
respect to u, v, and, conversely, if (u, v) is not an edge in E, then wG is not
anti-Monge with respect to u, v. Since we are going to be representing graphs
with strings, we define ΣV to be the alphabet of symbols corresponding to
the vertices in V . Without confusion, given V = {v1, v2, . . . , vm}, we let
ΣV = {v1, v2, . . . , vm}.

We say that a pair-string wG represents G if given any two vertices u, v in
V , and given the corresponding positions u1 < u2 and v1 < v2 of the symbols
u and v in wG, the following holds depending on whether or not (u, v) is an
edge in E:

Case (u, v) ∈ E: Exactly one of the following four conditions on the indices
u1 < u2 and v1 < v2 holds:

u1 < v1 < u2 < v2

v1 < u1 < v2 < u2

u1 < u2 < w1 < w2

v1 < v2 < u1 < u2

See Figure 3, and notice that the arcs are not nested.

u1
$$

v1
$$

u2 v2 v1
$$

u1
$$

v2 u2

u1
$$
u2 v1

$$
v2 v1

$$
v2 u1

$$
u2

Figure 3: The four ways in which the edge (u, v) can be represented in wG.
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Case (v, w) 6∈ E: Exactly one the following two conditions on the indices
u1 < u2 and v1 < v2 holds:

u1 < v1 < v2 < u2

v1 < u1 < u2 < v2

See Figure 4, and notice that the arcs are nested.

u1
$$

v1
$$
v2 u2 v1

$$
u1

$$
u2 v2

Figure 4: The two ways in which the two nodes (u1, u2) and (v1, v2) can be represented
in wG as not being connected.

The idea, as is apparent from Figures 3 and 4, is that vertices which are
not connected in G have nested arcs in wG — each vertex corresponds to an
arc. On the other hand, when two vertices are connected, their arcs are not
nested, which can happen in the four ways depicted in Figure 3. In essence,
two vertices u, v ∈ V are connected if and only if uu, vv are properly shuffled
in the string that represents the graph.

Many classes of graphs can be represented with strings. For example, a
clique G = (V,E) can be represented with

wG = (v1v2 . . . vn)(v1v2 . . . vn),

and an independent set G = (V,E) can be represented as

wG = (v1v2 . . . vn)(v1v2 . . . vn)R,

where (w1w2 . . . wm)R = wmwm−1 . . . w1, i.e., the reverse of a strings. In fact,
all graphs of up to four vertices can be represented with strings. However,
there are graphs that cannot be represented with a string, for example the
cycle on 5 vertices shown in Figure 5.

The complement of a graph G = (V,E), denoted as Gc = (V,Ec) is a
graph obtained from G such that, e ∈ E if and only if e /∈ Ec. The transitive
closure of a graph G = (V,E), is the graph G′ = (V,E ′), such that, E ′ is the
smallest superset of E with the following property: if (v, w), (w, u) are two
edges in E ′, then (v, u) ∈ E ′.
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Figure 5: The Hamiltonian cycle on five vertices is the smallest graph without a string
representation.

Let the product notation Πn
i=1xi denote the concatenation x1 ·x2 · . . . ·xn.

Given a string w of even length, |w| = n = 2k, we define l(w) to be the left
half of w and r(w) to be the right half of w, i.e., l(w) = w1w2 . . . wk and
r(w) = wk+1wk+2 . . . wn. Thus, w = l(w)r(w), i.e., w is the concatenation of
its left and right halves.

The next lemma shows that a large family of graphs can be represented
with strings.

Lemma 7. If G is a graph such that either G or Gc is isomorphic to a
transitive closure of a tree, then G can be represented with a string wG.

Proof: A rooted tree is a tree with the root singled out. Thus, a rooted tree
is represented by a pair T,R where T is the tree, and R is the root. Given
any node v in T , we let Tv be the subtree of T rooted at v. In particular, the
whole tree can be represented as TR. We view our rooted trees as implicitly
directed, where the direction is from the root to the leaves.

Let T be a rooted tree and consider its representation in Figure 6. Here
R is the root of T , and R1, R2, . . . , Rn are the children of R, with their
respective subtrees TR1 , TR2 , . . . , TRn . Note that since the tree is considered
to be directed, R is (for example) connected to every node in TR1 , but node
R1 is not connected to node R2.

Let T̂ represent the transitive closure of T . Thus, T̂ has all the edges of T
plus given any node v in T , v has an edge to every node in Tv (except itself).
In particular, following the naming in Figure 6, R is connected to every node
in T by an edge, and Ri is connected to every node in TRi

by an edge, and so
on. Note that if T were not directed, its transitive closure would simply be
the clique on its nodes. Since it is directed, a node is connected to any other
node on a path from it to some leaf. However, once all edges are computed
their direction is dropped, and so T̂ is undirected.
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R

R1

subtree TR1

R2

subtree TR2

. . . Rn

subtree TRn

Figure 6: Tree T rooted at R.

We are going to show that given an undirected graph G such that either
G or Gc is isomorphic to some T̂ , the graph G can be represented with a
string wG. We show how to construct wG over ΣV . Note that we work with
three graphs: G, T, T̂ , where G is undirected, T is implicitly directed, and
T̂ is obtained from T by a transitive closure, and then the directions on the
edges of T̂ are dropped.

Suppose that G is isomorphic to some T̂ , and throughout the construction
keep in mind Figure 6. We build wG = wT̂ inductively, and our procedure
maintains the following property for each subtree: each subtree Ti (i.e., the
subtree rooted at Ri) has a corresponding wT̂i

such that Σl(wT̂i
) = Σr(wT̂i

).

Thus, exactly half of the symbols of wT̂i
are in the left half (and therefore,

exactly half of the symbols are in the right half of wT̂i
). Note that the symbols

do not necessarily occur in the same order in the two halves.
We are going to construct wG = wT̂ by structural induction on T . In

the basis case T consists of a single node R, and wT̂ = RR. Note that
the property l(wT̂ ) = l(RR) = R = r(RR) = r(wT̂ ) is maintained. In the
inductive step we build wT̂ as follows:

wG = wT̂ = R
[
Πn

i=1l(wT̂i
)
]
R
[
Π1

i=nr(wT̂i
)
]
. (3)

Note that Σl(wT̂ ) = Σr(wT̂ ), since inductively, for all i, Σl(wT̂i
) = Σr(wT̂i

), and

one copy of R is in l(wT̂ ) and the other in r(wT̂ ). Also note that the product
inside the right square brackets of (3) is given in reverse order.

Note that the first occurrence of R is to the left of all other symbols, and
the second occurrence of R falls in the middle of all the “subtrees”; thus any
arc associated with any vertex in the subtree rooted at R overlaps in the
right way with the R-arc. On the other hand, the subtrees associated with
each R1, R2, . . . , Rn are such that any two arcs from different subtrees are
nested. See Figure 7.
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R R1

%%
R2 . . .

$$
Rn

  
R Rn . . . R2 R1

Figure 7: Recursive construction of wG. Note that in the left half the Ri’s are given in
increasing order, and in the right half they are given in decreasing order.

We now give a small example of the construction. Consider the tree T in
Figure 8. We are going to construct the corresponding wT̂ . We start with
the tree rooted at R1, where wT̂1

= R1R11R12R1R12R11, and wT̂2
= R2R2.

We now combined, inductively, the two sub-trees rooted at R1 and R2 into
one tree rooted at R:

wT̂ = Rl(wT̂1
)l(wT̂2

)Rr(wT̂2
)r(wT̂1

)

= RR1R11R12R2RR2R1R12R11

and now note that, for example, R2 and R12 are not connected in T̂ , and so
arc (5, 7) is nested under arc (4, 9), where the numbers indicate the position
of the corresponding symbol in wT̂ . On the other hand, R is connected to

R11 in T̂ , and so are arcs (3, 10) and (1, 6) are not nested.

R

R1

R11 R12

R2

Figure 8: Example of a small tree T .

Suppose now that Gc, where an edge is in Gc if and only if it is not in
G, is isomorphic to T̂ . The basis case, where Gc consists of a single node, is
the same as in the first case (G is isomorphic to T̂ ). The difference is in the
inductive step.

Let wT̂ c
1
, wT̂ c

2
, . . . , wT̂ c

n
be strings that correspond to the following subtrees:

T̂ c
1 , T̂

c
2 , . . . , T̂

c
n, and hence they represent faithfully the connections in the

corresponding vertices in G. We now complete the construction of wG by
adding the root R, so that:

wG = wT̂ c = R(Πn
i=1wT̂ c

i
)R.
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To see why this works note that if Gc is isomorphic to T̂ , then G is isomorphic
to T̂ c, and any arc in Πn

i=1wT̂ c
i

is nested under the arc between the R’s at the
ends of the string. This means that R is not connected to any of the nodes
in T1, T2, . . . , Tn. �

5. Open problems

It follows from the results of [1] that shuffle can be decided in SAC1.
Can shuffle be decided in NC1? If shuffle were in NC1 it would mean that
shuffle can be decided with a polysize family of Boolean formulas, which
would be a very interesting result. Does the converse of Lemma 7 hold? Can
we characterize all graphs with shuffle on strings where more repetitions of
symbols are allowed? Also regarding Lemma 7, can we test in polynomial
time whether a given graph or its complement are isomorphic to the transitive
closure of a tree?
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