Assignment 1

Due. January 29, Wednesday, 9:00.

- 1. What is the number of positive normal floating-point numbers in a floating-point system with base β , precision t, maximal exponent e_{max} , and minimal exponent e_{\min} ?
- 2. Assuming a small floating-point system, where $\beta = 2, t = 3, e_{\min} = -2$, and $e_{\max} = 3$.
 - (a) List the floating-point numbers $x \in [1, 3/2)$.
 - (b) List the floating-point numbers $x \in [3/2, 2)$.
 - (c) List the floating-point numbers $y \in (1/2, 2/3]$.
 - (d) List the floating-point numbers $y \in (2/3, 1]$.
 - (e) Find two different floating-point numbers x_1 and x_2 for which the computed reciprocals $fl(1/x_1)$ and $fl(1/x_2)$ are the same, assuming the nearest rounding.
 - (f) Does it follow that there exist floating-point numbers x for which

fl(1/(1/x))

is not exactly x, assuming the nearest rounding?

3. What is the number of double precision floating-point numbers lying in the interval $[10^3, 2^{10})$? What is the number of 15 decimal digit floating-point numbers lying in the same interval? Does it follow that there must exist two distinct double precision numbers x_1 and x_2 which are converted into a same 15 decimal digit floating-point number?

Does it follow that a 15 decimal digit floating-point number can be uniquely converted back to the original double precision floating-point number?

If your answer is no, how many decimal digits are necessary for unique conversion?

4. In 250 B.C.E. the Greek mathematician Archimedes estimated the number π as follows. He looked at a circle with diameter 1, and hence circumference π . Inside the circle he inscribed a square. The perimeter of the square is smaller than the circumference of the circle, and so it is a lower bound for π . Archimedes then considered an inscribed octagon, 16-gon, etc., each time doubling the number of sides of the inscribed polygon, and producing ever better estimates for π . Using 96-sided inscribed and circumscribed polygons, he was able to show that $223/71 < \pi < 22/7$. There is a recursive formula for these estimates. Let p_n be the perimeter of the inscribed polygon with 2^n sides. Then $p_2 = 2\sqrt{2}$. In general,

$$p_{n+1} = 2^n \sqrt{2(1 - \sqrt{1 - (p_n/2^n)^2})}$$

Compute p_n for n = 3, 4, ..., 60. Try to explain your results.

Kahan suggested a revision:

$$p_{n+1} = 2^n \sqrt{r_{n+1}}$$

where r_{n+1} can be computed iteratively

$$r_{n+1} = \frac{r_n}{2 + \sqrt{4 - r_n}}$$
 $r_3 = \frac{2}{2 + \sqrt{2}}$

Use this revision to calculate r_n and p_n for n = 3, 4, ..., 60. Try to explain your results.