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Introduction

Problem setting: Given (x0, y0), (x1, y1), ..., (xn , yn),
x0 < x1 < · · · xn, for example, a set of measurements, construct
a function f :

f (xi) = yi , i = 0, 1, ..., n

Desirable properties of f :

smooth: analytic and |f ′′(x)| not too large (the first and
second derivatives are continuous).

simple: polynomial of minimum degree, easy to evaluate.
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Example

Measurements of the speed of sound in ocean water
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Example

Interpolation
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Polynomial Interpolation

Advantages: easy to evaluate and differentiate

Weierstrass Approximation Theorem:

If f is any continuous function on the finite closed
interval [a,b], then for every ǫ > 0 there exists a
polynomial pn(x) of degree n = n(ǫ) such that

max
x∈[a,b]

|f (x) − pn(x)| < ǫ.
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Polynomial Interpolation

Advantages: easy to evaluate and differentiate

Weierstrass Approximation Theorem:

If f is any continuous function on the finite closed
interval [a,b], then for every ǫ > 0 there exists a
polynomial pn(x) of degree n = n(ǫ) such that

max
x∈[a,b]

|f (x) − pn(x)| < ǫ.

Impractical (degree is often too high)
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A straightforward approach

A polynomial of degree n is determined by its n + 1 coefficients.
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A straightforward approach

A polynomial of degree n is determined by its n + 1 coefficients.

Given (x0, y0), ..., (xn , yn) to be interpolated, we construct the
linear system (Vandermonde matrix):











1 x0 · · · xn
0

1 x1 · · · xn
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solve for the coefficients of the polynomial

pn(y)(x) = a0 + a1x + · · · + anxn
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Horner’s rule

Evaluating the polynomial: a0x3 + a1x2 + a2x + a3

Horner’s form: ((a0x + a1)x + a2)x + a3
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Horner’s rule

Evaluating the polynomial: a0x3 + a1x2 + a2x + a3

Horner’s form: ((a0x + a1)x + a2)x + a3

v = a(0);
for (i = 1:n)

v = v*x + a(i);
end
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Horner’s rule

Evaluating the polynomial: a0x3 + a1x2 + a2x + a3

Horner’s form: ((a0x + a1)x + a2)x + a3

v = a(0);
for (i = 1:n)

v = v*x + a(i);
end

The optimal (most efficient and accurate) way of evaluating
a0xn + ... + an.
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Vandermonde matrix

When x0, ..., xn are distinct, the Vandermonde matrix is
nonsingular. Thus the system has a unique solution
(coefficients of the interpolating polynomial).
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Vandermonde matrix

When x0, ..., xn are distinct, the Vandermonde matrix is
nonsingular. Thus the system has a unique solution
(coefficients of the interpolating polynomial).

Example. Given three points (28, 0.4695) and (30, 0.5000),
(32, 0.5299) we have the system





1 28 282

1 30 302

1 32 322









a0

a1

a2



 =





0.4695
0.5000
0.5299





and the solution




a0

a1

a2



 =





−2.050 × 10−2

1.960 × 10−2

−7.500 × 10−5



 .

p2(31) = 0.5150 ≈ sin(30◦)
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Vandermonde matrix

problem:

The coefficient (Vandermonde) matrix is often ill-conditioned
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Vandermonde matrix

problem:

The coefficient (Vandermonde) matrix is often ill-conditioned

question

What is the condition number of the Vandermonde matrix
constructed by xi = 2000 + i , i = 0, 1, ..., 7?
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Vandermonde matrix

problem:

The coefficient (Vandermonde) matrix is often ill-conditioned

question

What is the condition number of the Vandermonde matrix
constructed by xi = 2000 + i , i = 0, 1, ..., 7?

Answer: 1.87 × 1037
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Lagrange form (conceptually simple)

Basis polynomials: {lj(x)} (j = 0, 1, ..., n) of degree n such that

lj(xi ) =

{

1, if i = j
0, otherwise

construct
lj(x) =

∏

i 6=j

x − xi

xj − xi

Thus

pn(y)(x) =

n
∑

j=0

lj(x)yj
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Example

Given three points: (28, 0.4695), (30, 0.5000), (32, 0.5299),
construct a second degree interpolating polynomial in the
Lagrange form:

p2(x) =
(x − 30)(x − 32)

(28 − 30)(28 − 32)
0.4695

+
(x − 28)(x − 32)

(30 − 28)(30 − 32)
0.5000

+
(x − 28)(x − 30)

(32 − 28)(32 − 30)
0.5299

p2(31) = 0.5150 ≈ sin(31◦)
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Example

Given three points: (28, 0.4695), (30, 0.5000), (32, 0.5299),
construct a second degree interpolating polynomial in the
Lagrange form:

p2(x) =
(x − 30)(x − 32)

(28 − 30)(28 − 32)
0.4695

+
(x − 28)(x − 32)

(30 − 28)(30 − 32)
0.5000

+
(x − 28)(x − 30)

(32 − 28)(32 − 30)
0.5299

p2(31) = 0.5150 ≈ sin(31◦)

Expensive to evaluate.
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Dangers of polynomial interpolation

An example. Runge’s function (continuous derivatives of all
order)

y(x) =
1

1 + 25x2 on [−1, 1]

equally spaces x0 = −1, x1, · · · , xn = 1
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Dangers of polynomial interpolation

An example. Runge’s function (continuous derivatives of all
order)

y(x) =
1

1 + 25x2 on [−1, 1]

equally spaces x0 = −1, x1, · · · , xn = 1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−4

−3.5

−3

−2.5

−2

−1.5
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−0.5
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0.5

1
Equal Spacing (n = 13)

It is often best not to use global polynomial interpolation.
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Piecewise Polynomial Interpolation

Given the partition

α = x1 < x2 < · · · < xn = β,

interpolate on each [xi , xi+1] with a low degree polynomial.
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Piecewise Polynomial Interpolation

Given the partition

α = x1 < x2 < · · · < xn = β,

interpolate on each [xi , xi+1] with a low degree polynomial.

Linear
Li(z) = ai + bi(z − xi), z ∈ [xi , xi+1]

ai = yi , bi =
yi+1 − yi

xi+1 − xi
, 1 ≤ i ≤ n − 1
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Algorithm. Piecewise linear interpolation

Given vectors x and y with interpolating points, this function
returns the piecewise linear interpolation coefficients in the
vectors a and b.

function [a,b] = pwL(x,y)
n = length(x);
a = y(1:n-1);
b = diff(y)./diff(x);
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Evaluation

Given the piecewise linear interpolation L(z) represented by
the coefficient vectors a, b, how do we evaluate this function at
z ∈ [α, β]?

First, we locate [xi , xi+1] such that z ∈ [xi , xi+1]. Then, we
evaluate L(z) using Li(z).

Search method: binary search, since xi are sorted.
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Evaluation

Given the piecewise linear interpolation L(z) represented by
the coefficient vectors a, b, how do we evaluate this function at
z ∈ [α, β]?

First, we locate [xi , xi+1] such that z ∈ [xi , xi+1]. Then, we
evaluate L(z) using Li(z).

Search method: binary search, since xi are sorted.

Observation: If [xi , xi+1] is associated with the current z, then it
is likely that this subinterval will be the one for the next value.
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Algorithm. Locate

Idea: Use the previous subinterval as a guess. If not, do binary
search.
Given the vector x of breakpoints and a scalar z between x1

and xn, this function locates i so that xi ≤ z ≤ xi+1. The
optional g is a guess.

function i = Locate(x,z,g)
if nargin==3 % try the guess

if (x(g)<=z)&(z<=x(g+1))
i = g;
return % quick return

end
end
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Algorithm. Locate (cont.)

n = length(x);
if z==x(n)

i = n-1; % quick return
else % binary search

left = 1; right = n;
while right > left+1

mid = floor((left + right)/2);
if z < x(mid)

right = mid;
else

left = mid;
end

end
i = left;

end
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Algorithm. pwLEval

Given a piecewise linear interpolation coefficient vectors a and
b from pwL and its breakpoints in x , this function returns the
values of the interpolation evaluated at the points in z.

function v = pwLEval(a,b,x,z)
m = length(z);
v = zeros(m,1);
g = 1;
for j=1:m

i = Locate(x,z(j),g);
v(j) = a(i) + b(i)*(z(j) - x(i));
g = i;

end
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Example

y =
1

(x − 0.3)2 + 0.01
+

1
(x − 0.9)2 + 0.04
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Problem setting

Given (x1, y1), (x2, y2), ..., (xn , yn), find s(x):

in each subinterval [xi , xi+1], s(x) is cubic
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Problem setting

Given (x1, y1), (x2, y2), ..., (xn , yn), find s(x):

in each subinterval [xi , xi+1], s(x) is cubic

s(xi ) = yi , i = 1, ..., n
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Problem setting

Given (x1, y1), (x2, y2), ..., (xn , yn), find s(x):

in each subinterval [xi , xi+1], s(x) is cubic

s(xi ) = yi , i = 1, ..., n

s′(x) and s′′(x) are continuous at x2, x3, ..., xn−1
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Problem setting

Given (x1, y1), (x2, y2), ..., (xn , yn), find s(x):

in each subinterval [xi , xi+1], s(x) is cubic

s(xi ) = yi , i = 1, ..., n

s′(x) and s′′(x) are continuous at x2, x3, ..., xn−1

s′′(x1) = s′′(xn) = 0
The second derivative of s(x) is zero at the end points
means that s(x) is linear at the end points.
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A straightforward approach

Suppose ai + bix + cix2 + dix3 on [xi , xi+1], i = 1, ..., n − 1.
4(n − 1) unknowns to be determined.
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A straightforward approach

Suppose ai + bix + cix2 + dix3 on [xi , xi+1], i = 1, ..., n − 1.
4(n − 1) unknowns to be determined.

Interpolation:
ai + bixi + cix2

i + dix3
i = yi , i = 1, ..., n − 1

ai + bixi+1 + cix2
i+1 + dix3

i+1 = yi+1, i = 1, ..., n − 1
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A straightforward approach

Suppose ai + bix + cix2 + dix3 on [xi , xi+1], i = 1, ..., n − 1.
4(n − 1) unknowns to be determined.

Interpolation:
ai + bixi + cix2

i + dix3
i = yi , i = 1, ..., n − 1

ai + bixi+1 + cix2
i+1 + dix3

i+1 = yi+1, i = 1, ..., n − 1

Continuous first derivative (consider [xi−1, xi ] and [xi , xi+1]):
bi−1 + 2ci−1xi + 3di−1x2

i = bi + 2cixi + 3dix2
i , i = 2, ..., n − 1
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A straightforward approach

Suppose ai + bix + cix2 + dix3 on [xi , xi+1], i = 1, ..., n − 1.
4(n − 1) unknowns to be determined.

Interpolation:
ai + bixi + cix2

i + dix3
i = yi , i = 1, ..., n − 1

ai + bixi+1 + cix2
i+1 + dix3

i+1 = yi+1, i = 1, ..., n − 1

Continuous first derivative (consider [xi−1, xi ] and [xi , xi+1]):
bi−1 + 2ci−1xi + 3di−1x2

i = bi + 2cixi + 3dix2
i , i = 2, ..., n − 1

Continuous second derivative:
2ci−1 + 6di−1xi = 2ci + 6dixi , i = 2, ..., n − 1
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A straightforward approach

Suppose ai + bix + cix2 + dix3 on [xi , xi+1], i = 1, ..., n − 1.
4(n − 1) unknowns to be determined.

Interpolation:
ai + bixi + cix2

i + dix3
i = yi , i = 1, ..., n − 1

ai + bixi+1 + cix2
i+1 + dix3

i+1 = yi+1, i = 1, ..., n − 1

Continuous first derivative (consider [xi−1, xi ] and [xi , xi+1]):
bi−1 + 2ci−1xi + 3di−1x2

i = bi + 2cixi + 3dix2
i , i = 2, ..., n − 1

Continuous second derivative:
2ci−1 + 6di−1xi = 2ci + 6dixi , i = 2, ..., n − 1

Two end conditions:
2c1 + 6d1x1 = 0 and 2cn−1 + 6dn−1xn = 0
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A straightforward approach

Suppose ai + bix + cix2 + dix3 on [xi , xi+1], i = 1, ..., n − 1.
4(n − 1) unknowns to be determined.

Interpolation:
ai + bixi + cix2

i + dix3
i = yi , i = 1, ..., n − 1

ai + bixi+1 + cix2
i+1 + dix3

i+1 = yi+1, i = 1, ..., n − 1

Continuous first derivative (consider [xi−1, xi ] and [xi , xi+1]):
bi−1 + 2ci−1xi + 3di−1x2

i = bi + 2cixi + 3dix2
i , i = 2, ..., n − 1

Continuous second derivative:
2ci−1 + 6di−1xi = 2ci + 6dixi , i = 2, ..., n − 1

Two end conditions:
2c1 + 6d1x1 = 0 and 2cn−1 + 6dn−1xn = 0

Total of 4(n − 1) equations, a dense system.
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A clever approach: Constructing s(x)

In the subinterval [xi , xi+1], let hi = xi+1 − xi and introduce new
variables:

w = (x − xi)/hi , w̄ = 1 − w .

Note: w(xi) = 0, w(xi+1) = 1 and w̄(xi) = 1, w̄(xi+1) = 0,
(linear Lagrange polynomials).
Thus wyi+1 + w̄yi is the (linear) Lagrange interpolation on
[xi , xi+1].
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A clever approach: Constructing s(x)

In the subinterval [xi , xi+1], let hi = xi+1 − xi and introduce new
variables:

w = (x − xi)/hi , w̄ = 1 − w .

Note: w(xi) = 0, w(xi+1) = 1 and w̄(xi) = 1, w̄(xi+1) = 0,
(linear Lagrange polynomials).
Thus wyi+1 + w̄yi is the (linear) Lagrange interpolation on
[xi , xi+1].

Construct

s(x) = wyi+1 + w̄yi + h2
i [(w

3 − w)σi+1 + (w̄3 − w̄)σi ]

where σi to be determined, so that the properties (the first and
second derivatives are continuous) are satisfied.
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Properties of s(x)

Using w ′ = 1/hi and w̄ ′ = −1/hi , we can verify
1 s(xi ) = yi , s(xi+1) = yi+1, independent of σ, that is, s(x)

interpolates (xi , yi ).
2 s′′(x) = 6wσi+1 + 6w̄σi , linear Lagrange interpolation at

the points (xi , 6σi) and (xi+1, 6σi+1).

Clearly s′′(xi ) = 6σi , which implies that s′′(x) is continuous.
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Properties of s(x)

Using w ′ = 1/hi and w̄ ′ = −1/hi , we can verify
1 s(xi ) = yi , s(xi+1) = yi+1, independent of σ, that is, s(x)

interpolates (xi , yi ).
2 s′′(x) = 6wσi+1 + 6w̄σi , linear Lagrange interpolation at

the points (xi , 6σi) and (xi+1, 6σi+1).

Clearly s′′(xi ) = 6σi , which implies that s′′(x) is continuous.

Is s′(x) continuous?
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Properties of s(x) (cont.)

It remains to determine σi so that s′(x) is continuous.
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Properties of s(x) (cont.)

It remains to determine σi so that s′(x) is continuous.
Consider, on [xi , xi+1],

s′(x) =
yi+1 − yi

hi
+ hi [(3w2 − 1)σi+1 − (3w̄2 − 1)σi ]

Let ∆i = (yi+1 − yi)/hi .
On [xi , xi+1], w(xi) = 0 and w̄(xi) = 1,

s′
+(xi ) = ∆i + hi(−σi+1 − 2σi).
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Properties of s(x) (cont.)

On [xi−1, xi ],

s′(x) =
yi − yi−1

hi−1
+ hi−1[(3w2 − 1)σi − (3w̄2 − 1)σi−1]

and w(xi) = 1, w̄(xi ) = 0. Thus

s′
−(xi) = ∆i−1 + hi−1(2σi + σi−1).
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Making s′(x) continuous

Setting
s′
+(xi) = s′

−(xi ), i = 2, 3, ..., n − 1,

we get n − 2 equations:

hi−1σi−1 + 2(hi−1 + hi)σi + hiσi+1 = ∆i − ∆i−1

for i = 2, 3, ..., n − 1.

Solve for σ2, ..., σn−1, recalling that σ1 = σn = 0 (natural cubic
spline).
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Matrix form

diagonal: [2(h1 + h2), · · · , 2(hn−2 + hn−1)]
supper/subdiagonal: [h2, · · · , hn−2]
unknowns: [σ2, · · · , σn−1]

T

right-hand side: [∆2 − ∆1, · · · ,∆n−1 − ∆n−2]
T
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Matrix form

diagonal: [2(h1 + h2), · · · , 2(hn−2 + hn−1)]
supper/subdiagonal: [h2, · · · , hn−2]
unknowns: [σ2, · · · , σn−1]

T

right-hand side: [∆2 − ∆1, · · · ,∆n−1 − ∆n−2]
T

The matrix is

symmetric

tridiagonal

diagonally dominant (|ai ,i | >
∑

j 6=i |ai ,j |), when
x1 < x2 < · · · < xn, postive definite

Can apply the Cholesky factorization, working on two vectors
with O(n) operations.
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Modeling a problem

Note. Had we taken the straightforward approach to
determining the coefficients of the piecewise cubic polynomials,
four coefficients for each of n − 1 cubic polynomials, we would
have ended up with a large (4(n − 1) × 4(n − 1)) and dense
system requiring O(n3) operations.

Now we have an O(n) method.
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Evaluating s(x)

If s(x) is evaluated many times, arrange s(x) so that

s(x) = yi + bi(x − xi) + ci(x − xi)
2 + di(x − xi)

3

and rearrange it in the Horner’s form, for xi ≤ x ≤ xi+1 and
calculate and store bi , ci , di (instead of σi )

bi =
yi+1 − yi

hi
− hi(σi+1 + 2σi)

ci = 3σi di =
σi+1 − σi

hi

for i = 1, 2, ..., n − 1
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Algorithm. Natural cubic spline

ncspline

Given a vector x with breakpoints and vector y with function
values, this algorithm computes the coefficients b, c, d of
natural spline interpolation.

1 Compute hi and ∆i ;
2 Form the tridiagonal matrix (two arrays) and the right hand

side;
3 Solve for σi ;
4 Compute the coefficients b, c, and d .
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Software packages

IMSL csint, csdec, csher, csval

MATLAB polyfit, spline, ppval

NAG e01aef, e01baf, e01bef, e02bbf, e01bff

Octave interp1
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Summary

Polynomial interpolation: General idea and methods,
Lagrange interpolation

Piecewise polynomial interpolation: Construction of
piecewise polynomial (linear and cubic), evaluation of a
piecewise function, ncspline, seval
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