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Intro

Problem setting

Find roots
f(x)=0

Often, methods are iterative (roots cannot be found in finite
number of steps).

Compute square roots




Intro

Problem setting

Find roots
f(x)=0

Often, methods are iterative (roots cannot be found in finite
number of steps).

Compute square roots

x> -A=0

Find the side of the square whose area is A



Intro

Compute square roots

Start with a rectangle whose one side is x¢, then the other side
is A/x; so that its area is A.
Make the rectangle “more square” by setting the new side:

1 A
X+:§ XC—|—X—C

Then x; = x4 and iterate.



Intro

Compute square roots

Start with a rectangle whose one side is x¢, then the other side
is A/x; so that its area is A.
Make the rectangle “more square” by setting the new side:

1 A
X+:§ XC—|—X—C

Then x; = x4 and iterate.

1 A
X+:XC—§ XC—X—
c

A better form



Intro

Compute square roots

Three issues to be addressed
@ Initialization (xp)
@ Convergence (xx — X.?) and rate (how fast?)
@ Termination



Intro

Initialization

Write A in base 4:

A=mx4°, 0.25<m< 1
then VA = /m x 28,
Now we can assume 4~ 1 < A< 1.

Linear interpolation of f(A) = vVAat A= 0.25,1.0:

p(A) = (1 + 2A4)/3.




Intro

Initialization (cont.)

Initial error bound:
Differentiating

VA_ 1 22A

with respect to A and then setting the derivative to zero to find
the maximum, it can be shown that

VA—(1+2A)/3| <0.05



Intro

Initialization (cont.)

Initial error bound:
Differentiating

VA_ 1 22A

with respect to A and then setting the derivative to zero to find
the maximum, it can be shown that

VA—(1+2A)/3| <0.05

Initial value: xq = (1 4+ 2A)/3
Initial error: ey < 0.05



Intro

Convergence

A relation between X, and x:

1 A
Xkt1 = 5 Xk+x—k

Denote the error e, = |xx — v/A|, then the relation between

€x+1 and eg:
1 VA
X J—
€kt1 = |Xkt1 —\/Z| =5 (ki 7k>

1 2
—€
2| x| ¥



Intro

Convergence

A relation between X, and x:

1 A
Xkt1 = 5 Xk+x—k

Denote the error e, = |xx — v/A|, then the relation between
€x+1 and eg:

2
1 (x— VA
€kr1 = |Xk+1—\/z|—§<k7>

1 2
—€
2| x| ¥

It can be shown that 0.5 < x, < 1.0.



Intro

Convergence (cont.)

Since the initial error eg < 0.05,

k k
ex<el_;<---<ef <(0.05)?

We have shown the convergence (ex — 0 as k — o).



Intro

Convergence (cont.)

Since the initial error eg < 0.05,

k k
e <€ <...<ed <(0.05)?
k—1 0

We have shown the convergence (ex — 0 as k — o).

How fast?
Rate: quadratic ex,1 < ce,%, each iteration doubles the
accuracy.



Intro
Termination

Recall: e < (0.05)2" < 102"
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Recall: e < (0.05)2" < 102"

When k = 3, g, < 1078,
When k = 4, e, < 10716,



Intro

Termination

Recall: e < (0.05)2" < 102"

When k = 3, g, < 1078,

When k = 4, e, < 10716,

Three iterations are enough for IEEE single precision (272%).

Four iterations are enough for IEEE double precision (2753).



Intro
Example

Compute v/3



Intro
Example

Compute v/3
Scale: 3 =0.75 x 4!



Intro

Example

Compute v/3

Scale: 3 =0.75 x 4!
Initial: xo = (1 +2 x 0.75)/3=2.5/3



Intro

Example

Compute v/3

Scale: 3 = 0.75 x 4!
Initial: xo = (1 +2 x 0.75)/3=2.5/3
lterate: xp+1 = Xn — (Xn — 0.75/X5)/2

Xn error
0.8333... 3.3x 10772
0.8667... 6.4x10°*
0.8660... 2.4 x 107
0.8660... 3.2x 104
0.8660... <1016

A WON-= OIS

X5 = X4.



Intro

Example

Compute v/3
Scale: 3 =0.75 x 4!

Initial: xo = (1 +2 x 0.75)/3=2.5/3
lterate: xp+1 = Xn — (Xn — 0.75/X5)/2

X5 = X4.
Scale back: x4 x 2!

n Xn error
0 0.8333... 33x10°°
1 0.8667.. 6.4x10°*
2 0.8660... 2.4x10~7
3 0.8660... 3.2x10° '
4 0.8660... <1016
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e Bisection Method



Bisection

Generic algorithm

If f(a) = f(b) < 0 and f(x) is continuous on [a, b], then f(x) has
aroot on [a, b].

while (b-a)>tol
m = (a+b)/2;
if f(a)*f (m)<=0

b = m;
else

a = m;
end;

end;
r = (a + b)/2;



Bisection

Generic algorithm

Two problems in the generic algorithm:

The while-loop may not terminate.
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Generic algorithm

Two problems in the generic algorithm:

The while-loop may not terminate.

When a and b are two neighboring floating-point numbers and
(b—a)>tol, (a+b) /2 is rounded to either a or b.



Bisection

Generic algorithm

Two problems in the generic algorithm:

The while-loop may not terminate.

When a and b are two neighboring floating-point numbers and
(b—a)>tol, (a+b) /2 is rounded to either a or b.

Redundant function evaluations.



Bisection

An improved algorithm

fa = f(a);
while (b-a)>tol + eps*max(lal, |bl)
m= (a + b)/2;
fm = £ (m);
if faxfm<=0
b = m;
else
a =m; fa = fm;
end;
end;

r = (a + b)/2;



Bisection

An improved algorithm

fa = f(a);
while (b-a)>tol + eps*max(lal, |bl)
m= (a + b)/2;
fm = £ (m);
if faxfm<=0
b = m;
else
a =m; fa = fm;
end;
end;
r = (a + b)/2;

Note: eps*max (|a|, |b|) is about the distance between two
consecutive floating-point numbers near max (|al, |bl). (ulp)



Bisection

Convergence

Since by — ax < (b— a)/2%, x. € [a, bx], and xx = (ax + bk)/2,

we have

bk —dk b—a
2 T 2k+1

ek = Xk — Xi| <

In this case, ex,1 < 0.5e.
Improve accuracy by 1 bit per iteration or 1 decimal digit for
every three or so iterations.



Bisection

Convergence

In general, linear convergence rate:
€k+1 < Cek

for some constant ¢ < 1.



Bisection

Convergence

In general, linear convergence rate:
€k+1 < Cek
for some constant ¢ < 1.

Difficulty: Locate the interval [a, b].
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e Newton’s Method



Idea

The tangent line of f(x) at x:
y = f(xc) + (x = xo)f'(Xe)
Sety=0




Newton’s method

Newton’s method

f(xc)
=t f'(xc)




Newton

Newton’s method

Newton’s method

_ f(xc)
e f'(xc)

Example.
Square root problem revisited, find a zero of f(x) = x> — A

x2 - A 1 A
Xy = Xe — 2Xc :XC_E XC_X_c




Complex case

Example
f(x) = x® + x + 1 (zeros (-1 £ iv/3)/2)

i X; error

0 i 52 x 101
1 —0.40000 + 0.80000/ 1.2 x 10"
2 —0.50769+ 0.86154i 8.9 x 102
3 —0.49996 + 0.86600/ 4.6 x 10~°
4
5

—0.50000 + 0.86603/ 1.2 x 1079
—0.50000 + 0.86603/ converge

X6 = X5



Convergence

No guarantee of convergence (unlike bisection).
For example, f(x) = atan(x), Xy = xc — (1 + x2)atan(x¢)
Xo =15 (>1.3917)




Convergence

No guarantee of convergence (unlike bisection).
For example, f(x) = atan(x), Xy = X, — (1 + x2)atan(X;)
X1 = —1.6941




Convergence

No guarantee of convergence (unlike bisection).
For example, f(x) = atan(x), Xy = X, — (1 + x2)atan(X;)
Xo = 2.3211




Convergence

No guarantee of convergence (unlike bisection).
For example, f(x) = atan(x), Xy = X, — (1 + x2)atan(x;)
X3 = —5.1141




Convergence

f(x) = atan(x), Xy = Xz — (1 + x2)atan(x;)
Xo=—-13(—-1.3/<1.3917)

15




Convergence

f(x) = atan(x), x; = Xz — (1 + x2)atan(x;)
x; = 1.1616




Convergence

f(x) = atan(x), x; = Xz — (1 + x2)atan(x;)
x; = —0.8589




Convergence

f(x) = atan(x), x; = Xz — (1 + x2)atan(x;)
X; = 0.3742




Convergence

Conditions for convergence (qualitative):
@ X close enough to x,
@ f'(x) does not change sign near x.
@ f(x) is not too nonlinear near x,
Newton’s method is a local method.



Convergence

Conditions for convergence (qualitative):
@ X close enough to x,
@ f'(x) does not change sign near x.
@ f(x) is not too nonlinear near x,
Newton’s method is a local method.

Difficulty: Finding xo.



Newton

Hybrid methods

Combining bisection and Newton’s methods

Bracketing interval [a, b], and x; = aor b
if xp = X — f(xc)/f'(Xc) € [a, b]

bracketing interval [a, x;] or x4, b]
else

m=(a+b)/2;

bracketing interval [a, m] or [m, b]

Termination criteria: Any one of
(*] (bk — ak) <6
@ |f(xe)| <9
@ Too many function evaluations



Newton
Avoiding derivatives

Approximation

Flxe) ~ f(xc + 5;2 — f(xc)

L



Newton
Avoiding derivatives

Approximation

f(Xc + 0c) — f(Xc)

f/(XC) ~ 50

Choice of 4,
Example. Secant method (6, = x_ — x¢)

f(xe) — f(x-)

, ~
Fiixe) = Xe — X_



Secant method




Secant method

Usually, the convergence rate (if it converges) is

(1++v5)/2~1.6

ex+1 < cey®, superlinear, between quadratic and linear.



Newton

Zeros of a polynomial

Finding the zeros of a polynomial
p=x"+cr1 X" "+ . +ox +¢

Many methods were proposed.



Newton

Zeros of a polynomial

Finding the zeros of a polynomial
p=x"+cr1 X" "+ . +ox +¢

Many methods were proposed.

The eigenvalues of its companion matrix

[0 0 --- 0 —cp
10 - 0 —c
Cp)=|0 1 = 0 —c |  det(xi—C(p))=p

00 -+ 1 —Coy |



Example

The zeros of the polynomial

are the eigenvalues of



Example

The zeros of the polynomial

3

One real and two complex conjugate eigenvalues.

x3 -1

are the eigenvalues of

o = O
- O O
o O =



How to compute the eigenvalues of a matrix?

Finding the zeros of a polynomial used to be the way of finding
the eigenvalues of a matrix A.



How to compute the eigenvalues of a matrix?

Finding the zeros of a polynomial used to be the way of finding
the eigenvalues of a matrix A.

Text book method:
The eigenvalues of a matrix A are the zeros of its characteristic
polynomial det(\/ — A).



Now, we have efficient and reliable methods for computing
eigenvalues of a matrix.

QR method, John G.F. Francis and Vera N. Kublanovskaya, late
1950s.

We find the zeros of a polynomial by computing the
eigenvalues of its companion matrix.
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@ Systems of Nonlinear Equations



Systems

Problem setting

Denote

f: vector-valued function
X: vector



Newton’s method
X+ — Xc + SC

where s is the solution of
f(XC) + J(XC)SC = 0,

i.e., 8c = —J 1 (xc)f(Xc), where J(x;) is the Jacobian of f at X,:

oh . 9

ox 0X

of; T 7

J(x) = [8_)(1] = : :

0Xq O0Xn



Systems

Example

A system of nonlinear equations

X2 —x3=0
2X1X2:1,

with starting point

Xo

Il
—
- O
[E—

Solution: x; = x, = 1/1/2



Systems
Example

A -
fx) = { f, ] - { 2X1 Xz — 1
The Jacobian is

2X1 —2X2

2X> 2X1

and o o
S =] 5 5



Systems
Example

Step 1:

X1 = Xo — J_1 (Xo) f(Xo)



Systems
Example

Step 1:

X1 = Xo — J_1 (Xo) f(Xo)
Solving for dy in J(x0)do = f(Xo), we have

—05
do = [ 0.5 ]

Thus

w=11]-| o2 )= 03]



Systems
Example

Step 2:

X =x1 —J7(x1) f(x1)

_1 ] foa) = [ —8.5}

—_

Jxt) = [



Systems
Example

Solving for dy in J(xy)d; = f(x1), we have

~0.25
o = { ~0.25 ]

Thus

(05 _0.25 0.75
X2=105|"| —025 0.75



Systems

Avoiding derivatives

The jth column of J(x)

of
o0X;

! of
ofy X
ox;

can be approximated by the difference

f(x1, ..., X + 0, X1, ... Xn) — (X1, ..., Xn)
)
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e Continuous Optimization



Optimization

Problem setting

[ f
pi) or it

X: vector f(x): objective function and real-valued
S: support



Optimization

Problem setting

[ f
pi) or it

X: vector f(x): objective function and real-valued
S: support

Find a zero of the gradient

of(x
0Xq

N3

Vi) = |
of(x
8Xn

=




Optimization

Newton’s method

View the gradient Vf(x) as a vector-valued function and apply
the Newton’s method for solving nonlinear systems.

At current Xx., find the correction s:
X+ = XC + SC
where s is the solution of

V(Xe) + H(X5)Se = 0.

The matrix H(x.) (the Jacobian of the gradient at x.) is called
the Hessian of f at x¢ (V2f(Xc)):

- P

Y ox; 0x;°




Optimization

Example

Minimizing f: R?> — R:

f(x) = >

3
31 — X1X5 4 Xp.

Perform one iteration of Newton’s method for minimizing f using
the starting point
o=[4]
11



Optimization

Example

Apply the Newton’s method for finding a zero of the gradient

Vf(x):[ 5% }

—2X1Xo + 1
The Hessian
2Xx3 —2X
_ o2 _ 1 2
H(x) = V<f(x) = [ oxe —2x; }



Example

Step 1:

X1 — V2f(x0) ™" V1(%o)

e o L

[
- L

0
1
1
1/
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@ Software Packages



Software

Software Packages

IMSL zporc, zplrc, zpocc
MATLAB roots, fzero
NAG c02agf, cO2aff
NAPACK czero
Octave fsolve



Summary

Summary

@ Issues in an iterative method: Initialization, convergence
and rate of convergence, termination. The example of
computing square root

@ Bisection method: Numerical termination problem
@ Newton’s method: Initial value, convergence problems

@ Newton’s method for systems of nonlinear equations,
Jacobian matrix

@ Newton’s method for minimization, gradient and Hessian.



Summary
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