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Problem setting

Find roots

f (x) = 0

Often, methods are iterative (roots cannot be found in finite

number of steps).

Example

Compute square roots

x2 − A = 0
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Problem setting

Find roots

f (x) = 0

Often, methods are iterative (roots cannot be found in finite

number of steps).

Example

Compute square roots

x2 − A = 0

Find the side of the square whose area is A
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Compute square roots

Start with a rectangle whose one side is xc , then the other side

is A/xc so that its area is A.

Make the rectangle “more square” by setting the new side:

x+ =
1

2

(

xc +
A

xc

)

Then xc = x+ and iterate.
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Compute square roots

Start with a rectangle whose one side is xc , then the other side

is A/xc so that its area is A.

Make the rectangle “more square” by setting the new side:

x+ =
1

2

(

xc +
A

xc

)

Then xc = x+ and iterate.

A better form

x+ = xc − 1

2

(

xc − A

xc

)
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Compute square roots

Three issues to be addressed

Initialization (x0)

Convergence (xk → x∗?) and rate (how fast?)

Termination
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Initialization

Write A in base 4:

A = m × 4e, 0.25 ≤ m < 1

then
√

A =
√

m × 2e.

Now we can assume 4−1 ≤ A < 1.

Linear interpolation of f (A) =
√

A at A = 0.25,1.0:

p(A) = (1 + 2A)/3.
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Initialization (cont.)

Initial error bound:

Differentiating
√

A − 1 + 2A

3

with respect to A and then setting the derivative to zero to find

the maximum, it can be shown that

∣

∣

∣

√
A − (1 + 2A)/3

∣

∣

∣
≤ 0.05
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Initialization (cont.)

Initial error bound:

Differentiating
√

A − 1 + 2A

3

with respect to A and then setting the derivative to zero to find

the maximum, it can be shown that

∣

∣

∣

√
A − (1 + 2A)/3

∣

∣

∣
≤ 0.05

Initial value: x0 = (1 + 2A)/3

Initial error: e0 ≤ 0.05
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Convergence

A relation between xk+1 and xk :

xk+1 =
1

2

(

xk +
A

xk

)

Denote the error ek = |xk −
√

A|, then the relation between

ek+1 and ek :

ek+1 = |xk+1 −
√

A| = 1

2

(

xk −
√

A√
xk

)2

=
1

2|xk |
e2

k
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Convergence

A relation between xk+1 and xk :

xk+1 =
1

2

(

xk +
A

xk

)

Denote the error ek = |xk −
√

A|, then the relation between

ek+1 and ek :

ek+1 = |xk+1 −
√

A| = 1

2

(

xk −
√

A√
xk

)2

=
1

2|xk |
e2

k

It can be shown that 0.5 ≤ xk ≤ 1.0.
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Convergence (cont.)

Since the initial error e0 ≤ 0.05,

ek ≤ e2
k−1 ≤ · · · ≤ e2k

0 ≤ (0.05)2k

We have shown the convergence (ek → 0 as k → ∞).
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Convergence (cont.)

Since the initial error e0 ≤ 0.05,

ek ≤ e2
k−1 ≤ · · · ≤ e2k

0 ≤ (0.05)2k

We have shown the convergence (ek → 0 as k → ∞).

How fast?

Rate: quadratic ek+1 ≤ ce2
k , each iteration doubles the

accuracy.
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Termination

Recall: ek ≤ (0.05)2k
< 10−2k

.
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Termination

Recall: ek ≤ (0.05)2k
< 10−2k

.

When k = 3, ek < 10−8.

When k = 4, ek < 10−16.
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Termination

Recall: ek ≤ (0.05)2k
< 10−2k

.

When k = 3, ek < 10−8.

When k = 4, ek < 10−16.

Three iterations are enough for IEEE single precision (2−24).

Four iterations are enough for IEEE double precision (2−53).
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Example

Compute
√

3
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Example

Compute
√

3

Scale: 3 = 0.75 × 41
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Example

Compute
√

3

Scale: 3 = 0.75 × 41

Initial: x0 = (1 + 2 × 0.75)/3 = 2.5/3
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Example

Compute
√

3

Scale: 3 = 0.75 × 41

Initial: x0 = (1 + 2 × 0.75)/3 = 2.5/3

Iterate: xn+1 = xn − (xn − 0.75/xn)/2

n xn error

0 0.8333... 3.3 × 10−2

1 0.8667... 6.4 × 10−4

2 0.8660... 2.4 × 10−7

3 0.8660... 3.2 × 10−14

4 0.8660... < 10−16

x5 = x4.
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Example

Compute
√

3

Scale: 3 = 0.75 × 41

Initial: x0 = (1 + 2 × 0.75)/3 = 2.5/3

Iterate: xn+1 = xn − (xn − 0.75/xn)/2

n xn error

0 0.8333... 3.3 × 10−2

1 0.8667... 6.4 × 10−4

2 0.8660... 2.4 × 10−7

3 0.8660... 3.2 × 10−14

4 0.8660... < 10−16

x5 = x4.

Scale back: x4 × 21
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Generic algorithm

If f (a) ∗ f (b) ≤ 0 and f (x) is continuous on [a,b], then f (x) has

a root on [a,b].

while (b-a)>tol

m = (a+b)/2;

if f(a)*f(m)<=0

b = m;

else

a = m;

end;

end;

r = (a + b)/2;
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Generic algorithm

Two problems in the generic algorithm:

The while-loop may not terminate.
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Generic algorithm

Two problems in the generic algorithm:

The while-loop may not terminate.

When a and b are two neighboring floating-point numbers and

(b-a)>tol, (a+b)/2 is rounded to either a or b.
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Generic algorithm

Two problems in the generic algorithm:

The while-loop may not terminate.

When a and b are two neighboring floating-point numbers and

(b-a)>tol, (a+b)/2 is rounded to either a or b.

Redundant function evaluations.
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An improved algorithm

fa = f(a);

while (b-a)>tol + eps*max(|a|,|b|)

m = (a + b)/2;

fm = f(m);

if fa*fm<=0

b = m;

else

a = m; fa = fm;

end;

end;

r = (a + b)/2;
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An improved algorithm

fa = f(a);

while (b-a)>tol + eps*max(|a|,|b|)

m = (a + b)/2;

fm = f(m);

if fa*fm<=0

b = m;

else

a = m; fa = fm;

end;

end;

r = (a + b)/2;

Note: eps*max(|a|,|b|) is about the distance between two

consecutive floating-point numbers near max(|a|,|b|). (ulp)
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Convergence

Since bk − ak ≤ (b − a)/2k , x∗ ∈ [ak ,bk ], and xk = (ak + bk )/2,

we have

ek = |xk − x∗| ≤
bk − ak

2
=

b − a

2k+1
→ 0

In this case, ek+1 ≤ 0.5ek .

Improve accuracy by 1 bit per iteration or 1 decimal digit for

every three or so iterations.
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Convergence

In general, linear convergence rate:

ek+1 ≤ cek

for some constant c < 1.



Intro Bisection Newton Systems Optimization Software Summary

Convergence

In general, linear convergence rate:

ek+1 ≤ cek

for some constant c < 1.

Difficulty: Locate the interval [a,b].
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Idea

The tangent line of f (x) at xc :

y = f (xc) + (x − xc)f
′(xc)

Set y = 0

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
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Newton’s method

Newton’s method

x+ = xc −
f (xc)

f ′(xc)
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Newton’s method

Newton’s method

x+ = xc −
f (xc)

f ′(xc)

Example.

Square root problem revisited, find a zero of f (x) = x2 − A

x+ = xc −
x2

c − A

2xc
= xc − 1

2

(

xc − A

xc

)
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Complex case

Example

f (x) = x2 + x + 1 (zeros (−1 ± i
√

3)/2)

i xi error

0 i 5.2 × 10−1

1 −0.40000 + 0.80000i 1.2 × 10−1

2 −0.50769 + 0.86154i 8.9 × 10−3

3 −0.49996 + 0.86600i 4.6 × 10−5

4 −0.50000 + 0.86603i 1.2 × 10−9

5 −0.50000 + 0.86603i converge

x6 = x5
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Convergence

No guarantee of convergence (unlike bisection).

For example, f (x) = atan(x), x+ = xc − (1 + x2
c )atan(xc)

x0 = 1.5 (> 1.3917)
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Convergence

No guarantee of convergence (unlike bisection).

For example, f (x) = atan(x), x+ = xc − (1 + x2
c )atan(xc)

x1 = −1.6941
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Convergence

No guarantee of convergence (unlike bisection).

For example, f (x) = atan(x), x+ = xc − (1 + x2
c )atan(xc)

x2 = 2.3211
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Convergence

No guarantee of convergence (unlike bisection).

For example, f (x) = atan(x), x+ = xc − (1 + x2
c )atan(xc)

x3 = −5.1141
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Convergence

f (x) = atan(x), x+ = xc − (1 + x2
c )atan(xc)

x0 = −1.3 (| − 1.3| < 1.3917)
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Convergence

f (x) = atan(x), x+ = xc − (1 + x2
c )atan(xc)

x1 = 1.1616
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Convergence

f (x) = atan(x), x+ = xc − (1 + x2
c )atan(xc)

x1 = −0.8589
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Convergence

f (x) = atan(x), x+ = xc − (1 + x2
c )atan(xc)

x1 = 0.3742
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Convergence

Conditions for convergence (qualitative):

x0 close enough to x∗

f ′(x) does not change sign near x∗

f (x) is not too nonlinear near x∗

Newton’s method is a local method.
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Convergence

Conditions for convergence (qualitative):

x0 close enough to x∗

f ′(x) does not change sign near x∗

f (x) is not too nonlinear near x∗

Newton’s method is a local method.

Difficulty: Finding x0.
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Hybrid methods

Combining bisection and Newton’s methods

Bracketing interval [a,b], and xc = a or b

if x+ = xc − f (xc)/f ′(xc) ∈ [a,b]
bracketing interval [a, x+] or [x+,b]

else

m = (a + b)/2;

bracketing interval [a,m] or [m,b]

Termination criteria: Any one of

(bk − ak ) < δ

|f (xc)| < δ

Too many function evaluations
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Avoiding derivatives

Approximation

f ′(xc) ≈
f (xc + δc)− f (xc)

δc
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Avoiding derivatives

Approximation

f ′(xc) ≈
f (xc + δc)− f (xc)

δc

Choice of δc

Example. Secant method (δc = x− − xc)

f ′(xc) ≈
f (xc)− f (x−)

xc − x−
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Secant method

x+ = xc − xc − x−

f (xc)− f (x−)
f (xc)
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Secant method

x+ = xc − xc − x−

f (xc)− f (x−)
f (xc)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

0

1

2

3

4

5

6

7

Usually, the convergence rate (if it converges) is

(1 +
√

5)/2 ≈ 1.6
ek+1 ≤ ce1.6

k , superlinear, between quadratic and linear.
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Zeros of a polynomial

Finding the zeros of a polynomial

p = xn + cn−1xn−1 + ...+ c1x1 + c0

Many methods were proposed.
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Zeros of a polynomial

Finding the zeros of a polynomial

p = xn + cn−1xn−1 + ...+ c1x1 + c0

Many methods were proposed.

The eigenvalues of its companion matrix

C(p) =















0 0 · · · 0 −c0

1 0 · · · 0 −c1

0 1 · · · 0 −c2
...

...
...

...
...

0 0 · · · 1 −cn−1















, det(xI − C(p)) = p
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Example

The zeros of the polynomial

x3 − 1

are the eigenvalues of





0 0 1

1 0 0

0 1 0
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Example

The zeros of the polynomial

x3 − 1

are the eigenvalues of





0 0 1

1 0 0

0 1 0





One real and two complex conjugate eigenvalues.
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Note

How to compute the eigenvalues of a matrix?

Finding the zeros of a polynomial used to be the way of finding

the eigenvalues of a matrix A.
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Note

How to compute the eigenvalues of a matrix?

Finding the zeros of a polynomial used to be the way of finding

the eigenvalues of a matrix A.

Text book method:

The eigenvalues of a matrix A are the zeros of its characteristic

polynomial det(λI − A).



Intro Bisection Newton Systems Optimization Software Summary

Note

Now, we have efficient and reliable methods for computing

eigenvalues of a matrix.

QR method, John G.F. Francis and Vera N. Kublanovskaya, late

1950s.

We find the zeros of a polynomial by computing the

eigenvalues of its companion matrix.
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Problem setting

f1(x1, ..., xn) = 0

f2(x1, ..., xn) = 0

...

fn(x1, ..., xn) = 0

Denote

f(x) = 0

f: vector-valued function

x: vector
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Newton’s method

x+ = xc + sc

where sc is the solution of

f(xc) + J(xc)sc = 0,

i.e., sc = −J−1(xc)f(xc), where J(xc) is the Jacobian of f at xc :

J(x) =

[

∂fi
∂xj

]

=







∂f1
∂x1

· · · ∂f1
∂xn

...
...

...
∂fn
∂x1

· · · ∂fn
∂xn
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Example

A system of nonlinear equations

{

x2
1 − x2

2 = 0

2x1x2 = 1,

with starting point

x0 =

[

0

1

]

Solution: x1 = x2 = 1/
√

2



Intro Bisection Newton Systems Optimization Software Summary

Example

f(x) =

[

f1
f2

]

=

[

x2
1 − x2

2

2x1x2 − 1

]

The Jacobian is

J(x) =

[

2x1 −2x2

2x2 2x1

]

and

J(x0) =

[

0 −2

2 0

]
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Example

Step 1:

x1 = x0 − J−1(x0) f (x0)
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Example

Step 1:

x1 = x0 − J−1(x0) f (x0)

Solving for d0 in J(x0)d0 = f (x0), we have

d0 =

[

−0.5
0.5

]

Thus

x1 =

[

0

1

]

−
[

−0.5
0.5

]

=

[

0.5
0.5

]
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Example

Step 2:

x2 = x1 − J−1(x1) f (x1)

J(x1) =

[

1 −1

1 1

]

, f (x1) =

[

0

−0.5

]
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Example

Solving for d1 in J(x1)d1 = f (x1), we have

d1 =

[

−0.25

−0.25

]

Thus

x2 =

[

0.5
0.5

]

−
[

−0.25

−0.25

]

=

[

0.75

0.75

]
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Avoiding derivatives

The j th column of J(x)









∂f1
∂xj

...
∂fn
∂xj









=
∂f

∂xj

can be approximated by the difference

f(x1, ..., xj + δ, xj+1, ..., xn)− f(x1, ..., xn)

δ
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Problem setting

min
x∈S

f (x) or max
x∈S

f (x)

x: vector f (x): objective function and real-valued

S: support
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Problem setting

min
x∈S

f (x) or max
x∈S

f (x)

x: vector f (x): objective function and real-valued

S: support

Find a zero of the gradient

∇f (x) =









∂f (x)
∂x1

...
∂f (x)
∂xn
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Newton’s method

View the gradient ∇f (x) as a vector-valued function and apply

the Newton’s method for solving nonlinear systems.

At current xc, find the correction sc :

x+ = xc + sc

where sc is the solution of

∇f (xc) + H(xc)Sc = 0.

The matrix H(xc) (the Jacobian of the gradient at xc) is called

the Hessian of f at xc (∇2f (xc)):

Hi ,j =
∂2f

∂xi ∂xj
.
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Example

Minimizing f : R2 → R:

f (x) =
x3

1

3
− x1x2

2 + x2.

Perform one iteration of Newton’s method for minimizing f using

the starting point

x0 =

[

0

1

]

.
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Example

Apply the Newton’s method for finding a zero of the gradient

∇f (x) =

[

x2
1 − x2

2

−2x1x2 + 1

]

The Hessian

H(x) = ∇2f (x) =

[

2x1 −2x2

−2x2 −2x1

]
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Example

Step 1:

x1 = x0 −∇2f (x0)
−1 ∇f (x0)

=

[

0

1

]

−
[

0 −1/2

−1/2 0

] [

−1

1

]

=

[

1/2

1/2

]
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Software Packages

IMSL zporc, zplrc, zpocc

MATLAB roots, fzero

NAG c02agf, c02aff

NAPACK czero

Octave fsolve
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Summary

Issues in an iterative method: Initialization, convergence

and rate of convergence, termination. The example of

computing square root

Bisection method: Numerical termination problem

Newton’s method: Initial value, convergence problems

Newton’s method for systems of nonlinear equations,

Jacobian matrix

Newton’s method for minimization, gradient and Hessian.
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