
CS760, S. Qiao Part 2 Page 1

Design of Numerical Software

1 Differences Between Numerical Software and Non-

numerical Ones

Due to the limitation on the precision of computer numbers approximating
real numbers, finite precision computation is different from conventional
mathematics. Well-known examples are:

(a + b) + c = a + (b + c)?
x1 + x2 + · · · + xn = xn + · · · + x2 + x1?
If x > 0, 1.0 + x > 1.0?
If x 6= y, x − y 6= 0?
In this section, we use examples to illustrate two issues: specification

and loop termination.

1.1 Specification

A specification of software describes the intended relationship between a
program’s input and its output. This relationship should be precise and
complete to help testing. However in numerical software design it is very
hard to write out precise and complete specification for many computational
problems. Even when specifications exist, they may be difficult to determine.
In this section, we first give an example to illustrate the difficulties in nu-
merical software specification. Then we use another simple example to show
how we might go about a specification for numerical software.

This first example is due to [8].
Suppose we use the following FORTRAN 77 program to generate random

numbers:

FUNCTION RAN()

SAVE K

DATA K / 100001 /

K = MOD(K*125,2796203)

RAN = REAL(K) / 2796203.0

RETURN

END

How do we write out a specification for this program? Obviously, any value
returned by RAN lies between 0 and 1. But this is not complete and precise.
If there is a mistake causing 100001 to be replaced by 10001, can we find

CS760, S. Qiao Part 2 Page 2

out this mistake by checking the specification and testing the program?
A precise and complete specification might exist, it is certainly hard to
determine.

Does that mean we have to give up on specifying numerical software?
No. In the following example, we show how we might go about a spec-
ification regarding numerical issues. Consider the function Sqrt(a) which
computes the square root of a nonnegative a. Let us start with a mathe-
matical specification:

Sqrt(a) =
√

a, a ≥ 0.

In computer arithmetic, however, a must be a number representable on the
machine. Since a can be the result of previous operations, it can be any of
±0, ±∞, finite normal floating-point number, and NaN. Also, the result can
be any of those values. For +0, +∞, any positive finite number, and NaN,
the result is obvious. What should the function do when a < 0? Clearly, it
is undesirable to print an error message and stop execution. Here, NaN can
help. What is Sqrt(−0)? We choose −0 because if a < 0 and underflowed
to −0 in previous operations, then log(Sqrt(a)) will give NaN. If a > 0 and
underflowed to +0 in previous operations, then log(Sqrt(a)) will give −∞.
Thus we refine the domain of the function and get the following specification
according to the floating-point number system:

a > 0
a < 0 a = −0 a = 0 a 6= ∞ a = ∞ a = NaN

Sqrt(a) = NaN −0 0
√

a ∞ NaN

Now we consider the effect of finite precision computation. The exact
√

a
may require infinite precision, for example

√
2. It is impossible to compute√

a exactly in general. The best we can do is to get the floating-point number
closest to the exact value. This is what IEEE standard requires. Using the
notation fl(x), which denotes the computer number obtained by rounding a
real number x. Thus we have the following modified table:

a > 0
a < 0 a = −0 a = 0 a 6= ∞ a = ∞ a = NaN

Sqrt(a) = NaN −0 0 fl(
√

a) ∞ NaN

In summary, we start with a mathematical specification. Then we refine
the domain based on floating-point number system and consider finite pre-
cision computation. In this simple example, we are able to implement the
function to satisfy the specification. Specifically, we can compute Sqrt(a) so
accurate that it equals fl(

√
a). In most cases, however, we are not so lucky.

CS760, S. Qiao Part 2 Page 3

Variable Description

&a& : real left endpoint of initial interval

&b& : real right endpoint of initial interval

&F& : string name of a function subprogram
defined on the interval [a, b].

%z% : real zero of F (x) in [a, b]

Table 1: Environment variables in Zeroin function.

Also, sometimes it is unnecessarily expensive to compute the result to such
high accuracy. The following example gives a more general case where the
error in the result can not be guaranteed to be accurate to the machine
precision.

Suppose we are to specify a function Zeroin(a, b, F) which finds a zero of
a continuous function F (x) given an interval [a, b] such that F (a)F (b) ≤ 0.
In this example, we use the tabular notation in documentation introduced
by Parnas [9, 10, 6]. The documentation includes a description of the envi-
ronment that identifies a set of quantities of concern to software users and
associates each one with a mathematical variable. Table 1 shows the en-
vironment variables of the function Zeroin(a, b, F). The notations in Table
1:

• &x&: x is a monitored variable

• %x%: x is a controlled variable

As in the previous example, we start with a mathematical description of the
function:

z = Zeroin(a, b, F)
R(,) = (F (a)F (b) ≤ 0) ⇒ (
z | (a ≤ z ≤ b) ∧ (F (z) = 0)) ∧ NC(a, b, F)

This description says that if F (a)F (b) ≤ 0 is true, then the returned z
satisfies a ≤ z ≤ b and F (z) = 0. If F (a)F (b) ≤ 0 is false, then the returned
z can be anything, but a, b, and F are unchanged after the execution of
Zeroin.

Then, we consider the effects of the finite precision computation. Is it
alway possible to find the exact zero? Apparently not, because the exact
solution may not be representable in the underlying computer number sys-
tem. So, we require that the computed result be accurate to certain degree,

CS760, S. Qiao Part 2 Page 4

a specified tolerance. But, if the given tolerance tol is too small, it is possi-
ble that there are no floating-point numbers in [z − tol, z + tol] where z is
the exact solution. Any program attempts to find a computed solution with
such small uncertainty tol is bound to fail. In that case, the best we can do
is to find a floating-point number closest to the exact solution. In partic-
ular, if tol = 0, the function returns a floating-point number closest to the
exact solution z. Introducing variables %ẑ %, the computed solution, and
&tol&, the tolerance, we refine the mathematical specification and obtain
the following specification.

ẑ = Zeroin(a, b, tol, F)
R(,) = (F (a)F (b) ≤ 0) ∧ (z| (F (z) = 0) ∧ (a ≤ z ≤ b)) ∧ (tol ≥ 0) ⇒ (

tol > |zu| tol ≤ |zu|
(a ≤ ẑ′ ≤ b) ∧ (a ≤ ẑ′ ≤ b) ∧

ẑ′ | (|ẑ′ − z| ≤ tol) (|ẑ′ − z| ≤ |zu|)) ∧ NC(a, b, tol, F)

Recall that u is the unit of roundoff, a machine parameter. Is the above
specification precise and complete? What if zu is zero or underflows? What
if the computed F (ẑ′) is zero but ẑ′ is not the closest to z which is a real
number? Actually, there may be more than one floating-point number sat-
isfying F (ẑ) = 0.

1.2 Loop Termination

Loop termination is an important issue in software design. However, a math-
ematically terminating loop may not terminate in the presence of imperfect
arithmetic. The following program finds a zero of a given function f(x)
using the bisection method.

% This program computes a zero z of a given function f(x)

% continous on the interval [a,b] assuming f(a)*f(b)<0.

% The computed result is accurate to a given tolerance tol.

%

fb = f(b);

while abs(a - b) > tol

mid = (a + b)/2.0;

fmid = f(mid);

if fb*fmid > 0

b = mid; fb = fmid;

else

a = mid;

CS760, S. Qiao Part 2 Page 5

end

end

z = (a + b)/2.0;

If f(x) = (x − 8 × 108)2 − 2 × 1012, an exact zero is

z = 8.0141421356237310 · · · × 108.

If we choose

a = 8.01 × 108, b = 8.02 × 108, and tol = 0.5 × 10−7,

the while loop in the above program does not terminate in double precision
arithmetic. Because the two neighboring floating-point numbers of z are

za = 8.01414213562373042 · · · × 108 = 1.7e24e22c7fbd7hex × 229

and

zb = 8.01414213562373161 · · · × 108 = 1.7e24e22c7fbd8hex × 229.

The distance between the two consecutive floating-point numbers around the
exact solution z is 2−23 ≈ 1.2 × 10−7, which is greater than the tolerance.
Specifically, we eventually get a = za, b = zb and mid = (a + b)/2, which is
rounded to b. The while loop never terminates.

On the other hand, a mathematically nonterminating loop may termi-
nate in the presence of imperfect arithmetic. For example, the following
program determines the machine precision t (in terms of binary digits).

eps = 1.0;

t = 0;

while (1.0 + eps) > 1.0

eps = eps/2.0;

t = t + 1;

end

Mathematically, the while loop in the above program is nonterminating, but,
due to the finite precision, it terminates, even way before eps reduces to the
smallest positive floating-point number.

CS760, S. Qiao Part 2 Page 6

2 Guidelines for Numerical Programming

Based on the principles discussed in Chapter 1, we present the following
guidelines for writing numerical programs [5].

1. Do not reinvent wheels. Use built-in library functions and high
quality packages such as LAPACK whenever possible.

2. Take precautions when checking whether two floating-point

numbers are exactly equal. Two floating-point numbers are rarely
equal exactly. Instead, we usually check whether two floating-point
numbers are close enough using a tolerance.

3. Take precautions to avoid unnecessary overflow and under-

flow. When applying some straitforward mathmetical formulas in our
programs, we often get the situations of overflow or underflow. Ac-
tually some of these circumstances can be avoided by changing the
algorithm. We regard these kinds of overflow and underflow as unnec-
essary overflow and underflow. This is what we should take precausion
to avoid this circumstance when we design an numerical software.
There are many different ways to avoid underflow, overflow or both for
specific problem. Scaling is the most common way. Here is an example
for avoiding unnecessary overflow or underflow by scaling.

Example 1 The evaluation of a vector 2-norm, ||x||2 =
∑

i(|xi|2)1/2.

A straightforward implementation would be

s = 0;

for i=1:n

s = s + x(i)*x(i);

end

return sqrt(s).

For about half of all machine numbers x, x2 either underflow or over-
flow. The overflow or underflow can be avoided by the following algo-
rithm:

t = max(|x(i)|);

s = 0;

for i=1:n

CS760, S. Qiao Part 2 Page 7

s = s + (x(i)/t)*(x(i)/t);

end

return t*sqrt(s).

However, this algorithm goes through the array twice and requires
more computation than the straightforward version. Especially, di-
vision is usually many times more expensive than either addition or
multiplication. It is a challenge to develop an algorithm satisfying the
following criteria [1]:

(a) Reliability: It must compute the answer accurately, i.e., nearly all
the computed digits must be correct, unless the answer is outside
the range of normalized floating-point numbers.

(b) Efficiency: It must be nearly as fast as the straightforward algo-
rithm in most cases.

(c) Portability: It must work on any “reasonable” machines, possibly
including ones not running IEEE arithmetic. This means it may
not cause an error condition, unless ‖x‖2 is (nearly) larger than
the largest floating-point number.

4. Try to avoid subtracting quantities contaminated by error.
When two very closed numbers are subtracted, cancellation occurs.
There are two kinds of cancellations, one is catastrophic cancellation,
and the other is benign cancellation. (see the analysis in 1.6).

5. Minimize the size of intermediate quantities relative to the

final solution. The large intermediate quantities will lead to the final
result with ill-effect of subtractive cancellation and lose some origional
information from initial data because the intermediate quantities are so
big that the system ignores the relatively small data with information
comparision with large intermediate quantities.

The following example makes this situation clear to us.

Example 2 Given numbers x1, x2, ..., xn, this algorithm computes

Sn =
∑n

i=1 xi.

Let S = x1, x2, ..., xn.

while S contains more than one element

Remove two numbers x and y from S;

CS760, S. Qiao Part 2 Page 8

and add their sum x + y to S

end

Assign the remaining element of S to Sn.

We express the ith execution of the repeat loop as Ti = xi1 + yi1. The
computed sums satisfy

T̂i =
xi1 + yi1

1 + δi
, |δi| ≤ u, i = 1 : n − 1.

So overall we have the error

En := Sn − Ŝn =
n−1∑

i=1

δiT̂i (1)

The smallest possible error bound is therefore

|En| ≤ u
n−1∑

i=1

|T̂i| (2)

So from (1) and (2) we can indicate that minimization of intermediate
result will help reduce the error.

6. It is advantageous to express update formulae as

new value = old value + small correction

if the small correction can be computed with many correct

signigicant figures. A classic example is the iterative refinement for
improving the computed solution to a linear system Ax = b. By com-
puting residual r = b−Ax in extended precision and solving A∆x = r,
a more accurate solution x+ ∆x can be obtained. This procedure can
be repeated to compute highly accurate solution.

Example 3 Estimating π by computing the perimeters of regular poly-
gons (square, octagon, hexagon, etc.) inscribed inside a circle.

7. Reformulate an unstable algorithm into a stable one. For
example, Gaussian elimination without pivoting is backward unstable
(ref 1.7), but pivoting produces a stable algorithm.

8. Use well-conditioned transformations of the problem. Similar
to the sensitivity of the problem of solving linear system (ref 1.8),
the sensitivity of multiplying matrix-vector depends on the condition
number of the matrix. When we apply a transformation (multiply a
matrix), where possible, we use well-conditioned transformation such
as orthogonal transformation.

CS760, S. Qiao Part 2 Page 9

3 Exploiting IEEE Arithmetic

Although IEEE standards 754 and 854 have been established for long time,
commercial language and compilers generally provide poor support com-
pared with the most commercial floating point processors conforming to the
IEEE standards. The establishment of IEEE standards yields many benefits
in numerical software design, such as the uses of NaN, ±∞, the exception
handling, etc.. In this part, we present some techniques of exploiting IEEE
arithmetic in numerical software development. The first example illustrates
how to make use of the special values. The second example shows how to
design efficient numerical software by using exception handling.

The special values NaN and ±∞ defined in IEEE standard arithmetic
have been intensively used in real numerical software design for solving the
practical problems. Here is a simple example.

Example 4 Suppose we wish to evaluate the dual of the vector p-norm
where 1 ≤ p ≤ ∞, that is , the q-norm, where p−1 + q−1 = 1. In MATLAB
we use the expression: norm(x, 1/(1 − 1/p)), and at extreme cases of p = 1
and ∞ we get q = 1/(1 − 1/p) = ∞ and 1 correctly in IEEE arithmetic.
Note that the formula q = p/(p−1) would not work, because ∞/∞ evaluates
to a NaN.

Now we look at the use of exception handling in numerical software
design.

There is a fact that some numerical algorithms run quickly and give
right answers usually, and some algorithms run slowly and always give right
answers. The right answers in our context are that algorithms are stable, or
that they compute the exact answer for a problem that is a slight perturba-
tion of its input. We will fully take advantage of this feature to achieve fast
but occasionally unstable algorithms. The following paradigm will be used
in our design:

1. Use the fast algorithm to compute an answer; this will usually be done
stably.

2. Quickly and reliably assess the accuracy of the computed answer by
using exception handling.

3. In the unlikely event the answer is not accurate enough, recompute it
slowly but accurately.

There are some conditions for successfully applying this approach:

CS760, S. Qiao Part 2 Page 10

• A large difference in speed between the fast and slow algorithms

• Being able to measure the accuracy of the answer quickly and reliably

• Floating point exceptions not causing the unstable algorithm to abort
or run very slowly

The most important condition is the last one which means that the sys-
tem must either continue past exceptions and later permit the program to
determine whether an exception occurred, or else support user-level trap
handling. The default response to five exceptions in IEEE is to proceed
without a trap and deliver to the destination an appropriate default value.
The IEEE standard defines these default values clearly. Detail about excep-
tion handling and default values see 1.3.4 .

When adopting the fast algorithm, the speed of the fast algorithm is
determined by the relative speeds of

• conventional, unexceptional floating point arithmetic;

• arithmetic with NaN and ±∞ as arguments;

• testing sticky flags;

• trap handling.

In the worst case all the things are very slow except conventional, unex-
ceptional floating point arithmetic, we have to change the implementation
to avoid all exceptions which would be terribly slow. In our discussion we
assume that

1. user-defined trap handlers are not available,

2. testing sticky flags is expensive that should avoid to test it frequently,

3. arithmetic with NaN and ±∞ is reasonably fast.

Now we concentrate on how IEEE exception handling can be used to
design a fast algorithm. We will use an example of computing a condition
estimation to illustrate the ideas from [2]. When solving an n-by-n linear
system Ax = b, we wish to computer a bound on the error xcomputed −xtrue.
We will measure the error using either the one-norm ||x||1 =

∑n
i=1 |xi|, or

the infinity norm ||x||∞ = maxi |xi|. Then the usual error bound is

||xcomputed − xtrue||1 ≤ k1(A)p(n)ερ||xtrue||1

CS760, S. Qiao Part 2 Page 11

where p(n) is a slowly growing function of n (usually about n), ε is the
machine precision, k1(A) is the condition number of A, and ρ is the pivot
growth factor, see detail in [5]. The condition number is defined as k1(A) =
||A||1 ||A−1||1, where ||B||1 ≡ max1≤j≤n

∑n
i=1 |bij |. Since computing A−1

costs more than solving Ax = b, we prefer to estimate ||A−1||1 inexpensively
from A’s LU factorization; this is called condition estimation.

The algorithm is derived from a convex optimization approach, and is
based on the observation that the maximal value of the function f(x) =
||Bx||1/||x||1 equals ||B||1 and is attained at one of the vectors ej , for j =
1, ..., n, where ej is the jth column of the n-by-n identity matrix.

First we introduce two algorithms for solving triangle systems of equa-
tions. The first one is simple, fast and disregards the possibility of overflow
and underflow. The second scales carefully to avoid over/underflow and is
used in our fast condition estimation algorithm.

Algorithm 1 Solve a lower triangular system Lx = b.

x(1 : n) = b(1 : n)
for i = 1 to n

x(i) = x(i)/L(i, i)
x(i + 1 : n) = x(i + 1 : n) − x(i) ∗ L(i + 1 : n, i)

endfor

note: L(i : j, k : l) indicate the submatrix of L lying in rows i through j and
columns k through l of L. Similarly L(i, k : l) is the same as L(i : i; k : l).

This is a much common operation and has been standardized as subroutine
STRSV, one of the BLAS [3, 4, 7].

Due to the possibilities of overflow, division by zero, and invalid excep-
tions caused by the ill-conditioning or bad scaling of the linear systems, the
LAPACK routine SGECON uses Algorithm 2 below instead of Algorithm 1
to solve the triangular systems.

Here is a brief outline of the scaling algorithm. Coarse bounds on the
solution size are computed as follows. The algorithm begins by computing
cj =

∑n
i=j+1 |Lij|, G0 = 1/maxi |bi|, a lower bound Gi on the values of x−1

i+1

through x−1
n after step i of Algorithm 1:

Gi = G0

i∏

j=1

|Ljj|
|Lij | + cj

,

CS760, S. Qiao Part 2 Page 12

and finally a lower bound g on the reciprocal of the largest intermediate or
final values computed anywhere in Algorithm 1:

g = min
1≤i≤n

(G0, Gi−1 · min(1, |Lii|)).

Lower bounds on x−1
j are computed instead of upper bounds on xj to

avoid the possibility of overflow in the upper bounds.
Let UN = 1/OV be smallest floating point number that can safely be

inverted. If g ≥ UN , this means the solution can be computed without
danger of overflow, so we can simply call the BLAS.

Algorithm 2 Solve a lower triangular system Lx = sb with scale factor
0 ≤ s ≤ 1.

compute g and c1, ..., cn−1 as described above
if (g ≥ UN) then

call the BLAS routine STRSV
else

s = 1
x(1 : n) = b(1 : n)
xmax = max1≤i≤n |x(i)|
for i = 1 to n

if (UN ≤ L(i, i) < 1 and |x(i)| > |L(i, i)| · OV) then
scale = 1/|x(i)|
s = s · scale;x(1 : n) = x(1 : n) · scale;xmax = xmax · scale

else if (0 < |L(i, i)| < UN and |x(i)| > |L(i, i)| · OV) then
scale = ((|L(i, i)| · OV)/|x(i)|)/max(1, ci)
s = s · scale;x(1 : n) = x(1 : n) · scale;xmax = xmax · scale

else if (L(i, i) = 0) then ... compute a null vector x : Lx = 0
s = 0
x(1 : n) = 0;x(i) = 1;xmax = 0

endif
x(i) = x(i)/L(i, i)
if (|x(i)| > 1) and c(i) > (OV − xmax)/|x(i)|) then

scale = 1/(2 · |x(i)|)
s = s · scale;x(1 : n) = x(1 : n) · scale

else if (|x(i)| ≤ 1 and |x(i)| · c(i) > (OV − xmax)) then
scale = 1/2
s = s · scale;x(1 : n) = x(1 : n) · scale

endif

CS760, S. Qiao Part 2 Page 13

x(i + 1 : n) = x(i + 1 : n) − x(i) · L(i + 1 : n, i)
xmax = maxi<j<n|x(j)|

endfor
endif

This algorithm 2 named SLATRS is provided in LAPACK. Now we com-
pare the costs of Algorithm 1 and 2. Algorithm 1 costs about n2 flops, half
additions and half multiplies. In the first step of algorithm 2, computing
the ci costs n2/2 + O(n) flops. In the best case, when g ≤ UN , it makes
the overall operation count about 1.5n2. In the worst (and very rare) case
the inner loop of Algorithm 2 will scale at each step, increasing the opera-
tion count by n2 again, for a total of 2.5n2. Updating xmax costs another
n2/2 data access and comparision, which may not be cheaper than the same
number of floating point operations. More important than these operation
counts is that Algorithm 2 has many data dependent branches, which makes
it harder to optimize on pipelined or parallel architectures than the much
simple Algorithm 1.

We give Algorithm 3 which uses Algorithm 2 and is very slow because
it is designed carefully to avoid over/underflow.

Algorithm 3 This algorithm computes a lower bound γ for ||A−1||1.

Choose x with ||x||1 = 1 (e.g., x = (1,1,...,1)T

n)
Do

solve Ay = x (by solving Lw = x and Uy = w using Algorithm 2)
form ξ := sign(y)
solve ATz = ξ (by solving UTw = ξ and LTz = w using Algorithm 2)
if ||z||∞ ≤ zT x then

γ := ||y||1
quit

else x := ej , for that j where |zj | = ||z||∞
while TRUE

We are going to avoid the slower Algorithm 2 by using exception handling
(IEEE standard facility) to deal with ill-conditioned or bad-scaled matrices.
In our algorithm we just call the BLAS routine STRSV. It has the property
that overflow occurs only if the matrix is extremely ill-conditioned. In this
case we detect the exceptions using the sticky exception flags, we can imme-
diately terminate with a well-deserved estimate RCOND = 0. Merely re-
placing the triangular solver used in Algorithm 3 and inserting tests for over-
flow does not work, as can be seen by choosing a moderately ill-conditioned

CS760, S. Qiao Part 2 Page 14

matrix of norm near the underflow threshold; this will cause overflow while
solving Uy = w even though A is only moderately ill-conditioned. Therefore
we modify the logic of the algorithm as follows.

Algorithm 4 This algorithm estimates the reciprocal of the condition num-
ber k1(A) = ||A||1||A−1||1.

Let α = ||A||1
RCOND is the estimated reciprocal of condition number k1(A)
Call exceptionreset()

Choose x with ||x||1 = 1 (e.g., x := (1,1...,1)T

n)
Repeat

solve Lw = x by calling STRSV
if (except()) then RCOND := 0;quit /*k1(A) ≥ OV/ρ*/
if (α > 1) then

if (||w||∞ ≥ OV/α) then
solve Uy = w by calling STRSV
if(except()) then RCOND:=0;quit /*k1(A) ≥ OV */
else y := y · α

if(execpt()) then RCOND := 0;quit /*k1(A) ≥ OV */
endif

else solve Uy = w · α by call STRSV
if (except()) then RCOND := 0;quit /*k1(A) ≥ OV */

endif
else solve Uy = w · α by calling STRSV

if (except()) then RCOND := 0;quit /*k1(A) ≥ OV */
endif
form ξ := sign(y)
solve UT w = ξ · α by calling STRSV
if (except()) then RCOND := 0,quit /*k1(A) ≥ OV

n3 */
else solve LT z = w by calling STRSV

if (except()) then RCOND := 0;quit /*k1(A) ≥ OV
n2 */

endif
if ||z||∞ ≤ zT x then

RCOND := 1/||y||1;quit
else x := ej , where |zj | = ||z||∞
endif

The behavior of Algorithm 4 is described by the following: If Algorithm 4
stops early because of an exception, then the ”true rounded” reciprocal of

CS760, S. Qiao Part 2 Page 15

the condition number satisfies RCOND ≤ max(n3,ρ)
OV , where ρ = ||U ||1

||A||1
is the

pivot growth factor.
In the algorithm there are seven places where exceptions may occur. We

will analyze them one by one. That x is chosen such that ||x||1 = 1, and
||ξ||1 = n.

1. An excetion occurs when computing L−1x. Since A = LU , L−1 =
UA−1, this implies

OV ≤ ||L−1x||1 ≤ ||U ||1||A−1||1||x||1 =
||U ||1
||A||1

||A||1||A−1||1 = ρ·k1(A).

Therefore, k1(A) ≥ OV/ρ, i.e., RCOND ≤ ρ/OV

2. An exception occurs when computing U−1L−1x with α > 1. Then

OV ≤ ||U−1L−1x||1 ≤ ||A−1||1 < ||A−1||1α = k1(A),

so RCOND ≤ 1/OV .

3. An exception occurs when computing α · U−1L−1x with α > 1. Then

OV ≤ ||αU−1L−1x||1 ≤ k1(A),

so RCOND ≤ 1/OV .

4. An exception occurs when computing U−1αL−1x, with α > 1 and
||L−1x||1 < OV

α , then

OV ≤ ||U−1αL−1x||1 ≤ ||A−1||1α = k1(A),

so k1(A) ≥ OV , i.e., RCOND ≤ 1/OV .

5. An exception occurs when computing U−1αL−1x with α ≤ 1. Then

OV ≤ ||U−1αL−1x||1 ≤ ||A−1||1α = k1(A),

so k1(A) ≥ OV , i.e., RCOND ≤ 1/OV .

6. An exception occurs when computing U−T αξ. Since AT = UT LT ,
U−T = LT A−T , and ||BT ||1 ≤ n||B||1, we get

OV ≤ ||U−T αξ||1 ≤ ||LT ||1||A−T ||1α||ξ||1
≤ ||LT ||1 · n||A−1||1 · α · ||ξ||1
= ||LT ||1 · n · k1(A) · n
≤ n3k1(A).

Therefore, k1(A) ≥ OV
n3 , i.e, RCOND ≤ n3

OV .

CS760, S. Qiao Part 2 Page 16

7. An exception occurs when computing L−T U−T αξ, so

OV ≤ ||L−T U−Tαξ||1 ≤ ||A−T ||1α||ξ||1 ≤ n||A−1||1 · α · n = n2k1(A).

Therefore, RCOND ≤ n2

OV .

Combining the above seven cases, we have shown that RCOND ≤ max(n3,ρ)
OV

when an exception occurs.
To compare the efficiencies of Algorithm 3 and Algorithm 4, Demmel and

Li [2] rewrite several condition estimation routines in LAPACK using Algo-
rithm 4, including SGECON for general dense matrices, SPOCON for dense
symmetric positive definite matrices, SGBCON for general band matrices,
and STRCON for triangular matrices, all in IEEE single precision.

The performance results are on a “fast” DECstation 5000 and “slow”
DECstation 5000 (both have a MIPS R3000 chips as CPU), a Sun 4/260
(which has a SPARC chip as CPU), a DEC Alpha and CRAY-C90. The
“slow” DEC 5000 correctly implements IEEE arithmetic, but does arith-
metic with NaN about 80 times slower than normal arithmetic. The “fast”
DEC 5000 implements IEEE arithmetic incorrectly, when the operands in-
volve denormals or NaNs, does so at the same speed as normal arithmetic.
The CRAY does not have exception handling, but the speeds can still be
compared in the most common cases where no exceptions occur to see what
speedup there could be if exception handling were available.

Demmel and Li reported that they ran Algorithm 3 and Algorithm 4 on
a suite of well-conditioned random matrices where no exceptions occur, and
no scaling is necessary in Algorithm 2. They also compared Algorithm 3 and
Algorithm 4 on several intentionally ill-scaled linear systems for which some
of the scalings inside Algorithm 2 have to be invoked, but whose condition
numbers are still finite. The numbers in the following tables [2] are the
ratios of the time spent by the old LAPACK routines using Algorithm 3 to
the time spent by the new routines using Algorithm 4.

CS760, S. Qiao Part 2 Page 17

Machine Matrix dimension n 100 200 300 400 500

DEC 5000 SGBCON sbw = 4 3.00 4.25 5.33 6.50 6.45
sbw = 0.8n 1.57 1.46 1.55 1.56 1.67

SGECON 2.00 1.52 1.46 1.44 1.43
SPOCON 2.83 1.92 1.71 1.55 1.52
STRCON 3.33 1.78 1.60 1.54 1.52

SUN 4/260 SGBCON 2.00 2.20 2.11 2.77 2.71
SGECON 3.02 2.14 1.88 1.63 1.62
SPOCON 5.00 2.56 2.27 2.22 2.17
STRCON 1.50 2.00 2.30 2.17 2.18

DEC Alpha SGBCON sbw = 3 2.00 2.00 8.67 8.40 9.28
sbw = 0.8n 2.67 2.63 2.78 2.89 3.23

SGECON 2.66 2.01 1.85 1.78 1.66
SPOCON 2.25 2.46 2.52 2.42 2.35
STRCON 3.00 2.33 2.28 2.18 2.07

CRAY-C90 SGECON 4.21 3.48 3.05 2.76 2.55

Speedups on DEC 5000/Sun 5-260/ DEC Alpha/CRAY-C90. No
exceptions nor scaling occur. sbw stands for semi-bandwidth.

Example 1 Example 2 Example 3

“fast” DEC 5000 speedup 2.15 2.32 2.00
“slow” DEC 5000 slowdown 11.67 13.49 9.00

SPARCstation 10 speedup 3.12 3.92 3.24

The speeds of some examples with exceptions. Matrix dimensions are 500.

The most important lesson is that well-designed exception handling per-
mits the most common cases, where no exceptions occur, to be implemented
much more quickly. This alone makes exception handling worth implement-
ing well.

4 Estimating Errors

Since errors are unavoidable, numerical software should specify error bounds
for the computed results. In this section, we discuss two methods for estimat-
ing errors in addition to the forward error analysis: running error analysis
and interval analysis.

CS760, S. Qiao Part 2 Page 18

4.1 Running Error Analysis

Due to computational errors, it is necessary for numerical software to specify
tolerances for the computed answers. How do we get error bounds? In
Section 1.6, we described forward error analysis. In this section, we present
two automated error analysis methods: Running error analysis and interval
analysis.

We will use inner product to illustrate the running error analysis. First
we introduce the standard models. Recall that IEEE standards require that
for operations +, ∗, /, and

√
the computed result be the same as if the

operation were carried out exactly and then rounded. Thus we have

fl(x op y) = (x op y)(1 + δ), for op = +, ∗, /
sqrt(x) =

√
x (1 + δ), |δ| ≤ u.

Alternatively,

fl(x op y) =
x op y

1 + δ
, for op = +, ∗, /

sqrt(x) =

√
x

1 + δ
, |δ| ≤ u.

Consider the inner product sn = xT y, where x, y ∈ Rn. Let si =
x1y1 + ... + xiyi denote the ith partial sum.

Algorithm 5 Compute inner product xT y.

s = 0;

for i=1 to n

s = s + x(i)*y(i);

end

Writing the computed partial sums as ŝi =: si + ei and ẑi = fl(xiyi), we
have, using the alternative standard model,

ẑi =
xiyi

1 + δi
or ẑi = xiyi − δiẑi, |δi| ≤ u.

Similarly, (1 + εi)ŝi = ŝi−1 + ẑi, where |εi| ≤ u. Consequently,

si + ei = ŝi = ŝi−1 + ẑi − εiŝi = si−1 + ei−1 + xiyi − εiŝi − δiẑi.

Hence ei = ei−1 − εiŝi − δiẑi, which gives

|ei| ≤ |ei−1| + u|ŝi| + u|ẑi|.
Since e0 = 0, we have |en| ≤ uµn, where µi = µi−1 + |ŝi| + |ẑi| with µ0 = 0.
According to the above formula, we introduce the following algorithm

CS760, S. Qiao Part 2 Page 19

Algorithm 6 Given x, y ∈ Rn this algorithm computes s = fl(xTy) and a
number µ such that |s − xT y| ≤ µ

s = 0;

mu = 0;

for i=0:n

z = x(i)*y(i);

s = s + z;

mu = mu + abs(s) + abs(z);

end

mu = mu*u.

This type of computation, where an error bound is computed concur-
rently with the solution, is called running error analysis. The paradigm is:
For each step, we use the rounding error model to write

|(x op y) − fl(x op y)| ≤ u |fl(x op y)|,

which gives a bound for the error in (x op y) that is easily computed, since
fl(x op y) is stored on the computer. Key features of a running error anal-
ysis are that few inequalities are involved in the derivation of the bound and
that the actual computed intermediate quantities are used, enabling advan-
tage to be taken of cancellation and zero operands. A running error bound
is a posteriori and usually sharper than an a priori one. The disadvantage of
running error analysis is that it introduces additional computation. Nowa-
days the running error analysis is a somewhat negligible practice, but it is
applicable to almost any numerical algorithm.

Now we apply the forward error analysis to the inner product and com-
pare the error bounds. Using the standard model, we have

ŝ1 = fl(x1y1) = x1y1(1 + δ1)

ŝ2 = fl(ŝ1 + x2y2) = x1y1(1 + δ1)(1 + δ3) + x2y2(1 + δ2)(1 + δ3).

To simplify the expressions, let us drop the subscripts on the δi and write
1 + δi ≡ 1 + δ, we get

ŝ3 = fl(ŝ2 + x3y3) = x1y1(1 + δ)3 + x2y2(1 + δ)3 + x3y3(1 + δ)2.

So overall we have

ŝn = x1y1(1 + δ)n + x2y2(1 + δ)n + x3y3(1 + δ)n−1 + · · · + xnyn(1 + δ)2.

CS760, S. Qiao Part 2 Page 20

To simplify the expressions further, we use the following result: If |δi| ≤ u
and ρi = ±1 for i = 1 : n, and nu < 1, then

n∏

i=1

(1 + δi)
ρi = 1 + θn where |θn| ≤

nu

1 − nu
=: γn.

So we obtain

ŝn = x1y1(1 + θn) + x2y2(1 + θ′n) + x3y3(1 + θn−1) + ... + xnyn(1 + θ2).

The forward error bound is

|xT y − fl(xTy)| ≤ γn

n∑

i=1

|xiyi| = γn|x|T |y|.

This forward error bound is an a priori bound that does not depend on the
actual rounding errors committed.

Example 5 We computed 100 inner products of random vectors of size
1,500. The entries of vectors were uniformly distributed over [−1, 1]. Both
running error analysis and forward error analysis were used to estimate the
errors. The inner products were computed in single precision. Another set
of inner products of same vectors were computed in double precision used as
accurate results. Figure 1 plots three errors.

4.2 Interval Error Analysis

Most practical problems requiring extensive numerical computation involve
quantities determined experimentally by approximate measurements– very
often with some estimate of the accuracy of the measured values. So a typical
calculation will begin with some numbers known only to a certain number
of significant digits. The uncertainty in a number can be represented by an
interval.

Example 6 If x = 1.234 is accurate to three decimal digits, then the exact
value lies in the interval [1.225, 1.235].

Thus when we operate on x and y represented by [a, b] and [c, d] respec-
tively, we would like to operate on the intervals and get another interval
[u, v] so that x op y lies in this interval. We need to define operations on
intervals [a, b] op [c, d] = [u, v]. For elementary functions, we have

CS760, S. Qiao Part 2 Page 21

0 10 20 30 40 50 60 70 80 90 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Figure 1: The top curve shows the errors estimated by forward error analysis,
the midle curve shows the errors estimated by running error analysis, and
the bottom curve is the actual errors

[a, b] + [c, d] = [a + c, b + d],
[a, b] − [c, d] = [a − d, b − c],
[a, b] ∗ [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)],
[a, b]/[c, d] = [a, b] ∗ [1/d, 1/c], 0 6∈ [c, d].

How can interval arithmetic be used in estimating rounding errors? Sup-
pose we begin with two floating-point numbers x and y. Denote z = x+y and
ẑ = fl(x+y). We know that the exact result lies in the interval [ẑ−u, ẑ+u]
where u is the unit of round off. Then in the subsequent operations on ẑ, we
apply the operations on the interval [ẑ−u, ẑ+u]. Finally, we get an interval
and guarantee that the final results lies in the interval. Interval analysis is
controversial because narrow intervals can not be guaranteed. One reason is
that when dependencies occur in a calculation, in the sense that a variable
appears more than once, final interval lengths can be pessimestic.

Example 7 Suppose x ∈ [−2, 1], then we know that x∗x ∈ [1, 4]. However,
the interval arithmetic gives

[−2, 1] ∗ [−2, 1] = [min(4,−2, 1),max(4,−2, 1)] = [−2, 4]

which is much wider than [1, 4].

CS760, S. Qiao Part 2 Page 22

Consider the inner product example. The above example shows that interval
analysis would give large error estimate, especially when xi are around zero.
In general, suppose xi ∈ [x̂i − εi, x̂i + εi], for εi > 0. The interval arithmetic
model gives x2

i ∈ [mi,Mi] where mi = min((x̂i − εi)
2, x̂2

i − ε2
i , (x̂i + εi)

2)
and Mi = max((x̂i − εi)

2, x̂2
i − ε2

i , (x̂i + εi)
2). However, we know that x2

i ∈
[min((x̂i − εi)

2, (x̂i + εi)
2),max((x̂i − εi)

2, (x̂i + εi)
2)]. If x̂2

i − ε2
i < (x̂i − εi)

2,
equivalently, xi < εi, the interval arithmetic model gives

∑
x2

i ∈ [−(
∑

ε2
i −∑

x2
i),

∑
(x̂i + εi)

2], which is wider than [
∑

(x̂i − εi)
2,

∑
(x̂i + εi)

2].

4.3 Conclusion

About error estimate, Wilkinson [11, Page 567] says

There is still a tendency to attach too much importance to the
precise error bounds obtained by an a priori error analysis. In my
opinion, the bound itself is usually the least important part of it.
The main object of such an analysis is to expose the potential
instabilities, if any, of an algorithm so that hopefully from the
insight thus obtained one may be led to improved algorithms.
Usually the bound itself is weaker than it might have been be-
cause of the necessity imposed by expressing the errors in terms
of matrix norms. A priori bounds are not, in general, quantities
that should be used in practice. Practical error bounds should
usually be determined by some form of a posteriori error analy-
sis, since this takes full advantage of the statistical distribution
of rounding errors and of any special features, such as sparseness,
in the matrix.

References

[1] James W. Demmel. Applied Numerica Linear Algebra. Society for In-
dustrial and Applied Mathematics, 1997.

[2] James W. Demmel and Xiaoye Li. Fast Numerical Algorithms via Ex-
ception Handling. IEEE Trans. Comput., 43(8):983-992, 1994.

[3] J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. A set of Level 3
Basic Linear Algebra Subprograms. ACM Trans. Maths. Soft., 16(1):1-
17, March 1990.

CS760, S. Qiao Part 2 Page 23

[4] J. Dongarra, J. Du Croz, S. Hammarling, and Richard J. Hanson. An
Extended Set of Fortran Basic Linear Algebra Subroutines. ACM Trans.
Math. Soft., 14(1):1-17, March 1988.

[5] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithm.
Society for Industrial and Applied Mathematics, 1996.

[6] M. Iglewski, J. Madey and D.L. Parnas. Documentation Paradigms.
CRL Report 270, Mcmaster University, CRL, TRIO (Telecommunica-
tions Research Institute of Ontario), July 1993.

[7] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra
Subprograms for Fortran usage. ACM Trans. Math. Soft., 5:308-323,
1979.

[8] Webb Miller. The Engineering of Numerical Software. Prentice-Hall,
NJ, 1984.

[9] David Lorge Parnas. Tabular representation of relations. CRL Report
260, Mcmaster University, TRIO (Telecommunications Research Insti-
tute of Ontario), Oct. 1992.

[10] D.L. Parnas and J. Madey. Functional documentation for computer
systems enginerring (version 2). CRL Report 237, Mcmaster University,
TRIO (Telecommunications Research Institute of Ontario), Sept. 1991

[11] J.H. Wilkinson. Modern Error Analysis. SIAM Review. 13:4, 548–568.

