◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lattice Basis Reduction Part 1: Concepts

Sanzheng Qiao

Department of Computing and Software McMaster University, Canada qiao@mcmaster.ca www.cas.mcmaster.ca/~qiao

October 25, 2011, revised February 2012

Joint work with W. Zhang and Y. Wei, Fudan University

Outline

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Outline

3 Notions of Reduced Bases

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣ぬ⊙

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

An optimization problem

Integer least squares (ILS) problem

$$\min_{x\in Z^n} \|Ax-b\|_2^2$$

A: real, full column rank *b*: real

Example

$$A = \left[egin{array}{cc} -1 & 4 \\ -2 & 3 \end{array}
ight], \qquad b = \left[egin{array}{cc} -0.4 \\ 4 \end{array}
ight]$$

Example

◆ロト ◆御 ト ◆ ヨ ト ◆ ヨ ト ・ ヨ ・ の ९ ()

Solve for the real solution, then round it to its nearest integer.

$$A^{-1}b = \begin{bmatrix} -3.44\\-0.96 \end{bmatrix} \rightarrow \begin{bmatrix} -3\\-1 \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solve for the real solution, then round it to its nearest integer.

$$A^{-1}b = \begin{bmatrix} -3.44\\ -0.96 \end{bmatrix} \rightarrow \begin{bmatrix} -3\\ -1 \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solve for the real solution, then round it to its nearest integer.

$$A^{-1}b = \begin{bmatrix} -3.44\\ -0.96 \end{bmatrix} \rightarrow \begin{bmatrix} -3\\ -1 \end{bmatrix}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Is this the ILS solution?

Lattices and Bases

A brute force approach:

◆□ > ◆□ > ◆豆 > ◆豆 > → 豆 → ⊙ < ⊙

Lattices and Bases

A brute force approach:

The set

$$L = \{Az \mid z \in Z^n\}$$

is call the lattice generated by A.

Basis: Formed by the columns of A (generator matrix).

Lattices and bases

For a given lattice, its basis is not unique.

$$B = \left[\begin{array}{rrr} -1 & 2 \\ -2 & -1 \end{array} \right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Lattices and bases

Two bases are related by AZ = B:

$$\begin{bmatrix} -1 & 4 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ -2 & -1 \end{bmatrix}$$

Z: Unimodular matrix, a nonsingular integer matrix whose inverse is also integer. (An integer matrix whose determinant is ± 1 .)

Examples

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Lattices and bases

Two bases are related by AZ = B:

$$\begin{bmatrix} -1 & 4 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ -2 & -1 \end{bmatrix}$$

Z: Unimodular matrix, a nonsingular integer matrix whose inverse is also integer. (An integer matrix whose determinant is ± 1 .)

For any two generator matrices *A* and *B* of the same lattice, $|\det(A)| = |\det(B)|$, called the determinant (volume) of the lattice.

Naive approach revisited

$$B^{-1}b = \left[\begin{array}{c} -1.52\\ -0.96 \end{array} \right] \rightarrow \left[\begin{array}{c} -2\\ -1 \end{array} \right]$$

Examples

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Naive approach revisited

$$B^{-1}b = \left[egin{array}{c} -1.52 \\ -0.96 \end{array}
ight]
ightarrow \left[egin{array}{c} -2 \\ -1 \end{array}
ight]$$

A closer (closest) lattice point (1.077 vs 1.166).

Naive approach revisited

$$B^{-1}b = \left[egin{array}{c} -1.52 \\ -0.96 \end{array}
ight]
ightarrow \left[egin{array}{c} -2 \\ -1 \end{array}
ight]$$

A closer (closest) lattice point (1.077 vs 1.166).

Finding a closest vector (CVP) is an NP problem.

Lattice basis reduction

Lattice basis reduction problem:

Given a basis for a lattice, find a basis consisting of short vectors.

Lattice basis reduction algorithm:

Given a basis matrix *A*, compute a unimodular matrix *Z* that transforms the basis into a new basis matrix B = AZ whose column vectors (basis vectors) are short.

Outline

3 Notions of Reduced Bases

▲口▶▲御▶▲臣▶▲臣▶ 臣 のQ@

Wireless communication

Source signal (code) s, integer vector.

Communication channel is represented by *H*, real/complex matrix.

Noise is represented by v, real vector.

The received signal

$$y = Hs + v$$

Given H and y, find s (decoding) using the naive approach called zero forcing (fast).

Wireless communication

Source signal (code) s, integer vector.

Communication channel is represented by *H*, real/complex matrix.

Noise is represented by v, real vector.

The received signal

$$y = Hs + v$$

Given H and y, find s (decoding) using the naive approach called zero forcing (fast).

When *H* is reduced, we have better chance of recovering *s* (lattice aided decoding).

Lattice based cryptosystems:

GGH (Goldreich, Goldwasser, Halevi) public-key cryptosystem.

Private key: A reduced basis matrix, e.g., diagonal, A.

Public key: An ill-conditioned basis matrix B = AZ.

Lattice based cryptosystems:

GGH (Goldreich, Goldwasser, Halevi) public-key cryptosystem.

Private key: A reduced basis matrix, e.g., diagonal, A.

Public key: An ill-conditioned basis matrix B = AZ.

Encrypt: e = Bc + v, c clear text, v noise.

Decrypt: $A^{-1}e \rightarrow Zc$. ($B^{-1}e$ gives wrong result.)

Lattice based cryptosystems:

GGH (Goldreich, Goldwasser, Halevi) public-key cryptosystem.

Private key: A reduced basis matrix, e.g., diagonal, A.

Public key: An ill-conditioned basis matrix B = AZ.

Encrypt: e = Bc + v, c clear text, v noise.

Decrypt: $A^{-1}e \rightarrow Zc$. ($B^{-1}e$ gives wrong result.)

 $(B^{-1}e$ gives wrong result.)

Lattice basis reduction is an NP problem.

Outline

4 Examples

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ⊙へ⊙

Matrix representation

Given a generator matrix A, compute the QRZ decomposition

$$A = QRZ^{-1}$$

- Q: orthonormal columns, preserving vector length
- R: upper triangular
- Z: unimodular

Matrix representation

Given a generator matrix A, compute the QRZ decomposition

$$A = QRZ^{-1}$$

- Q: orthonormal columns, preserving vector length
- R: upper triangular
- Z: unimodular

Thus QR is the QR decomposition of AZ, reduced (the columns of R or AZ are short).

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶

Hermite reduction

Hermite-reduced, also called size-reduced. Hermite, 1850.

Hermite-reduced

A lattice basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is called size-reduced if its QR decomposition satisfies

 $|r_{i,i}| \ge 2|r_{i,j}|$, for all $1 \le i < j \le n$,

Hermite reduction

Hermite-reduced, also called size-reduced. Hermite, 1850.

Hermite-reduced

A lattice basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is called size-reduced if its QR decomposition satisfies

 $|r_{i,i}| \ge 2|r_{i,j}|$, for all $1 \le i < j \le n$,

The off-diagonal of R is small.

HKZ reduction

HKZ-reduced, strengthened Hermite-reduced. Korkine and Zolotarev, 1873.

HKZ-reduced

A lattice basis { $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ } is called HKZ-reduced if it is size-reduced and for each trailing $(n - i + 1) \times (n - i + 1)$, $1 \le i < n$, submatrix of *R* in the QR decomposition, its first column is a shortest nonzero vector in the lattice generated by the submatrix.

HKZ reduction

HKZ-reduced

LLL reduction

LLL-reduced Lenstra, Lenstra, and Lovász, 1982

LLL-reduced

A lattice basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is called LLL-reduced if it is size-reduced and *R* in the QR decomposition satisfies

$$r_{i+1,i+1}^2 + r_{i,i+1}^2 \ge \omega r_{i,i}^2$$

r

HKZ and LLL

HKZ-reduced and LLL-reduced

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

HKZ and LLL

HKZ-reduced and LLL-reduced

$$r_{i,i}$$
 $r_{i,i+1}$... $r_{i,n}$
 $r_{i+1,i+1}$... $r_{i+1,n}$
 \vdots
 $r_{n,n}$

- LLL-reduced is weaker than HKZ-reduced, HKZ-reduced implies LLL-reduced for any ω: 0; .25 < ω < 1.0
- Easier to compute (fast).
- Practically, it produces reasonably short bases.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Minkowski minima

Minkowski, 1891 Short vectors

Minkowski minima

We say that λ_k , $1 \le k \le n$, is the *k*-th successive minimum wrt a lattice if λ_k is the lower bound of the radius λ of the sphere $||B\mathbf{z}||_2 \le \lambda$ that contains *k* linearly independent lattice points.

Minkowski minima

Minkowski, 1891 Short vectors

Minkowski minima

We say that λ_k , $1 \le k \le n$, is the *k*-th successive minimum wrt a lattice if λ_k is the lower bound of the radius λ of the sphere $||B\mathbf{z}||_2 \le \lambda$ that contains *k* linearly independent lattice points.

 λ_1 : the length of a shortest nonzero lattice vector \mathbf{b}_1

Minkowski minima

Minkowski, 1891 Short vectors

Minkowski minima

We say that λ_k , $1 \le k \le n$, is the *k*-th successive minimum wrt a lattice if λ_k is the lower bound of the radius λ of the sphere $||B\mathbf{z}||_2 \le \lambda$ that contains *k* linearly independent lattice points.

 λ_1 : the length of a shortest nonzero lattice vector \boldsymbol{b}_1

Is there always a basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ so that $\|\mathbf{b}_i\| = \lambda_i$ simultaneously?

・ロト・日本・山田・山田・山口・

•

Minkowski minima

No. Consider a lattice formed by columns of

$$\left[\begin{array}{cccccc} 2 & 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right]$$

Minkowski minima $\lambda_1 = ... = \lambda_5 = 2$.

.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Minkowski minima

No. Consider a lattice formed by columns of

[2	2	0	0	0	1	٦
()	2	0	0	1	
()	0	2	0	1	
()	0	0	2	1	
[()	0	0	0	1	

Minkowski minima $\lambda_1 = ... = \lambda_5 = 2$.

The columns of $2I_5$ do not form a basis for the lattice (determinants do not equal).

・ロト・日本・日本・日本・日本

Minkowski reduction

Minkowski-reduced

A lattice basis { $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ } is called Minkowski-reduced if for each $\mathbf{b}_k, k = 1, \dots, n$, $\|\mathbf{b}_k\|_2$ is the lower bound of the radius ρ of the sphere $||B\mathbf{z}||_2 \le \rho$ that contains *k* lattice vectors that can be extended to a basis for the lattice.

Minkowski reduction

Minkowski-reduced

A lattice basis { $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ } is called Minkowski-reduced if for each $\mathbf{b}_k, k = 1, \dots, n$, $\|\mathbf{b}_k\|_2$ is the lower bound of the radius ρ of the sphere $||B\mathbf{z}||_2 \le \rho$ that contains *k* lattice vectors that can be extended to a basis for the lattice.

Properties

- b_i is a shortest nonzero vector in the sublattice generated by {b_i, b_{i+1},..., b_n};
- $\lambda_1 = ||\mathbf{b}_1||_2 \le ||\mathbf{b}_2||_2 \le \cdots \le ||\mathbf{b}_n||_2;$
- $||\mathbf{b}_i||_2 \ge \lambda_i$ for $1 \le i \le n$.

Minkowski reduction

Another (weaker or equivalent?) notion

Minkowski-reduced

A lattice basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is called Minkowski-reduced if for each \mathbf{b}_i , $i = 1, 2, \dots, n$, its length

$$||\mathbf{b}_i||_2 = \min(||\hat{\mathbf{b}}_i||_2, ||\hat{\mathbf{b}}_{i+1}||_2, \dots, ||\hat{\mathbf{b}}_n||_2)$$

over all sets $\{\hat{\mathbf{b}}_i, \hat{\mathbf{b}}_{i+1}, \dots, \hat{\mathbf{b}}_n\}$ of lattice points such that $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_{i-1}, \hat{\mathbf{b}}_i, \hat{\mathbf{b}}_{i+1}, \dots, \hat{\mathbf{b}}_n\}$ form a basis for the lattice.

Minkowski reduction

Another (weaker or equivalent?) notion

Minkowski-reduced

A lattice basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is called Minkowski-reduced if for each \mathbf{b}_i , $i = 1, 2, \dots, n$, its length

$$||\mathbf{b}_i||_2 = \min(||\hat{\mathbf{b}}_i||_2, ||\hat{\mathbf{b}}_{i+1}||_2, \dots, ||\hat{\mathbf{b}}_n||_2)$$

over all sets $\{\hat{\mathbf{b}}_i, \hat{\mathbf{b}}_{i+1}, \dots, \hat{\mathbf{b}}_n\}$ of lattice points such that $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_{i-1}, \hat{\mathbf{b}}_i, \hat{\mathbf{b}}_{i+1}, \dots, \hat{\mathbf{b}}_n\}$ form a basis for the lattice.

In words, each \mathbf{b}_i , for i = 1, 2, ..., n - 1, is a shortest nonzero lattice vector such that $\{\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_i\}$ can be extended to a basis for the lattice.

Outline

3 Notions of Reduced Bases

▲口▶▲御▶▲臣▶▲臣▶ 臣 のQ@

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Examples

$$\left[\begin{array}{rrrr} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 1 \end{array}\right]$$

HKZ, thus LLL, reduced, but not Minkowski-reduced.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Examples

$$\left[\begin{array}{rrrr} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 1 \end{array}\right]$$

HKZ, thus LLL, reduced, but not Minkowski-reduced.

$$B = \begin{bmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Minkowski-reduced, also HKZ-reduced.

Examples

Minkowski-reduced, but not LLL-reduced for $\omega > 0.5$, thus not HKZ-reduced.

Preview

Algorithms for computing reduced bases.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Thank you!

Thank you!

Questions?

▲口▶▲御▶▲臣▶▲臣▶ 臣 のQ@