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Hermite reduction (size reduction)

Hermite-reduced

A lattice basis {b1, b2, . . . , bn} is called size-reduced if its QR
decomposition satisfies

|ri ,i | ≥ 2|ri ,j |, for all 1 ≤ i < j ≤ n,
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Hermite reduction (size reduction)

Hermite-reduced

A lattice basis {b1, b2, . . . , bn} is called size-reduced if its QR
decomposition satisfies

|ri ,i | ≥ 2|ri ,j |, for all 1 ≤ i < j ≤ n,

Procedure Reduce (i , j)
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Gauss reduction

A unimodular transformation
[

1 −µ
0 1

]

or
[

1 0
−µ 1

]

Also called

Integer Gauss transformation
Integer elementary matrix
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LLL reduction

LLL-reduced

A lattice basis {b1, b2, . . . , bn} is called LLL-reduced if it is
size-reduced and R in the QR decomposition satisfies

r2
i+1,i+1 + r2

i ,i+1 ≥ ω r2
i ,i
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LLL reduction

LLL-reduced

A lattice basis {b1, b2, . . . , bn} is called LLL-reduced if it is
size-reduced and R in the QR decomposition satisfies

r2
i+1,i+1 + r2

i ,i+1 ≥ ω r2
i ,i

Procedure SwapRestore (i)

Find a Givens plane rotation G:

G
[

ri−1,i−1 ri−1,i

0 ri ,i

] [

0 1
1 0

]

=

[

r̂i−1,i−1 r̂i−1,i

0 r̂i ,i

]

.

Unimodular transformation: Permutation
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LLL algorithm

k = 2;
while k <= n {

if |r(k-1,k) / r(k-1,k-1)| > 1/2

if r(k,k)ˆ2 + r(k-1,k)ˆ2 < w * r(k-1,k-1)ˆ2 {

} else {

}
}
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LLL algorithm

k = 2;
while k <= n {

if |r(k-1,k) / r(k-1,k-1)| > 1/2
Reduce(k-1,k);

if r(k,k)ˆ2 + r(k-1,k)ˆ2 < w * r(k-1,k-1)ˆ2 {

} else {

}
}
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LLL algorithm

k = 2;
while k <= n {

if |r(k-1,k) / r(k-1,k-1)| > 1/2
Reduce(k-1,k);

if r(k,k)ˆ2 + r(k-1,k)ˆ2 < w * r(k-1,k-1)ˆ2 {
SwapRestore(k);
k = max(k-1, 2);

} else {

}
}
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LLL algorithm

k = 2;
while k <= n {

if |r(k-1,k) / r(k-1,k-1)| > 1/2
Reduce(k-1,k);

if r(k,k)ˆ2 + r(k-1,k)ˆ2 < w * r(k-1,k-1)ˆ2 {
SwapRestore(k);
k = max(k-1, 2);

} else {
for i = k-2 downto 1

if |r(i,k) / r(i,i)| > 1/2
Reduce(i,k);

k = k+1;
}

}
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LLL algorithm

k = 2;
while k <= n {

if |r(k-1,k) / r(k-1,k-1)| > 1/2
Reduce(k-1,k);

if r(k,k)ˆ2 + r(k-1,k)ˆ2 < w * r(k-1,k-1)ˆ2 {
SwapRestore(k);
k = max(k-1, 2);

} else {
for i = k-2 downto 1

if |r(i,k) / r(i,i)| > 1/2
Reduce(i,k);

k = k+1;
}

}

Redundant size reductions.
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An improvement: Delayed size reduction

k = 2;
while k <= n

g = round(r(k-1,k) / r(k-1,k-1));
if r(k,k)ˆ2 + (r(k-1,k) - g * r(k-1,k-1))ˆ2 <

w* r(k-1,k-1)ˆ2
ReduceSwapRestore(k);
k = max(k-1, 2);

else
k = k + 1;

for k = 2 to n
for i = k-1 downto 1

if |r(i,k) / r(i,i)| > 1/2
Reduce(i,k);
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An improvement: Delayed size reduction

k = 2;
while k <= n

g = round(r(k-1,k) / r(k-1,k-1));
if r(k,k)ˆ2 + (r(k-1,k) - g * r(k-1,k-1))ˆ2 <

w* r(k-1,k-1)ˆ2
ReduceSwapRestore(k);
k = max(k-1, 2);

else
k = k + 1;

for k = 2 to n
for i = k-1 downto 1

if |r(i,k) / r(i,i)| > 1/2
Reduce(i,k);

Produces identical results at 50% cost.
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HKZ reduction

HKZ-reduced

A lattice basis {b1, b2, . . . , bn} is called HKZ-reduced if it is
size-reduced and for each trailing (n − i + 1) × (n − i + 1),
1 ≤ i < n, submatrix of R in the QR decomposition, its first
column is a shortest nonzero vector in the lattice generated by
the submatrix.
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HKZ reduction

HKZ-reduced

A lattice basis {b1, b2, . . . , bn} is called HKZ-reduced if it is
size-reduced and for each trailing (n − i + 1) × (n − i + 1),
1 ≤ i < n, submatrix of R in the QR decomposition, its first
column is a shortest nonzero vector in the lattice generated by
the submatrix.

Two problems

Shortest vector problem (SVP)

Expansion to a basis
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SVP

min
z

‖Bz‖2
2
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SVP

min
z

‖Bz‖2
2

Sphere decoding

Determine a search sphere

‖Bz‖2
2 ≤ ρ2
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SVP

min
z

‖Bz‖2
2

Sphere decoding

Determine a search sphere

‖Bz‖2
2 ≤ ρ2

A simple choice of ρ: the length of the first (or shortest) column
of B.
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Example

Rz =
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ρ = 4
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Example

Rz =





4 1 5
0 4 4
0 0 3









z1

z2

z3





ρ = 4

A necessary condition for z3: |3z3| ≤ 4.

Possible values of z3: 0, −1, 1
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Example

For each possible values of z3, say z3 = 0,

Rz =





4 1 5
0 4 4
0 0 3









z1

z2

z3



 =





4 1
0 4
0 0





[

z1

z2

]

+ 0





5
4
3





The problem size is reduced.
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Example

For each possible values of z3, say z3 = 0,

Rz =





4 1 5
0 4 4
0 0 3









z1

z2

z3



 =





4 1
0 4
0 0





[

z1

z2

]

+ 0





5
4
3





The problem size is reduced.

The necessary condition for z2: |4z2| ≤ 4

Possible values of z2: 0, −1, 1
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Example

The search tree

0 −1 1 z

z

z

−1 10 0 1−1

−1 1 1

3

2

1

The solution

Rz =





4 1 5
0 4 4
0 0 3









1
1

−1



 =





0
0
−3
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Expanding to a basis

Problem:
Transform the basis matrix

A =





4 1 5
0 4 4
0 0 3





into a new basis matrix whose first column is the shortest vector

Az =





0
0
−3
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Expanding to a basis

Problem:
Transform the basis matrix

A =





4 1 5
0 4 4
0 0 3





into a new basis matrix whose first column is the shortest vector

Az =





0
0
−3





That is, find a unimodular matrix Z : Az = AZe1 or

z = Ze1, Z−1z = e1

Unimodular transformation that introduces zeros into an integer
vector.
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A plane unimodular transformation

A unimodular transformation (Luk, Zhang, and Q, 2010).

gcd(p, q) = ±d , ap + bq = ±d .

Form the unimodular matrix
[

a b
−q/d p/d

] [

p
q

]

=

[

d
0

]
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A plane unimodular transformation

A unimodular transformation (Luk, Zhang, and Q, 2010).

gcd(p, q) = ±d , ap + bq = ±d .

Form the unimodular matrix
[

a b
−q/d p/d

] [

p
q

]

=

[

d
0

]

Its inverse
[

p/d −b
q/d a

]
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Example





1 0 0
0 1 0
0 1 1









1
1

−1



 =





1
1
0









4 1 5
0 4 4
0 0 3









1 0 0
0 1 0
0 −1 1



 =





4 −4 5
0 0 4
0 −3 3
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Example





1 0 0
−1 1 0

0 0 1









1
1
0



 =





1
0
0









4 −4 5
0 0 4
0 −3 3









1 0 0
1 1 0
0 0 1



 =





0 −4 5
0 0 4

−3 −3 3
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Improving Kannan’s algorithm

Kannan, 1987

Expansion method

In the k th, k = 1, ..., n, recursion, solve a k-dim system (O(k3)).

Total O(n4)
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Improving Kannan’s algorithm

Kannan, 1987

Expansion method

In the k th, k = 1, ..., n, recursion, solve a k-dim system (O(k3)).

Total O(n4)

Determine whether a set of vectors are linearly dependent.
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Improving Kannan’s algorithm

Kannan, 1987

Expansion method

In the k th, k = 1, ..., n, recursion, solve a k-dim system (O(k3)).

Total O(n4)

Determine whether a set of vectors are linearly dependent.

Our method

Efficient, O(n2)

Accurate, unimodular (integer) transformations.
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Properties

Efficient.

Exact, integer arithmetic.

Include permutation and identity as special cases.

Can triangularize an integer matrix.

Any unimodular can be decomposed into a product of this
plan unimodular and integer Gauss transformations.
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Application

Cryptography

Find a large vector

v =





997
1234

56789



 , gcd(vi) = 1
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Application

Cryptography

Find a large vector

v =





997
1234

56789



 , gcd(vi) = 1

Determine a unimodular matrix

Z−1v =





997 −1 0
1234 0 −543
6789 0 −24989





−1

v =





1
0
0





cond(Z ) = 1.55 × 1012
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Application

Cryptography

Find a large vector

v =





997
1234

56789



 , gcd(vi) = 1

Determine a unimodular matrix

Z−1v =





997 −1 0
1234 0 −543
6789 0 −24989





−1

v =





1
0
0





cond(Z ) = 1.55 × 1012

Choose a diagonal A as a private key

B = AZ (ill-conditioned) as public key
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Minkowski reduction

Minkowski-reduced

A lattice basis {b1, b2, . . . , bn} is called Minkowski-reduced if
for each bi , i = 1, 2, . . . , n, its length

||bi ||2 = min(||b̂i ||2, ||b̂i+1||2, . . . , ||b̂n||2)

over all sets {b̂i , b̂i+1, . . . , b̂n} of lattice points such that
{b1, b2, . . . , bi−1, b̂i , b̂i+1, . . . , b̂n} form a basis for the lattice.
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Existing Minkowski reduction algorithms

Lagrange, 1773, dimension two

Semaev, 2001, dimension three

Nguyen and Stehleé, 2009, dimension four

Afflerbach and Grothe, 1985, up to dimension seven

Helfrish, 1985, theoretical value, very expensive
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Existing Minkowski reduction algorithms

Lagrange, 1773, dimension two

Semaev, 2001, dimension three

Nguyen and Stehleé, 2009, dimension four

Afflerbach and Grothe, 1985, up to dimension seven

Helfrish, 1985, theoretical value, very expensive

Zhang, Q, Wei, 2011
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Problem

For p = 1, 2, ..., n, find bp: a shortest vector such that
{b1, ..., bp} can be extended to a basis for the lattice.
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Problem

For p = 1, 2, ..., n, find bp: a shortest vector such that
{b1, ..., bp} can be extended to a basis for the lattice.

Algorithm:

for p = 1...n
find a shortest v = Bz such that

{b1, ..., bp−1, v} is expandable to a basis;
set bp = v and expand {b1, ..., bp} to a basis;

end
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Minkowski reduction algorithm

A proposition:

Let B = [b1, ..., bn] be a generator matrix for a lattice L and a
lattice vector v = Bz, then {b1, ..., bp−1, v} is expandable to a
basis for L if and only if gcd(zp, ..., zn) = ±1.
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Minkowski reduction algorithm

A proposition:

Let B = [b1, ..., bn] be a generator matrix for a lattice L and a
lattice vector v = Bz, then {b1, ..., bp−1, v} is expandable to a
basis for L if and only if gcd(zp, ..., zn) = ±1.

Constrained minimization problem:

min
z

‖Bz‖2 subject to gcd(zp, ..., zn) = ±1
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Minkowski reduction algorithm

A proposition:

Let B = [b1, ..., bn] be a generator matrix for a lattice L and a
lattice vector v = Bz, then {b1, ..., bp−1, v} is expandable to a
basis for L if and only if gcd(zp, ..., zn) = ±1.

Constrained minimization problem:

min
z

‖Bz‖2 subject to gcd(zp, ..., zn) = ±1

Modified sphere decoding:

While searching for short lattice vectors, enforce the condition
gcd(zp, ..., zn) = ±1.
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Measuring orthogonality

Lattice reduction is to transform a lattice basis into another that
becomes “more orthogonal”.
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Lattice reduction is to transform a lattice basis into another that
becomes “more orthogonal”.

How do we measure the degree of orthogonality of a basis?
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becomes “more orthogonal”.

How do we measure the degree of orthogonality of a basis?

Usual choice: condition number of matrix.
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Measuring orthogonality

Lattice reduction is to transform a lattice basis into another that
becomes “more orthogonal”.

How do we measure the degree of orthogonality of a basis?

Usual choice: condition number of matrix.

Consider the matrix
[

1 0
0 10k

]

.
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Measuring orthogonality

Lattice reduction is to transform a lattice basis into another that
becomes “more orthogonal”.

How do we measure the degree of orthogonality of a basis?

Usual choice: condition number of matrix.

Consider the matrix
[

1 0
0 10k

]

.

Its condition number is 10k , but the columns are orthogonal.
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Measuring orthogonality

Lattice reduction is to transform a lattice basis into another that
becomes “more orthogonal”.

How do we measure the degree of orthogonality of a basis?

Usual choice: condition number of matrix.

Consider the matrix
[

1 0
0 10k

]

.

Its condition number is 10k , but the columns are orthogonal.

Condition # ignores intermediate singular values of n×n matrix.
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An interpretation









r1,1 r1,2 r1,3 r1,4

0 r2,2 r2,3 r2,4

0 0 r3,3 r3,4

0 0 0 r4,4









sin θi =
|ri ,i |

‖r:,i‖2
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Measurement

In particular, the geometric mean σ:

σn =

n
∏

i=1

sin θi =

n
∏

i=1

|ri ,i |

‖r:,i‖2
=

d(L)
∏n

i=1 ‖bi‖2

Hadamard’s inequality

det(B) ≤

n
∏

i=1

‖bi‖2

The equality holds if and only if bi are orthogonal.

Also called Hadamard ratio or orthogonality defect.
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Measurement

Note that 0 ≤ σ ≤ 1, σ = 1 for any diagonal matrix, and
σ = 0 for any singular matrix.
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Measurement

Note that 0 ≤ σ ≤ 1, σ = 1 for any diagonal matrix, and
σ = 0 for any singular matrix.

Since Vn =
∏n

i=1 |ri ,i | = d(L) is a constant for a given L,
we can improve σ by reducing ‖bi‖2.
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Measurement

Note that 0 ≤ σ ≤ 1, σ = 1 for any diagonal matrix, and
σ = 0 for any singular matrix.

Since Vn =
∏n

i=1 |ri ,i | = d(L) is a constant for a given L,
we can improve σ by reducing ‖bi‖2.

Possible measurements other than the geometric mean?
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Thank you!
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Thank you!

Questions?
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