
CS760, S. Qiao Part 4 Page 1

Performance

1 Introduction

Performance is an important aspect of software quality. To achieve high per-
formance, a program must fully utilize the processor architecture. Advanced-
architecture includes pipelining, superscalar, and deep memory hierarchy. In
this note, we use a simple example, matrix-matrix multiplication, to illus-
trate some major issues in developing high performance numerical software.

We note that performance can be improved even before a program is written.
The following example is due to Hamming [4]. Evaluate the infinite sum

Φ(x) =
∞
∑

k=1

1

k(k + x)
for x = 0.1 : 0.1 : 0.9,

with an error less than tol = 0.5 × 10−4. If we sum the series by brute
force, we need to caculate at least 20, 000 terms for each value of x and
requires more than two million floating-point operations for all nine values
of x. Using

1

k(k + 1)
=

1

k
−

1

k + 1

we can prove that Φ(1) = 1. Then we can express

Φ1(x) = Φ(x)− Φ(1) = (1− x)
∞
∑

k=1

1

k(k + 1)(k + x)
,

which converges faster. Repeat this process, we can prove that Φ1(2) = 1/4
and express

Φ2(x) = Φ1(x)− (1− x)Φ1(2) = (1− x)(2− x)
∞
∑

k=1

1

k(k + 1)(k + 2)(k + x)
.

The series

Φ(x) = 1 + (1− x)

(

1

4
+ (2− x)

∞
∑

k=1

1

k(k + 1)(k + 2)(k + x)

)

converges even faster. For the same tolerance, it calculates at most 27
terms for each values of x and requires less than two thousand floating-point
operations for all nine values of x.

CS760, S. Qiao Part 4 Page 2

In this note, we consider the impact of computer architecture on perfor-
mance.

The illustrative problem is the computation of AB + C and store the result
in C, where A is m-by-k, B is k-by-n, and C is m-by-n. All C programs in
the following sections were run on platform of Sun Sparcstation 5, 170MHZ,
Solaris 2.1, Sun Workshop Compiler C4.2 using double precision. We chose
m = 1000, LDA = 1000 (leading dimension of A), k = 1000, LDB = 1000,
and n = LDC = 1000.

We used the following template (C in UNIX) for timing a function.

Program 1 (Timing) This program records the time cost of a function
using UNIX system call getrusage().

long isec, iusec, esec, eusec;

double iseconds, eseconds;

struct rusage rustart, ruend;

/* get start time of seconds and microseconds*/

getrusage(RUSAGE_SELF, &rustart);

/*********************************/

/* call the function to be timed */

/*********************************/

/* get end time of seconds and microseconds*/

getrusage(RUSAGE_SELF, &ruend);

/*convert the start time to seconds */

isec = rustart.ru_utime.tv_sec; /* seconds */

iusec = rustart.ru_utime.tv_usec; /* microseconds */

iseconds = (double) (isec + ((float)iusec/1000000));

/*convert the ending time to seconds */

esec = ruend.ru_utime.tv_sec; /* seconds */

eusec = ruend.ru_utime.tv_usec; /* microseconds */

eseconds = (double) (esec + ((float)eusec/1000000));

/* time cost (in seconds) is eseconds-iseconds */

The performance measurement used here is MFLOPS (Million FLoating-

CS760, S. Qiao Part 4 Page 3

point Operations Per Second), where the floating-point operation is either
addition or multiplication. Thus, if A is m-by-k, B is k-by-n, and C is
m-by-n, then AB + C requires 2mnk floating-point operations.

First we present a straightforward implementation.

Program 2 (Naive Method) This program computes AB + C where A
is m-by-k with leading dimension LDA, B is k-by-n with leading dimension
LDB, and C is m-by-n with leading dimension LDC, and writes the result
in C.

naive(int m, int n, int k, double* A, int LDA, double * B,

int LDB, double *C, int LDC){

double * Acp,* Arp,

* Bcp,* Brp,

* Ccp,* Crp;

for(Crp=C,Arp=A;

Crp<C+m*LDC,Arp<A+m*LDA;

Crp+=LDC,Arp+=LDA)

for(Ccp=Crp,Bcp=B;

Ccp<Crp+n,Bcp<B+n;

Ccp++,Bcp++)

for(Acp=Arp,Brp=Bcp;

Acp<Arp+k,Brp<Bcp+k*LDB;

Acp++,Brp+=LDB)

*Ccp=*Ccp+*Acp**Brp;

}

Actually this program is a pointer version of following program when LDA =
k and LDB = LDC = n.

for(i=0;i<m;i++)

for(j=0;j<n;j++)

for(l=0;l<k;l++)

C[i*n+j] = A[i*k+l]*B[l*n+j] + C[i*n+j];

By referencing entries by pointers instead of indices, the index calculation
is eliminated. Consequently, the instruction count is reduced.

CS760, S. Qiao Part 4 Page 4

2 Fast Memory (Block Version)

Cache memories are high-speed buffers inserted between the processors and
main memory to capture those portions of the contents of main memory
currently in use. If the data required by an instruction is not in the cache,
the block containing it is obtained from the slower main memory and put
in the cache. Since cache memories are typically five to ten times faster
than main memory, they can reduce the effective memory access time if a
program is carefully designed and implemented.

To take advantage of the fast memory, we partition the matrices A, B, and C
into square blocks. When computing AB + C, three blocks, one from each
matrix, should be kept in the fast memory. Thus the block size is about
√

S/3 where S is the size of the fast memory. See [3] for a full analysis.

The following program shows the block version.

Program 3 (Block Naive Version) This program computes C ← AB +
C using block size blksize.

block(int m,int n,int k, int blksize,

double *A,double *B,double *C)

for(Crp=C,Arp=A;

Crp<C+m*n,Arp<A+m*k;

Crp+=blksize*n,Arp+=blksize*k)

for(Ccp=Crp,Bcp=B;

Ccp<Crp+n,Bcp<B+n;

Ccp+=blksize,Bcp+=blksize)

for(Acp=Arp,Brp=Bcp;

Acp<Arp+k,Brp<Bcp+n*k;

Acp+=blksize,Brp+=blksize*n) {

bm=bn=bk=blksize;

if(Arp==A+k*blksize*(m/blksize))

bm = m % blksize; /*last row block in A*/

if(Acp==Arp+blksize*(k/blksize))

CS760, S. Qiao Part 4 Page 5

bk = k % blksize; /*last col. block in A*/

if(Bcp==B+blksize*(n/blksize))

bn = n % blksize; /*last col. block in B*/

naive(bm,bn,bk,Acp,k,Brp,n,Ccp,n);

}

In the above program, when the naive method Program 2 is used for multi-
plying two blocks.

In Sparc, the cache size is 16k for data and instruction. So, the block size
is
√

16000/(3 sizeof(double)) ≈ 26. After some trial, we found that the
program achieved the top speed of 4.3 MFLOPS at block size of 64. The
larger optimal block size is probably due to a second level cache, although
it is not described in the system specification.

3 Memory Banks (Block Stride-One Version)

In most systems the bandwidth from a single memory module is not suf-
ficient to match the processor speed. Increasing the computational power
without a corresponding increase in the memory bandwidth of data to and
from memory can create a serious bottleneck. One technique used to address
this problem is called banked memory. Main memory is usually divided into
banks. In general, the smaller the memory size, the fewer the number of
banks. With banked memory, several modules can be referenced simultane-
ously to yield a higher effective rate of access. Specifically, the modules are
arranged so that n sequential memory addresses fall in n distinct memory
modules. By keeping all n modules busy accessing data, effective band-
widths up to n times that of a single module are possible. Associated with
memory banks is the memory bank cycle time, the number of clock cycles
a given bank must wait before the next access can be made to data in the
bank. After an access and during the memory bank cycle, references to data
in the bank are suspended until the bank cycle time has elapsed. This is
called memory bank conflict. Memory bank conflicts can not occur when
processing sequential components of a one-dimensional array or, if row ma-
jor ordering as in C, a row of a two-dimensional array are being processed.
This technique is called stride-one. To use this technique, we changed the
naive method for multiplying blocks in Program 2 into row-ordering. Thus,
memory is accessed sequentially most of the time. By replacing the function

CS760, S. Qiao Part 4 Page 6

naive with the following stride-one version in the block version Program 3,
the performance is improved to 5.4 MFLOPS.

Program 4 (Block Stride-One Version) This program computes C ←
AB + C using row ordering (stride-one).

stride_one(int m,int n,int k,double *A,int LDA,

double *B,int LDB,double *C,int LDC)

for(Crp=C,Arp=A; Crp<C+m*LDC,Arp<A+m*LDA;

Crp+=LDC,Arp+=LDA)

for(Acp=Arp,Brp=B; Acp<Arp+k,Brp<B+k*LDB;

Acp++,Brp+=LDB)

for(Ccp=Crp,Bcp=Brp; Ccp<Crp+n,Bcp<Brp+n;

Ccp++,Bcp++)

*Ccp = (*Ccp) + (*Acp)*(*Bcp);

Basically, the above program performs:

for i=0:m-1

for l=0:k-1

C[i][0:n-1] = C[i][0:n-1] + A[i][l]*B[l][0:n-1];

Thus the entries of the matrices are accessed in rows (sequential memory
locations).

4 Reducing Control Hazards (Final Version)

The concept of pipelining is similar to that of assembly line process in an
industrial plant. Pipelining is achieved by dividing a task into a sequence
of smaller tasks, each of which is executed on a piece of hardware that
operates concurrently with the other stages of the pipeline. Successive tasks
are streamed into the pipe and get executed in an overlapped fashion with
the other subtasks. Each of the steps is performed during a clock cycle of the
machine. That is each suboperation is started at the beginning of the cycle
and completed at the end of the cycle. There are situations in pipelining
when the next instruction can not execute in the following clock cycle. These
event are called hazards. One of them is called control hazards which arising
from the need to make a decision based on the results of one instruction while
others are executing. The equivalent decision task in computer is the branch
instruction. If the computer were to stall on a branch, then it would have to

CS760, S. Qiao Part 4 Page 7

pause before continuing the pipeline. In Program 4, each loop involves two
comparisons (conditional branches). To reduce the branches, we modified
Program 4 into the following code for multiplying two blocks. By using the
following function final in the block version Program 3, the performance
was further improved to 6.45 MFLOPS.

Program 5 (Block Final) This program computes C ← AB + C by re-
ducing conditional branch

final(int m,int n,int k,double *A,int LDA,

double *B,int LDB,double *C,int LDC)

for (i=0;i<m;i++) {

a = &A[i*LDA]; /* ith row of A */

for (l=0;l<k;l++) {

c = &C[i*LDC]; /* ith row of C */

b = &B[l*LDB]; /* lth row of B */

for (j=0;j<n;j++)

(*c++)+ = (*a)*(*b++);

a++;

}

}

5 Conclusion

The following table summarizes the performances of the programs presented
before. It also includes the performance of the vendor (SUN) high perfor-
mance library function (dgemm). Our objective here is to illustrate some
generic techniques in high performance computing. We did not attempt to
fine tune our code to fully exploit the underlying machine architecture such
as two levels of cache. So, our results are far below theirs.

Table

Block
Version Naive Naive Stride-One Final Sun dgemm

MFLOPS 1.69 4.3 5.4 6.45 58.22

CS760, S. Qiao Part 4 Page 8

References

[1] David A. and John L. Hennessy. Computer Organization & Design, the
hardware/software interface, 2 ed. Morgan Kaufmann Publishers, Inc.,
1997.

[2] J.J. Dongarra, J. DuCroz, I. Duff, and Hammarling. A set of Level 3
Basic Linear Algebra Subprograms. ACM Trans. Math. Softw., 16:1–17,
1990.

[3] Gene H. Golub and Charles F. Van loan. Matrix Computations, 3rd ed.
The Johns Hopkins University Press, 1996.

[4] R.W. Hamming. Numerical Methods for Scientists and Engineers.
McGraw-Hill, New York, 1962.

[5] Nicholas J. Higham. Accuracy & Stability of Numerical Algorithm. So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, 1996.

[6] Jack J. Dongarra, Iain S. Duff, Danny C. Sorensen, and Henk A. van
der Vorst. Numerical Linear Algebra for High-Performance Comput-
ers. Society for Industrial and Applied Mathematics, Philadelphia, PA,
1998.

